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Abstract—This paper examines the role of full-duplex radio for
securing wireless network from a new perspective. It first studies
the secrecy capacity of two single-antenna full-duplex users against
a multi-antenna eavesdropper (Eve) who has the perfect knowledge
of the channel state information (CSI) from users to Eve. It is shown
that if Eve uses a basic matched-filtering, the probability of zero
secrecy (or outage) can be made small by a large jamming power
from both users and a small gain of residual self-interference (RSI)
power. But if Eve uses the optimal matched-filtering, the proba-
bility of outage grows rapidly as either the jamming power from
the users increases or the number of antennas on Eve increases,
regardless of the RSI gain. To prevent any Eve from obtaining its
CSI, this paper then proposes a novel anti-eavesdropping channel
estimation (ANECE) method, which allows users to obtain their
own CSI while keeping all Eves in handicap. This method also
prevents Eves from colluding with each other at any layer. The
design of ideal pilots for ANECE for multiple multi-antenna users
and multiple broadband multi-antenna users is discussed. It is also
shown that the capacity of Eve with any number of antennas but
without its CSI can be virtually eliminated over a time window
corresponding to the number of antennas at the transmitter for
each realization of the CSI.

Index Terms—Wireless network security, full-duplex radio, anti-
eavesdropping channel estimation, mobile ad hoc network, drone
network, multi-agent network.

I. INTRODUCTION

FULL-DUPLEX radio which can receive and transmit at the
same time and same frequency has received much attention

in recent years. There are many works focusing on how to reduce
the amount of self-interference on a full-duplex radio and how
to implement prototypes of full-duplex radio, e.g., see [1]–[6].
There are also many works on how to utilize full-duplex radio
for improved network capacity, e.g., see [7]–[11].

This paper is concerned with the application of full-duplex
radio for securing wireless network. This line of prior works
include [12]–[23]. Much of these prior works focuses on opti-
mization of secrecy capacity over power allocation in subcarri-
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Fig. 1. An illustration of wireless network of legitimate users (such as drones)
all with full-duplex capability but subject to passive eavesdropping from un-
known locations.

ers or in antenna beamspace. A common assumption in all these
works is that the legitimate users have the full knowledge of
the large-scale fading of their channels with respect to eaves-
droppers (Eves). Furthermore, all these works assume that Eves
have the full knowledge of both the large-scale and small-scale
fading of their channels with respect to the legitimate users.

This paper studies the application of full-duplex radio for se-
curing wireless network from a perspective that is unique from
all of the above mentioned prior works. It focuses on a wireless
network of legitimate users all equipped with full-duplex radio,
subject to eavesdropping from arbitrary locations as illustrated
in Fig. 1. The paper first shows an analysis of the secrecy ca-
pacity of two single-antenna users against an arbitrarily located
multi-antenna Eve (which could represent a network of collud-
ing Eves) that has the full knowledge of its channel state infor-
mation (CSI) with respect to the users. (In this paper, “user”,
“legitimate user” and “full-duplex radio” are interchangeable.)
Two cases of how Eve processes their received signals are con-
sidered: one is a basic matched-filtering (BMF), and the other
is the optimal matched-filtering (OMF). For BMF, it is shown
that the probability of zero secrecy (outage) of the two users
against the multi-antenna Eve can be always made small by a
large jamming power from the two users and a small power gain
of the residual self-interference (RSI) channel. But for OMF, it
is shown that the probability of outage of the two users grows
rapidly as either the number of the antennas on the Eve increases
or the jamming power from the two users increases.

With the above important insight, a novel method for anti-
eavesdropping channel estimation (ANECE) is also proposed in
this paper. This method allows both users to estimate their own
CSI with respect to each other but at the same time prevents any
Eves from obtaining their CSI with respect to the users. It is
shown that any Eve without its CSI can be made virtually blind
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and deaf to the secret information transmitted between the users.
This ANECE method is also extended in this paper to the cases of
two multi-antenna users, multiple multi-antenna users as well as
broadband multiple multi-antenna users. The ANECE method
does not require the users to have any knowledge of the CSI at
the Eves except for a minor constraint shown later. The proposed
method for ANECE differs substantially from those in [41] and
[42]. In [41], a recursive training scheme was proposed where
each recursion involves a feedback from Bob to Alice. In [42],
assuming the reciprocal property of the channel between Alice
and Bob, it was suggested that Alice simply avoids transmitting
any pilot but relies on Bob transmitting a pilot. None of these
prior methods prevents Eve from obtaining its CSI with respect
to Bob. Furthermore, the proposed method for ANECE in case
of multiple users allow all users to obtain their mutual CSI while
preventing Eves from obtaining their CSI with respect to any of
the users.

