Secure Downlink Transmission to Full-Duplex User Against Randomly Located Eavesdroppers

Ishmam Zabir*, Ahmed Maksud*, Brian M. Sadler† and Yingbo Hua*,
*Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA
†Army Research Laboratory, Adelphi, MD, USA

Abstract—We present a statistical analysis of the secrecy capacity for two downlink transmission schemes: transmit-antenna selection (TAS) and transmit-antenna beamforming (TAB), where the transmitter (Alice) has multiple antennas, the receiver (Bob) is a single-antenna full-duplex radio, and the eavesdroppers are randomly distributed each with a single antenna. We focus on the secrecy outage probability (SOP) or its related measure, show closed-form expressions of SOP for the two schemes, and present insights into how various system parameters such as the jamming powers from both Alice and Bob affect SOP. The SOP performance of TAB is shown to be significantly better than that of TAS although TAB requires more on channel estimation than TAS.

Index Terms—Physical layer security, downlink, artificial noise, stochastic geometry, full-duplex, antenna selection, power allocation.

I. INTRODUCTION

Conventional methods for wireless network security are based on cryptography that require a secure channel to distribute secret keys, e.g., see [1]. In the absence of such a secure channel or a pre-existing secret key already shared by (legitimate) users, secure communications between users can be done via physical layer security [2], which has drawn much attention since Wyner’s work [3]. One important approach for physical layer security is to ensure that there is a positive secrecy capacity between users against eavesdroppers (Eves).

Achieving positive secrecy is a challenging task when Eves act covertly and their locations are unknown to users. Prior works on physical layer security include cooperative jamming [4], [5], buffer-added relay network [6], exploitation of full-duplex radio [8], [9], [10], and many more [7], [11], [12], [13]. None of those works addresses the situation where Eves’ locations are unknown and randomly distributed. One way to handle random locations of Eves is to assume that their locations follow a Poisson point process (PPP) [14]. Such works include [15]-[19], [22].

In this paper, we continue a study in line with [22] where a transmit-antenna selection (TAS) scheme was considered. But unlike [22], we consider a more general situation of TAS where the background noise at the legitimate full-duplex receiver (Bob) is not neglected, which makes it possible to show that there is an optimal value of the jamming power from Bob. Furthermore, we consider a transmit-antenna beamforming (TAB) scheme and show that the secrecy outage probability (SOP) of TAB is significantly better than that of TAS. The expressions of SOP shown in this paper reveal important insights into how various system parameters such as the jamming powers from both Alice and Bob affect the secrecy performance of the system.

Section II presents the system model. Section III studies the performance of the TAS scheme. Section IV investigates the performance of the TAB scheme. Section V presents numerical results.

II. SYSTEM MODEL

We consider a base station (Alice) with M antennas located at the center of a circle of radius R, which transmits secret information to a legitimate receiver (Bob) with a single antenna and full-duplex capability, and located at distance d away from Alice. There are randomly located single-antenna eavesdroppers (Eves) within the circle, and their random locations (denoted by Φ) are modeled as a Poisson point process (PPP) with density ρ_E. The PPP model of Eves is appropriate for long term statistical analysis (such as over hours or days).

The channel gain vector from Alice to Bob is denoted by $h \in C^{M \times 1}$, which is normalized such as h is complex Gaussian with zero mean and identity covariance matrix, i.e., $CN(0, I)$. A full-duplex radio has self-interference [20], [21], and the self-interference channel gain of Bob is $\sqrt{\rho_{BE}}$ with the distribution $CN(0, \rho)$. The channel vector from Alice to the e-th Eve is $\sqrt{a_{ee}} h_{AEe} \in C^{M \times 1}$ and distributed as $CN(0, a_{ee} I)$, and the channel gain from Bob to e-th Eve is $\sqrt{b_{ee}} h_{BEe}$ and distributed as $CN(0, b_{ee})$.