The basic assumptions made in this paper are the following
A1–A4:

A1: The circuitry for self-interference cancellation in each
full-duplex radio is already built-in, and there still exists an
amount of RSI, the power of which is proportional to the power
of the original source of the self-interference. But the RSI wave-
form is virtually white and its shape is independent of the orig-
inal self-interference waveform. The RSI is mainly caused by
noises (such as thermal noises) in circuitry and hence tends
to be white especially if the optimal cancellation scheme is
used. This model is based on the prior experiences in self-
interference cancellation for full-duplex radio [4]–[6] where
both theory and hardware implementations are available. The
above modelling of the RSI channel can also be explained as
follows. Let s1(t) + n1(t) be the signal plus noise at the input
of the original self-interference channel (including all compo-
nents applied for interference isolation) with the signal-to-noise
ratio SNR1 = S1

N1
, and s2(t) + n2(t) be the signal plus noise

at the output of the original channel with SNR2 = S2
N2

. Note
that s1(t) and s2(t) may be perfectly correlated but n1(t) and
n2(t) are independent and white. The noise factor of the origi-
nal channel is defined as K = SNR1

SNR2
> 1. Assuming an optimal

self-interference cancellation, the RSI would be a combination
of n1(t) and n2(t), and is typically dominated by n2(t). The
power of n2(t) is N2 = K S2

SNR1
where S2 is typically propor-

tional to S1 . For example, if SNR1 = 60 dB, K = 5 dB and
S1
S2

= 60 dB, then N2
S1

= −115 dB.
A2: All Eves are passive, i.e., they do not transmit. For sta-

tistical analysis of secrecy capacity, the small-scale fading from
users to Eves is assumed to have an amplitude-wise Rayleigh
distribution from the users’ perspective. Some results of the
analysis do not either require the users to know the large-scale
fading from users to Eves. For ANECE, no knowledge of the
CSI from users to Eves is required by the users.

A3: All noises are white Gaussian. All users are equally capa-
ble. This assumption is made for simple exposure of key ideas
although some extension from this assumption can be straight-
forward.

A4: All antennas are omnidirectional within angles of interest
unless mentioned otherwise.

The results shown in this paper may or may not require non-
collusion among Eves, which will be made clear in the context.
The potential applications of these results include in particular
mobile ad hoc wireless network (such as drone network) where
all nodes are capable of full-duplex at a common frequency. It

is also important to mention that this paper focuses on trans-
mission of secret information between users who do not share
pre-existing secret information. If there is any pre-existing se-
cret information shared by the users, they can communicate with
each other securely (without full-duplex) by following the con-
ventional methods such as cryptography at the network layer
[24]. Any existing secret shared among users could be also used
by the users at the physical layer (e.g., as a seed of a pseudo-
random sequence) to generate such an artificial noise that inter-
feres Eves but is removable by legitimate receivers. The use of
artificial noise in beamspace is not considered in this paper.

In Section II, the secrecy capacity of two single-antenna users
against an arbitrarily located multi-antenna Eve is analysed.
Some of the results are a generalization of some shown in [25]
where an arbitrarily located single-antenna Eve was focused
on. In Section III, the proposed ANECE method is presented
for a two-user case and a multi-user case. The extensions of
ANECE for two multi-antenna users, multiple multi-antenna
users and multiple broadband multi-antenna users are given in
the appendix.

The key novelty of this paper includes: novel insights into the
performance of single-antenna full-duplex radio users against
multi-antenna Eves with knowledge of their CSI, novel method
for ANECE in various settings; and novel understanding of the
secrecy capacity between users against Eves without knowledge
of their CSI.

The notations: All vector variables are in bold lower case.
All matrix variables are in bold upper case. The expectation is
E{·}. The magnitude of a scalar or the determinant of a matrix
is | · |. The norm of a vector is ‖ · ‖. The complex Gaussian
distribution of zero mean and covariance R is CN (0,R). The
M × M identity matrix is IM . The set of all n × m complex
matrices is Cn×m . All other notations are defined in the context.

II. PROPERTIES OF SECRECY CAPACITY AGAINST

EVES WITH CSI

In this section, the focus is on the exchange of secret infor-
mation between two users (Alice and Bob) each with a single
antenna and a full-duplex capability. (“secret information”, “se-
cret key” and “key” are interchangeable in this paper.) The users
are subject to eavesdropping by a multi-antenna Eve at arbitrary
location. Such a multi-antenna Eve could represent a network
of distributed colluding Eves.

Without loss of generality, let the normalized locations of
Alice and Bob be (−0.5, 0) and (0.5, 0) respectively, and that
of an arbitrary Eve be (xE , yE ). (The 3-D case can be similarly
treated.) Note that all location coordinates, channel gains and
noise variances shown in this paper are normalized in a similar
way as in [25]. The channel gain between Alice and Bob is
denoted by h. The averaged power gain of the RSI at Alice
or Bob is ρ, but the instantaneous RSI power gains at Alice
and Bob are respectively ρ|gA |2 and ρ|gB |2 where gA and gB

are caused by small-scale fading. (If the channel gain between
Alice and Bob is direction dependent, it can be treated similarly.)
Assume that h, |gA | and |gB | are known to Alice and Bob so
that statistical properties conditional on these parameters are
meaningful.

The channel vector from Alice to Eve (with M antennas)
is denoted by

√
ahA ∈ CM ×1 , and that from Bob to Eve is√

bhB ∈ CM ×1 . Here, a and b represent the large-scale fading
of Eve, and could be approximated by a = 1

dα
A

and b = 1
dα

B
with

α ≥ 2 and dA and dB being the distances from Alice and Bob
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to Eve. The small-scale fading of Eve with respect to Alice and
Bob is represented by hA and hB , respectively.

Consider an exchange of keys between Alice and Bob in two
phases. In phase 1, Alice sends a key to Bob, and in phase 2, Bob
sends a (different) key to Alice. The two phases can be either
in two time slots or in two frequency bands. But in either case,
assume that all channel amplitudes are invariant from phase 1
to phase 2.

In phase 1, Bob receives

yB (k) =
√

PT hxA (k) +
√

ρPJ gB wB (k) + nB (k) (1)

and an Eve receives

yA,E (k) =
√

aPT hAxA (k) +
√

bPJ hB vB (k) + nA,E (k)
(2)

where yA,E (k) ∈ CM ×1 , k is the time index,
√

PT xA (k) of
power PT is the signal transmitted by Alice,

√
PJ vB (k) of

power PJ is the jamming noise from Bob,
√

ρPJ gB wB (k) of
power ρPJ is the RSI noise at Bob after self-interference can-
cellation, nB is the background noise at Bob, and nA,E is the
background noise vector at Eve. All noises are assumed to be
white Gaussian.

Then, the SNR at Bob is

SNRA,B =
|h|2PT

1 + ρ|gB |2PJ
. (3)

The effective SNR at Eve depends on how Eve processes yA,E

(k). If Eve knows hA , then it can perform a BMF to yA,E (k)
as follows:

rA,E ,b(k) .= hH
A yA,E (k) =

√
aPT ‖hA‖2xA (k)

+
√

bPJ hH
A hB wB (k) + hH

A nA,E (k). (4)

In this case, the effective SNR at Eve is

SNRA,E ,b =
a‖hA‖4PT

‖hA‖2 + b|hH
A hB |2PJ

=
a‖hA‖2PT

1 + b
|hH

A hB |2
‖hA ‖2 PJ

.