We also let $a_{ee} = \frac{1}{d_{AEe}^2}$ with d_{AEe} being the distance between Alice and the e-th Eve, and $b_{ee} = \frac{1}{d_{BEe}^2}$ with d_{BEe} being the distance between Bob and the e-th Eve. Note that a_{ee} and b_{ee} are large-scale fading parameters as they are dependent on the location of the Eve, while h, g_B, h_{AEe} and h_{BEe} are small-scale fading parameters.

We assume that the single-antenna eavesdroppers cannot collude to form a virtual antenna array while they may share their received information with each other. Then, the secrecy capacity of the downlink transmission from Alice to Bob, conditional on a given set of location of Eves, is

$$S_{AB} = \left[\log_2(1 + SNR_{AB}) - \log_2(1 + \max_{e \in \Phi} SNR_{AEe})\right]^+$$

(1)
where the corresponding signal-to-noise ratios (SNRs) will be discussed later. For a target secrecy rate \(R_S \), the secrecy outage probability (SOP) is defined as

\[
P_{\text{out}} = P(S_{AB} \leq R_S) = P \left[\frac{1 + SNR_{AB}}{1 + \max_{e \in \Phi} SNR_{AE,e}} \leq 2 R_S \right] \tag{2}
\]

where \(P(\cdot) \) denotes probability. We will also use \(P_{\text{in}} = 1 - P_{\text{out}} \).

A. Transmit Antenna Selection

In the transmit antenna selection (TAS) scheme, Alice only transmits via the antenna element in \(h \) that has the largest amplitude. Let \(\sqrt{P_T} x_A(k) \) of power \(P_T \) be the signal transmitted from Alice, and \(h_i \) be the element selected from \(h = [h_1, \ldots, h_M]^T \), i.e., \(|h_i| = \max_i |h_i| \). Thus, Bob and the \(e \)-th Eve receive the following signals respectively:

\[
y_B(k) = h_i \sqrt{P_T} x_A(k) + \sqrt{P_T} g_B w_B(k) + n_B(k) \tag{3}
\]

\[
y_E(e)(k) = a_e \sqrt{P_T} x_A(k) + \sqrt{P_T} g_B w_B(k)
+ n_{A,e}(k) \tag{4}
\]

where \(\sqrt{P_T} w_B(k) \) of power \(P_J \) is the jamming noise from Bob and the jamming signal \(w_B \) is Gaussian distributed, \(n_B(k) \) and \(n_{A,e}(k) \) are the background Gaussian noises at Bob and Eve each with the unit variance, and \(\sqrt{P_T} g_B w_B(k) \) with instantaneous power \(\rho g_B \) denotes the residual self-interference waveform caused by the original self-interference \(\sqrt{P_T} w_B(k) \). Then, the SNR at Bob is

\[
SNR_{TAS_{AB}}^{TAS} = \frac{|h_i|^2 P_T}{1 + \rho |g_B|^2 P_J} \tag{5}
\]

and the SNR at the \(e \)-th Eve is

\[
SNR_{TAS_{AE,e}}^{TAS} = \frac{a_e |h_{A,e}|^2 P_T}{1 + \rho |g_B|^2 P_J} \tag{6}
\]

B. Transmit Antenna Beamforming

In the transmit antenna beamforming (TAB) scheme, Alice takes advantage of knowledge of \(h \) by transmitting the following signal:

\[
s(k) = \sqrt{(1 - \epsilon) P_T} t x_A(k) + \sqrt{\frac{\epsilon P_T}{M - 1}} Wv(k) \tag{7}
\]

where \(x_A(k) \) is the message signal of variance one, \(t = \frac{h}{|h|} \), \(W \in C^{M \times (M-1)} \) has orthonormal columns that span the null space of \(t \) (i.e., \(tt^H + WW^H = I \)), \(v \in C^{(M-1) \times 1} \) is artificial noise \(\mathcal{CN}(0, I) \), and \(\epsilon \) is the power fraction factor that splits the total power \(P_T \) between the message term and the noise term.