(5)
On the other hand, if Eve knows hA , hB , b and PJ , then
Eve could use the following OMF on yA,E (k) (which is noise
whitening followed by matched-filtering):

rA,E ,o(k) .= hH
A R−1

A,E yA,E (k) (6)

where RA,E is the covariance matrix of the noise terms in
yA,E (k) and

R−1
A,E = (I + bPJ hB hH

B )−1 = I − bPJ hB hH
B

1 + bPJ ‖hB ‖2 . (7)

Then, the effective SNR at Eve is

SNRA,E ,o = aPT hH
A R−1

A,E hA

= aPT ‖hA‖2 − abPT PJ |hH
A hB |2

1 + bPJ ‖hB ‖2 . (8)

It is known that SNRA,E ,b ≤ SNRA,E ,o with equality if RA,E

is proportional to the identity matrix, and the OMF leads to the
optimal detection at Eve.

In phase 2, Alice receives

yA (k) =
√

PT hxB (k) +
√

ρPJ gAwA (k) + nA (k) (9)

and Eve receives

yB,E (k) =
√

bPT hB xB (k) +
√

aPJ hAvA (k) + nB,E (k)
(10)

where the notations are similarly defined as before. Note that
nB,E (k) and nA,E (k) are independent. For convenience, a sym-
metry between Alice and Bob in terms of PT , PJ and the dis-
tributions of noises has been assumed. It follows that the SNR
at Alice is

SNRB,A =
|h|2PT

1 + ρ|gA |2PJ
. (11)

The effective SNR at Eve based on the BMF is

SNRB,E ,b =
b‖hB ‖2PT

1 + a
|hH

B hA |2
‖hB ‖2 PJ

(12)

where Eve requires the knowledge of hB . And the effective
SNR at Eve based on the OMF is

SNRB,E ,o = bPT ‖hB ‖2 − abPT PJ |hH
A hB |2

1 + aPJ ‖hA‖2 (13)

where Eve requires the knowledge of hA , hB , a and PJ .
Assuming no collusion between Eves, the averaged secrecy

capacity in bits/s/Hz against any given Eve is

S =
1
2
(SA,B + SB,A ) (14)

SA,B = [log2(1 + SNRA,B ) − log2(1 + SNRA,E )]+ (15)

SB,A = [log2(1 + SNRB,A ) − log2(1 + SNRB,E )]+ (16)

where SNRA,E and SNRB,E should be replaced by either
SNRA,E ,b and SNRB,E ,b or SNRA,E ,o and SNRB,E ,o , de-
pending on whether the BMF or the OMF is used by Eve. Here,
(x)+ = max(x, 0).

Important properties of the secrecy capacity shown in (14)–
(16) will be discussed next. Some of these properties based on
the BMF resemble the case of single-antenna Eves shown in
[25]. It is useful to also focus on SA,B , from which one can
infer the properties of SB,A in an obvious way.

A. Properties of SA,B Based on BMF

SA,B is the secrecy capacity of the transmission from Alice to
Bob against any given non-colluding Eve. The position and/or
CSI of this Eve affects SA,B . It is also important to realize that
the minimum of SA,B over all possible locations and/or channel
gains of Eves subject to any known constraint on Eves defines
the overall secrecy capacity of the transmission from Alice to
Bob against all non-colluding Eves. That minimum is also the
overall secrecy capacity against all Eves that could only collude
at the network layer.

For some applications such as wireless communications be-
tween drones high in air and away from buildings, there can
be virtually no multi-path between them and hence virtually no
small scale fading. In this case, the elements of hA and hB are
all constants. So, the properties of SA,B even in the absence of
small-scale fading are useful.

One can verify that a generalization of Property 1 in [25] is
the following:1

1The proofs of this property and some other properties that follow are similar
to those of the corresponding properties shown in [25]. Due to space limitation,
these proofs are omitted.



HUA: ADVANCED PROPERTIES OF FULL-DUPLEX RADIO FOR SECURING WIRELESS NETWORK 123

Fig. 2. Region of solutions of positive XA and XB to (45) for t < 1.

Fig. 3. Illustration of no solution of positive XA and XB to (45) for t > 1
and t∗ ≤ 1.