Consequently, Bob receives

\[
y_B(k) = \sqrt{(1 - \epsilon) P_T} |h| x_A(k) + \sqrt{\rho P_T} g_B w_B(k) + n_B(k), \tag{8}
\]

and the \(e \)-th Eve receives

\[
y_E(e)(k) = a_e \sqrt{P_T} x_A(k) + \sqrt{\rho P_T} g_B w_B(k) + n_{A,e}(k). \tag{9}
\]

Then, the SNR at Bob is

\[
SNR_{TAB_{AB}}^{TAB} = \frac{(1 - \epsilon)|h|^2 P_T}{1 + \rho |g_B|^2 P_J} \tag{10}
\]

and the SNR at the \(e \)-th Eve is

\[
SNR_{TAB_{AE,e}}^{TAB} = \frac{a_e |h_{A,e}|^2 P_T}{1 + \rho |g_B|^2 P_J} \tag{11}
\]

where

\[
\begin{align*}
\Psi(Y, r_e, \theta_e) &= \frac{\exp(-\frac{d_{AE,e} Y_0}{d_{AE,e}^2 + m d_{AE,e}^2})}{1 + m d_{AE,e}^2 Y_0} \tag{12}
\end{align*}
\]

and \((r_e, \theta_e)\) are the polar coordinates of the location of the \(e \)-th Eve with the origin at the location of Alice. We have

\[
\begin{align*}
\Psi(Y, r_e, \theta_e) &= \frac{\exp(-\frac{d_{AE,e} Y_0}{d_{AE,e}^2 + m d_{AE,e}^2})}{1 + m d_{AE,e}^2 Y_0} \tag{13}
\end{align*}
\]
applied the following fact to obtain \(\Psi(Y, r, \theta) \). If A and B (like \(|h_{A, c}|^2\) and \(|h_{B, c}|^2\)) are two independent random variables with the exponential distribution of unit mean, then
\[
P\left(\frac{a}{a+b} < c \right) = 1 - \frac{e^{-ac}}{1+be}.
\]
Let \(P_{in,Y} \) be \(P_{in} \) conditional on Y. Applying Campbell’s theorem [25] to (12) yields
\[
P_{in,Y} = -\exp \left[-\rho_E \int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr \right] (14)
\]
The double integral shown above is difficult to simplify in general. But for \(R_0 = 0 \) and \(\alpha = 2 \), a simplification is shown in Appendix A.

In order to obtain the unconditional \(P_{in} \), we need the distribution of \(Y \). We can show that the cumulative distribution function (CDF) of \(Y \) is
\[
F_Y(y) = \sum_{i=0}^{M} C_i^M (-1)^i \frac{y^{i+1}}{1+i y \rho m}
\]
where \(C_i^M = \frac{M!}{(M-i)!i!} \). Hence the PDF of \(Y \) is
\[
f_Y(y) = \sum_{i=0}^{M} C_i^M (-1)^{i+1} i e^{-\frac{iy \rho m}{p_f}} \frac{y^{i+1}}{1+i y \rho m}
\]
Therefore,
\[
P_{in} = P[S_{TAS} > R_s] = \int_0^\infty P_{in,Y} f_Y(dy). (17)
\]
One can verify the following statements for \(P_T > 0 \):
- If \(R_s = 0 \), then \(\Psi(Y, r, \theta) \) is invariant to \(P_T > 0 \).
- If \(R_s \) and \(pP_T \) is a constant, then as \(P_J \) increases to \(\infty \), \(\Psi(Y, r, \theta) \) decreases monotonically to zero and hence \(P_{in,Y} \) increases monotonically to one.
- In a region of small \(P_J \), \(Y \) and hence \(Y_0 \) are approximately invariant to \(P_J \), but \(\Psi(Y, r, \theta) \) decreases as \(P_J \) increases and hence \(P_{in,Y} \) increases as \(P_J \) increases.

A. The Case of \(P_J = 0 \)

Now we consider the case of \(P_J = 0 \) and assume that \(P_T \gg \frac{1}{|h_{\epsilon_\epsilon}|^2} \). It follows that \(\Psi(Y, r, \theta) = \exp(-\frac{\alpha |h_{\epsilon_\epsilon}|^2}{p_f} Y_0) = \exp(-\frac{\alpha |h_{\epsilon_\epsilon}|^2}{p_f} Y) \). Hence
\[
\ln P_{in,Y} = \int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr
\]
\[
= -2\pi \int_0^R \exp \left(-\frac{\alpha |h_{\epsilon_\epsilon}|^2}{p_f} \right) r dr
\]
\[
= -\frac{2\pi \beta \frac{2}{\alpha}}{\frac{|h_{\epsilon_\epsilon}|^2}{|h_{\epsilon_\epsilon}|^2} \frac{\beta}{\alpha}} \int_0^R \exp(-z) z^{\frac{3}{2}}-1 dz
\]
\[
= -\frac{2\beta \frac{2}{\alpha}}{\frac{|h_{\epsilon_\epsilon}|^2}{|h_{\epsilon_\epsilon}|^2} \frac{\beta}{\alpha}} \Gamma \left(\frac{2}{\alpha} \right)
\]
where \(\gamma(x, y) = \int_0^y z^{-\alpha-1} e^{-z} dz \) is the lower incomplete gamma function. From (18), it is clear that \(P_{in,Y} \) monotonically decreases as \(R \) increases. In particular,
\[
\lim_{R \to \infty} \ln P_{in,Y} = -\frac{2\beta \frac{2}{\alpha}}{\frac{|h_{\epsilon_\epsilon}|^2}{|h_{\epsilon_\epsilon}|^2} \frac{\beta}{\alpha}} \Gamma \left(\frac{2}{\alpha} \right)
\]

B. The case of \(P_J = \infty \)

We now consider the case of \(P_J = \infty \) and also assume \(R_s = 0 \) and \(\alpha = 2 \). In this case, \(Y_0 = Y = 0 \) and \(m = |h_{\epsilon_\epsilon}|^2 \). Then, following a similar derivation as that from (28) to (30), one can verify that
\[
\ln P_{in,Y} = -\int_0^R \int_0^{2\pi} \Psi(Y, r, \theta) r d\theta dr
\]
\[
= -2\pi \int_0^R \left(1 - \sqrt{1 + \frac{|h_{\epsilon_\epsilon}|^2}{|h_{\epsilon_\epsilon}|^2} \left(1 + \frac{d_s^2}{\beta^2} \right)} \right) r dr
\]
where the integral converges to \(\frac{1}{1 + \frac{|h_{\epsilon_\epsilon}|^2}{|h_{\epsilon_\epsilon}|^2}} r \) as \(r \) becomes large. Hence \(\lim_{R \to \infty} P_{in,Y} \neq 0 \). This result suggests that \(P_J \) should not be too large. Combining this with the third statement below (17) implies that there is generally a finite nonzero optimal \(P_J \).

IV. PERFORMANCE OF THE TAB SCHEME

In addition to \(m = \frac{P_T}{P_f} \) and \(\beta = 2R_s \), we will use \(Z = \frac{|h_{\epsilon_\epsilon}|^2}{\frac{P_T}{P_f} |h_{\epsilon_\epsilon}|^2} \), \(c = \frac{Z}{\frac{P_T}{P_f}} - (1-\frac{\beta}{2\rho}), f_c = (\frac{P_T}{P_f} \frac{d_s \rho}{|h_{\epsilon_\epsilon}|^2}) b \) and \(g = \frac{1}{(1-\frac{\beta}{2\rho})} \), which are inter-related variables dependent on \(h_T, P_T, d_s, \rho \) and \(g_B \). Unlike \(f_c \), the terms \(Z, c \) and \(g \) are invariant to the locations of Eves but dependant on the small scale fading \(h \) and \(g_B \). For \(m = 0 \), \(Z \) has a Chi-squared distribution of \(M \) DoF. If \(m > 0 \), we can show that the PDF of \(Z \) is
\[
f_Z(z) = \frac{M \rho m (z \rho m)^{M-1}}{(1+\rho m)^{M-1}} e^{-\frac{z}{1+\rho m}}
\]