Property 1: SA,B > 0 iff
1) b̂ − ρ̂â > 0 and PJ > γ̂; or
2) b̂ − ρ̂â < 0 and PJ < γ̂; or
3) b̂ − ρ̂â = 0 and â < 1.

where â = a ‖hA ‖2

|h |2 , b̂ = b
|hH

A hB |2
‖hA ‖2 , ρ̂ = ρ|gB |2 , and γ̂ = â−1

b̂−ρ̂â
.
�

This property suggests that for a given pair of â and b̂, there
are typically a turning point for ρ̂ and a turning point for PJ in
order to achieve a positive secrecy. In the absence of small-scale
fading, both â and b̂ are constants.

A restatement of the above property is the following, which
is also a generalization of Property 2 in [25],

Property 2:
1) For Eve in region R1

.= {b̂ − ρ̂â > 0 and â < 1}, SA,B

> 0 for any PJ ≥ 0.
2) For Eve in region R2

.= {b̂ − ρ̂â > 0 and â ≥ 1}, SA,B

> 0 iff PJ > γ̂.
3) For Eve in region R3

.= {b̂ − ρ̂â ≤ 0 and â < 1}, SA,B

> 0 if PJ = 0.
4) For Eve in region R4

.= {b̂ − ρ̂â ≤ 0 and â ≥ 1}, SA,B

= 0 for any PJ ≥ 0.
�

As illustrated by Fig. 2 and 3 in [25] for M = 1, each of
the above regions corresponds to a geometric region in space.
Without the small-scale fading, all the regions are separated
from each other by circular boundaries. It is seen here that R2

is the most important region of Eve that Alice and Bob need to
pay special attention to especially if Eves could collude at the
network layer. This is because if there is a colluding Eve nearby
Alice, then typically â > 1, and hence one must keep ρ̂ small
such that b̂ − ρ̂â > 0 in order to keep SA,B > 0 under some
PJ > γ̂.

Let PJ,opt = arg maxPJ
SA,B . A generalization of Property

6 in [25] is the following:
Property 3:
1) For Eve in region R1 ,

PJ,opt =
[
γ̂ +

√
γ̂2 + β̂

]+

≥ 0 (17)

with β̂ = â b̂−ρ̂+ â P̂T (b̂−ρ̂)
ρ̂ b̂(b̂−ρ̂â)

and P̂T = PT |h|2 .

2) For Eve in region R2 , PJ,opt is given by (17) but is strictly
positive.

3) For Eve in region R3 , PJ,opt = 0. �
A useful insight from this property is that for any given

â and b̂, as ρ̂ decreases and PT increases, PJ,opt becomes
√

â ( 1 + P̂ T )
ρ̂ b̂

=O(

√
P̂ T
ρ̂ ). It is also useful to know that for R2 ,

arg maxâ ,b̂ PJ,opt = arg minâ ,b̂ SA,B .
Now consider the impact of small-scale fading on the se-

crecy capacity SA,B . Both â and b̂ depend not only on a
and b but also on the small-scale fading of the channels of
Eve. For multi-path rich environment, it is a good assump-
tion that hA ∈ CM ×1 and hB ∈ CM ×1 are independent and
each has the distribution CN (0, I). Then, it follows that that
2XA

.= 2‖hA‖2 and 2XB
.= 2‖hB ‖2 are independent and each

has the probability density function (PDF) of the standard
Chi-squared random variable of 2M degrees of freedom, i.e.,
fXA

(u) = fXB
(u) = 1

Γ(M ) u
M −1e−u .

It is obvious that XA and XB are independent of uA
.=

1
‖hA ‖hA and uB

.= 1
‖hB ‖hB that represent the directions of

hA and hB . Then, it follows that uH
A hB and uH

B hA are inde-
pendent of XA and XB , respectively. Furthermore, conditional
on uA , uH

A hB is complex Gaussian with zero mean and unit
variance, which is invariant to uA . Hence, either conditional
or unconditional upon uA , uH

A hB remains to be CN (0, 1).
Similarly, uH

B hA is CN (0, 1). Therefore, YB
.= |hH

A hB |2
‖hA ‖2 and

YA
.= |hH

B hA |2
‖hB ‖2 are independent of XA and XB , respectively,

and have the PDF fYA
(x) = fYB

(x) = e−x for x ≥ 0.
Referring to (3) and (5), it follows that SA,B = 0 iff

SNRA,B ≤ SNRA,E ,b or equivalently,

XA − v1YB − v2 > 0 (18)

where v1 = b|h |2 PJ

a(1+ρ|gB |2 PJ ) , v2 = |h |2
a(1+ρ|gB |2 PJ ) . Both v1 and v2

are invariant to the small-scale fading of Eves. But they are
functions of a, b and the CSI of Alice and Bob. It follows that
the probability of SA,B = 0, conditional on v1 and v2 , is

P(SA,B = 0|v1 , v2)

=
∫ ∞

0
e−y dy

∫ ∞

v1 y+v2

1
Γ(M)

xM −1e−xdx. (19)

Since v1 is proportional to b
a and v2 is proportional to 1

a , one can
verify that arg maxxE ,yE

P(SA,B = 0|v1 , v2), subject to a =
1

dα
A

, b = 1
dα

B
and dA ≥ Δ, equals to (xE , yE ) = (−0.5 − Δ, 0),

i.e., the secrecy is the worst against the Eve that is the closest
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to Alice on her opposite side from Bob. Also, as a increases,
both v1 and v2 approach zero and hence P(SA,B = 0|v1 , v2)
approaches one.

An alternative form of P(SA,B = 0|v1 , v2) can be shown by
switching the order of the two integrals in (19) to be

P(SA,B = 0|v1 , v2) =
1

Γ(M)

[

Γ(M,v2) − e
v 2
v 1

×
(

1 +
1
v1

)−M

Γ
(

M,v2

(
1 +

1
v1

))]

(20)

where Γ(p, z) =
∫ ∞

z xp−1e−xdx. It is known [28] that limp→∞
Γ(p,z )
Γ(p) = 1 for any given z. Therefore, one has:

Property 4:

lim
M →∞

P(SA,B = 0|v1 , v2) = 1 (21)

for any given v1 and v2 . �
To see an asymptotical dependence of P(SA,B = 0|v1 , v2)

on M , one can verify the following:
Property 5: For a large PJ such that ρ|gB |2PJ 
 1, v1 ≈

b|h |2
aρ|gB |2 and v2 ≈ |h |2

aρ|gB |2 PJ
→ 0, it follows from (20) that

P(SA,B = 0|v1 , v2) → 1 − 1
(1 + 1

v1
)M

. (22)

�
The above two properties show how detrimental it is to Alice

and Bob if Eve has multiple antennas.
One could also discuss the properties of SA,B based on the

OMF. But it is obvious that the use of OMF at Eve must make
SA,B even worse than those shown above. So, those properties
are omitted. The next section discusses the properties of S that
results from dual transmissions.

B. Properties of S Based on BMF

It is obvious that S = 0 iff SA,B ≤ 0 and SB,A ≤ 0, or equiv-
alently iff SNRA,B ≤ SNRA,E and SNRB,A ≤ SNRB,E .
Related to Part 3) of Property 10 in [25] is:

Property 6: There is a PJ ≥ 0 such that S > 0 if

ρ < |h|2 |hH
A hB |2 max

{
b

a

1
|gB |2‖hA‖4 ,

a

b

1
|gA |2‖hB ‖4

}
.

(23)
�

Proof: The above follows from the application of Parts 1 and
2 of Property 2 to the two components in S. �

This property covers the important and typical situation where
Eve is not far away from Alice and Bob. And it shows how in
this situation the required ρ is affected by all the parameters of
the CSI in a deterministic fashion. For example, one can see that
the required ρ is small if the two vectors hA and hB are nearly
orthogonal, and/or the norms of the two vectors are large (all of
which tend to be true when M is large).