In the following analysis, we will neglect the background noise for Eve (but not for Bob) if \(P_J > 0 \), which is favorable for Eve (but not for Bob). It follows that
\[
P_{in,Y, h, g} = P[S_{AB} > R_s | h, g] = P \left[\max_{\epsilon \in \Phi} SNR_{TAS} < \frac{SNR_{AB}}{\beta} - (1-\frac{1}{\beta}) \right] \left(\Phi, h, g \right)
\]
\[
= P \left[\max_{\epsilon \in \Phi} SNR_{TAS} < \frac{SNR_{AB}}{\beta} - (1-\frac{1}{\beta}) \right] \left(\Phi, h, g \right)
\]
\[
= P \left[\frac{X_1 \Theta}{d_B e} X_2 + \frac{e}{M-1} \frac{X_1 (1-\Theta)}{(1-\frac{\beta}{2\rho})} X_2 + \frac{e \frac{d_s \rho}{|h_{\epsilon_\epsilon}|^2} \frac{d_s \rho}{|h_{\epsilon_\epsilon}|^2}}{M-1} X_1 (1-\Theta)
\right]
\]
\[
= \prod_{\epsilon \in \Phi} \left[\frac{X_1 \Theta}{d_B e} X_2 + \frac{e}{M-1} \frac{X_1 (1-\Theta)}{(1-\frac{\beta}{2\rho})} X_2 + \frac{e \frac{d_s \rho}{|h_{\epsilon_\epsilon}|^2} \frac{d_s \rho}{|h_{\epsilon_\epsilon}|^2}}{M-1} X_1 (1-\Theta)
\right]
\]
\[
= \prod_{\epsilon \in \Phi} \left[\Theta < \frac{X_1}{M-1} + f_c \frac{X_1}{M-1} \left(\Phi, h, g \right) \right]
\]
where \(X_1, X_2 \) and \(\Theta \) are independent variables as defined before (9). Furthermore, \(f_c \) is known to have the F-distribution [24], i.e., \(f_c (x) = M(1+x)^{-(M+1)} \). It follows from \(f_\Theta(x) \)
shown earlier that \(F_\Theta(x) = 1 - (1 - x)^{M-1} \). Then, as shown in Appendix B,
\[
P \left[\Theta > \frac{\epsilon f_e \Delta_f}{M-1} + g \mid \Phi, Z \right] = \frac{1}{(1 + \frac{\epsilon}{g})(1 + \frac{\epsilon}{g(M-1)})^{M-1}}
\]
(22)

Therefore,
\[
P_{in, h, gB} = \mathbb{E}_\Phi \{ P[S_{AB} > R_S \mid \Phi, h, gB] \}
= \mathbb{E}_\Phi \left[\prod_{\ell \in \ell} \left(1 - \frac{1}{(1 + \frac{\epsilon_{\ell}}{g})(1 + \frac{\epsilon_{\ell}}{g(M-1)})^{M-1}} \right) \right]
\]
(23)
\[
= \exp \left[- \rho_j \int_0^R \int_0^{2\pi} \Omega(\frac{1}{g}; r, \theta) d\theta dr \right]
\]
where
\[
\Omega(\frac{1}{g}; r, \theta) = \frac{1}{(1 + \frac{\epsilon}{g})(1 + \frac{\epsilon}{g(M-1)})^{M-1}}
\]
(24)

Finally, averaging \(P_{in, h, gB} \) over the distributions of \(h \) and \(gB \) yields
\[
P_{in} = P[S_{AB} > R_S]
= \int_{z=0}^{\infty} \exp \left[\frac{1}{P_j} \rho E \int_0^R \int_0^{2\pi} \frac{dz}{1 + f_e \left(\frac{1}{g} + \frac{1}{1 - \epsilon} \right)} \right]
\]
\[
\times \left(1 + \frac{\epsilon}{M-1} \left(\frac{1}{g} + \frac{1}{1 - \epsilon} \right) \right)^{M-1} d\theta d\theta dr \right]
\]
(25)