Next, the properties of S subject to random hA and hB are
discussed. One can verify that S = 0 iff

{
|h|2 + b|h|2ΦXB PJ ≤ a(1 + ρ|gB |2PJ )XA

|h|2 + a|h|2ΦXAPJ ≤ b(1 + ρ|gA |2PJ )XB

(24)

where Φ = |hH
A hB |2

‖hA ‖2 ‖hB ‖2 , XA = ‖hA‖2 and XB = ‖hB ‖2 . One
can rewrite (24) as Φ ≤ Tb where

Tb = min
{

c1XA − c2

XB
,
c3XB − c4

XA

}
(25)

with c1 = a
b

1+ρ|gB |2 PJ

|h |2 PJ
, c2 = 1

bPJ
, c3 = b

a
1+ρ|gA |2 PJ

|h |2 PJ
and c4 =

1
aPJ

. Therefore,

p0
.= P{S = 0} = P{Φ ≤ Tb}. (26)

It is useful to examine p0 subject to fixed ρ, PJ , |h|2 , |gA |2
and |gB |2 but random XA , XB and Φ. Note that the first set of
parameters are known to Alice and Bob while the second set of
parameters are random unknowns.

Under the assumption that hA and hB are independent
CN (0, I), it is known that XA , XB and Φ are independent. It
is also known that 2XA and 2XB are the standard Chi-squared
random variables each with degree 2M , which can be used to
derive the PDF of Tb . But the distribution of Φ does not seem
readily available in the literature except for the case of two real-
valued vectors [26]. To see useful properties of S, one needs to
understand the PDFs of Tb and Φ as discussed next.

Property 7: Let

t∗ =
√

c1c3 =

√
(1 + ρ|gB |2PJ )(1 + ρ|gA |2PJ )

|h|2PJ
. (27)

For 0 < t < t∗, the PDF of Tb is

fTb
(t) =

∫ ∞

c 2 c 3 + c 4 t

c 1 c 3 −t 2

fXA
(x)

[
x

c3
fXB

(
c4 + tx

c3

)

+
c1x − c2

t2
fXB

(
c1x − c2

t

)]
dx (28)

where fXA
(x) = fXB

(x) = 1
Γ(M ) x

M −1e−xu(x) and u(x) is
the unit step function. (The step function will not be used when
it is obvious that the variable must be positive.) For t > t∗,
fTb

(t) = 0. For t < 0, fTb
(t) is generally nonzero, but becomes

negligible if PJ becomes large. The explicit expression of fTb
(t)

for t < 0 is omitted due to its unimportance. �
Proof: The CDF (cumulative distribution function) of Tb is

FTb
(t) = P{Tb ≤ t} = 1 − P{Tb > t}

= 1 − P{c1XA − tXB > c2 , c3XB − tXA > c4}. (29)

One can verify that the two linear inequalities in the last expres-
sion can possibly hold simultaneously iff t < t∗. In other words,
if t ≥ t∗, FTb

(t) = 1. Subject to 0 < t < t∗, one can verify that

FTb
(t) = 1 −

∫ ∞

c 2 c 3 + c 4 t

c 1 c 3 −t 2

dx

∫ c 1 x −c 2
t

c 4 + t x
c 3

fXA
(x)fXB

(y)dy (30)

where the upper and lower limits of the inner integral over y
are equal when x in the outer integral equals its lower limit.

Then (28) follows from fTb
(t) = ∂FT b

(t)
∂ t (where one of the

three terms in the derivative is zero). It is obvious from (25)
that Tb can be negative. But as PJ increases, c2 and c4 become
negligible, so does the probability of Tb < 0, and hence so does
fTb

(t) for t < 0. �
For M > 1, it seems hard to reduce (28) even if possible.

But for M = 1, it is known that fXA
(x) = fXB

(x) = e−xu(x),
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and one can verify after some tedious manipulations that (28)
reduces to

fTb
(t) =

(
c3

(c3 + t)2 +
c2c3 + c4t

(c3 + t)(c1c3 − t2)

+
c1c4 + c2t

(c1 + t)(c1c3 − t2)
+

c1

(c1 + t)2

)

× exp
{
−c1c4 + c2c3 + (c2 + c4)t

c1c3 − t2

}
. (31)