One can verify the following for \(P_T > 0 \):
- Note that \((1 + \frac{\epsilon}{g})^{M-1} \) converges to \(e^{\epsilon/g} \) as \(M \) increases. For large \(P_T \), \(\frac{\epsilon}{g} = \frac{\epsilon P_T \|h\|^2}{\beta(1 + \rho_{hB}^2)} \) and \(\frac{L_s}{g} = \frac{d_{\ell as} \alpha}{d_{\ell as} g_{BC}} \). So for \(\epsilon > 0 \), \(P_{in, h, gB} \) converges to one as \(P_T \) increases to \(\infty \).
- \(P_{in, h, gB} \) increases as \(\rho \) decreases. If \(\rho = 0 \), \(P_{in, h, gB} \) increases to one as \(P_T \) increases to \(\infty \).
- If \(\epsilon = 0 \), \(P_{in, h, gB} \) increases to one as \(P_T \) increases to \(\infty \).
- For given \(\epsilon > 0 \) and \(P_T > 0 \), there is a finite positive \(P_T \) at which \(P_{in, h, gB} \) is maximized.

V. SIMULATIONS

Here, we assume that \(\alpha = 2 \) (path loss exponent), \(P_T = 40 \)dB (transmission power from Alice), \(R_D = 4 \) (data rate from Alice to Bob in bits/s/Hz), \(\rho_E = 1 \) (Eve’s spatial density), \(d = 1 \) (distance from Alice to Bob), \(R = 5 \) (radius of interest) and \(M = 5 \) (number of antennas on Alice). Unless otherwise specified, \(P_J \) (jamming power from Bob), \(\rho \) (self-interference gain) and \(\epsilon \) (fraction of power for jamming noise from Alice) are set to 40dB, 0.01 and 0.01, respectively. Note that \(\epsilon \) must meet the condition of (10).

A. The case of \(P_J = 0 \) but \(\epsilon \geq 0 \)

Now we will not neglect the background noise at Eve. With \(P_J = 0 \) and then \(Z = P_T \|h\|^2 \), one can prove
\[
\ln \frac{P_{in, h, gB}}{\rho E} = - \int_{z=0}^R \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr
\]
\[
\leq -2\pi \beta^\frac{3}{2} \frac{\|h\|^2}{\alpha(\|h\|^2 + 1)} \left(\frac{R_{\alpha \|h\|^2}^\beta}{\beta} \right)
\]
(26)

which is proven in Appendix C. Here \(\gamma(\frac{2}{3}, \frac{R_{\alpha \|h\|^2}^\beta}{\beta}) \) is the lower incomplete gamma function which increases monotonically as \(R \) increases. If \(\epsilon = 0 \), (26) becomes independent of \(P_T \). Since \(\|h\|^2 \geq \max_{i \in \mathbb{H}} |h_i|^2 \), comparing (26) with (18) shows that the TAB scheme always has a larger \(P_{in} \) than the TAS scheme for \(P_J = 0 \) and \(\epsilon \geq 0 \).

B. The case of \(\alpha = 2 \) and \(P_J \rightarrow \infty \)

With \(\alpha = 2 \) and \(P_J \rightarrow \infty \) (hence \(z_m = \frac{\|h\|^2}{\rho_{gb}^2} \)), we have
\[
\frac{\ln P_{in, h, gB}}{\rho E} = - \int_{z=0}^R \int_0^{2\pi} \Omega(z; r, \theta) d\theta dr
\]
\[
= -2\pi \frac{1}{\beta} \frac{\|h\|^2}{\alpha(\|h\|^2 + 1)} \left(\frac{R_{\alpha \|h\|^2}^\beta}{\beta} \right)
\]
(27)

Comparing (20) and (27) once again shows that the TAB scheme has a larger \(P_{in} \) than the TAS scheme.
Fig. 2 compares the TAB and TAS schemes in terms of P_{out}. We see that the performance of TAB is substantially better than that of TAS. In both schemes, P_{out} decreases as ρ decreases, and the optimal value of P_f increases as ρ decreases. We also see that under the same condition, the optimal value of P_f for TAS is larger than that for TAB.

VI. CONCLUSION

We have studied the secrecy performance of transmit-antenna selection (TAS) and transmit-antenna beamforming (TAB) schemes. In both schemes, the transmitter (Alice) has multiple antennas, the receiver (Bob) is a single-antenna full-duplex radio capable of receiving information and transmitting jamming noise at the same time, and there are randomly located single-antenna eavesdroppers (Eve). We derived closed-form expressions of the secrecy outage probability (SOP) or its related measure for the two schemes subject to Rayleigh fading channels and a PPP distribution of Eve’s locations. A number of important insights have been revealed in this paper, including that TAB is much more superior than TAS in terms of SOP, and there is generally an optimal value of the jamming power from Bob.

APPENDIX A

A SIMPLIFICATION OF THE DOUBLE INTEGRAL IN (14)

Assume $R_s = 0$ and $\alpha = 2$. Then, $\beta = 1$ and $Y_0 = Y$. Let the distance between Alice and Bob be d. Then, $\frac{r^2}{d^2} = \frac{r^2}{d^2 - 2rd \cos \theta}$, and furthermore

$$\int_0^R dr \int_0^{2\pi} d\theta (Y, r, \theta) r = \int_0^R dr \int_0^{2\pi} \frac{r \exp(-\frac{Yr^2}{P_T})}{1 + mY \frac{r^2 + dr - 2rd \cos \theta}{(1 + mY)r^2 + d^2 - 2rd \cos \theta}}$$

$$= \int_0^R dr \int_0^{2\pi} \frac{mYr^2 \exp(-\frac{Yr^2}{P_T})}{(1 + mY)r^2 + d^2 - 2rd \cos \theta}$$

$$\int_0^{2\pi} \frac{1}{a - b \cos \theta} d\theta = \frac{2\pi}{\sqrt{a^2 - b^2}}$$

(29)

where the first term can be obviously reduced, but to simplify the second term we need the following identity

$$\int_0^{2\pi} \frac{1}{a - b \cos \theta} d\theta = \frac{2\pi}{\sqrt{a^2 - b^2}}$$

with (29), (28) becomes

$$\int_0^R dr \int_0^{2\pi} d\theta \Psi(Y, r, \theta) r$$

$$= \pi P_T \left(1 - \exp\left(-\frac{Yr^2}{P_T}\right) \right)$$

$$- 2\pi mY \int_0^R \frac{r^3 \exp\left(-\frac{Yr^2}{P_T}\right)}{\sqrt{((1 + mY)r^2 + d^2)^2 - 4r^2 d^2}} dr$$

$$= \pi P_T \left(1 - \exp\left(-\frac{Yr^2}{P_T}\right) \right)$$

$$- \pi mY \int_0^{R^2} \frac{\exp\left(-\frac{Yr^2}{P_T}\right)}{\sqrt{((1 + mY)r^2 + d^2)^2 - 4r^2 d^2}} dr$$

which is a much simplified expression of the double integral in (14).

APPENDIX B

PROOF OF (22)

$$P(\Theta) < \frac{1}{M - 1} + \frac{f_{Y,\Theta}^*}{M - 1} |F, h|$$

$$= \int_{x=0}^{\frac{\rho}{\pi}} F_\Theta(\frac{\rho}{\pi} + f_{x,\Theta}) f_{\Theta^*}^*(x) dx + 1 - F_{\Theta^*}^*(\frac{g}{f_c})$$

$$= \int_{x=0}^{\frac{\rho}{\pi}} \left(1 - \left(1 - \frac{\rho}{\pi} + f_{x,\Theta}\right) \right) M^{-1} f_{\Theta^*}^*(x) dx$$

$$+ 1 - F_{\Theta^*}^*(\frac{g}{f_c})$$

$$= 1 - M^{M^{-1}} \left(\frac{1 - \frac{\rho}{\pi} + f_{x,\Theta}}{1 + x} \right)^{-1} \frac{1}{(1 + x)^2}$$

(31)

With $k = \frac{\rho}{g}$ and $z = \frac{1}{1 + z}$, $(1 - \frac{k}{1 + z})^{-1} = k^{-1}(1 + \frac{k}{1 + z})^{-1}$, then

$$P(\Theta) < \frac{1}{M - 1} + \frac{f_{Y,\Theta}^*}{M - 1} |F, h|$$

$$= 1 - M^{M^{-1}} \left(\frac{1 - \frac{\rho}{\pi} + f_{x,\Theta}}{1 + x} \right)^{-1} \frac{1}{(1 + x)^2}$$

$$= 1 - \frac{M^{M^{-1}}}{(1 + z)(1 + \frac{k}{(M - 1)g})^{-1}} \int_{y=0}^{\frac{1}{y}} y^{M^{-1}} dy$$

$$= 1 - \frac{1}{(1 + \frac{\rho}{g})(1 + \frac{\rho}{(M - 1)g})^{-1}}$$

(32)
APPENDIX C

PROOF OF (26)

With $P_J = 0$, $c \approx \frac{\|h\|^2}{\beta}$ for high P_T and $z = P_T \|h\|^2$, and

$$P[S_{AB} > R_S|\Phi, h, g_B]$$

$$= \prod_{e \in \Phi} P\left[d_{AE_e}^2 + \frac{P_T}{M-1} X_1 < \frac{c}{\beta} |\Phi, h, g_B \right]$$

$$= \prod_{e \in \Phi} P\left[d_{AE_e}^2 + \frac{P_T}{M-1} X_3 < \frac{\|h\|^2}{\beta} |\Phi, h, g_B \right]$$

(33)

where $X_3 = \Theta X_1 = \frac{\|h\|^2}{\beta} \Theta$ is exponentially distributed with mean equal to 1, and $X_3 = (1-\Theta)X_1 = E_v \|h\|^2_{AE_e} W v^2$ follows the $\Gamma(M-1, 1)$ distribution. Furthermore, X_3 and X_4 are independent. Then,

$$P\left[d_{AE_e}^2 + \frac{P_T}{M-1} X_3 < \frac{\|h\|^2}{\beta} |\Phi, h, g_B \right]$$

$$= 1 - \int_0^\infty F_X(x) \left(\frac{\|h\|^2}{\beta} + \frac{P_T}{M-1} x \right) dx$$

$$= 1 - \int_0^\infty \left(1 + \frac{\|h\|^2}{\beta} \frac{P_T}{M-1} y \right) e^{-y} y^{M-2} dy$$

$$= 1 - \frac{e^{-\frac{\|h\|^2}{\beta} \frac{P_T}{M-1}}}{\left(1 + \frac{\|h\|^2}{\beta} \frac{P_T}{M-1} \right)^{M-1}}$$

(34)

Now,

$$\int_{r=0}^{R} \int_{\theta=0}^{2\pi} \Omega(z; r, \theta) d\theta dr$$

$$= \frac{2\pi}{\left(1 + \frac{r}{\beta} \right)^{M-1}} \int_{r=0}^{R} e^{-\frac{r^2}{2\pi}} r dr$$

$$= \frac{2\pi \beta^2}{\alpha} \left(1 + \frac{P_T}{M-1} \right)^{-M-1} \int_{y=0}^{\frac{R^2}{\alpha}} e^{-y} y^{\frac{M}{2}-1} dy$$

$$= \frac{2\pi \beta^2}{\alpha} \left(1 + \frac{P_T}{M-1} \right)^{-M-1} \gamma\left(2, \frac{R^2}{\alpha} \right)$$

(35)

REFERENCES