For a large PJ , the self-interferences at both Alice and
Bob dominate the background noise, i.e., ρ|gB |2PJ 
 1 and
ρ|gA |2PJ 
 1, and hence t∗ converges to its lower bound
ρ |gA ||gB |

|h |2 which is proportional to ρ and invariant to PJ .
It is useful to know the mean of Tb under large PJ . Assume

a large PJ for which c2 and c4 go to zero. In this case, (28)
becomes

fTb
(t) ≈

∫ ∞

0
fXA

(x)

[
x

c3
fXB

(
tx

c3

)

+
c1x

t2
fXB

(c1x

t

)]

dx

=
Γ(2M)
Γ2(M)

[
1
c3

( t
c3

)M −1

(1 + t
c3

)2M
+

1
t

( c1
t )M

(1 + c1
t )2M

]

(32)

where c1 = aρ|gB |2
b|h |2 , c3 = bρ|gA |2

a |h |2 and 0 < t < t∗ =
√

c1c3 =
ρ|gA ||gB |

|h |2 . Furthermore, one can show that the expectation
of Tb is

E{Tb} =
Γ(2M)
Γ2(M)

[∫ t∗

0

( t
c3

)M

(1 + t
c3

)2M
dt +

∫ t∗

0

( c1
t )M

(1 + c1
t )2M

dt

]

=
Γ(2M)
Γ2(M)

[

c3

∫ √
c 1
c 3

0

xM

(1 + x)2M
dx

+c1

∫ √
c 3
c 1

0

xM

(1 + x)2M
dx

]

. (33)

where the change of variable c1
t = 1

x has been applied to obtain

the second term for the second equation. Note that
√

c1
c3

= a |gB |
b|gA | .

Using the change of variable x = y
1−y in the previous integral,

one has

E{Tb} =
Γ(2M)
Γ2(M)

[
c3

∫ rA

0
yM (1 − y)M −2dy

+ c1

∫ rB

0
yM (1 − y)M −2dy

]

=
Γ(2M)
Γ2(M)

[c3B(rA ;M + 1,M − 1)

+ c1B(rB ;M + 1,M − 1)] (34)

where rA =

√
c 1
c 3

1+
√

c 1
c 3

=
a |g B |
b |g A |

1+ a |g B |
b |g A |

, rB = 1 − rA , and B(x; a, b)

=
∫ x

0 ta−1(1 − t)b−1dt which is known as incomplete beta func-

tion. Let I(r; p, q) = B (r ;p,q)
B (p,q) which is known as regularized

incomplete beta function and upper bounded by one. Then, (34)
becomes

E{Tb} =
M

M − 1
ρ

|h|2
[

b

a
|gA |2I(rA ;M + 1,M − 1)

+
a

b
|gB |2I(rB ;M + 1,M − 1)

]

. (35)

It is known from the discussion of the equation (3.15) in [27]
that limM →∞ I(r;M + 1,M − 1) = 0 for a fixed r < 1

2 and
limM →∞ I(r;M + 1,M − 1) = 1 for a fixed r > 1

2 . One can
then conclude the following:

Property 8:

lim
M →∞,PJ →∞

E{Tb} =
ρ|gA ||gB |

|h|2 min
{

a′

b′
,
b′

a′

}
(36)

where a′ = a
|gA | and b′ = b

|gB | . �
Lemma 1: The PDF of Φ (the squared-cosine-magnitude of

the angle between two complex Gaussian vectors) as defined in
(24) is given by

fΦ(x) =
Γ(M)

Γ(M − 1)
(1 − x)M −2 = (M − 1)(1 − x)M −2

(37)
where 0≤x≤1 and M ≥ 2. Note that the mean of Φ is 1

M . �
Proof: See Appendix A. �
A generalization of Lemma 1 is:

Lemma 2: Let Φ = |aH b|2
‖a‖2 ‖b‖2 where a is CN (0, IM ) and b

has any distribution subject to b = 0 with probability one. Then,
Φ has the beta distribution Beta(1,M − 1) as shown in (37).

Proof: An outline of the proof is as follows. Conditional
on b, one can write Φ = X

X +Y where X and Y are inde-

pendent, X = |aH b
‖b‖ |2 and Y =

∑M
i=2 |aH ei |2 where ei for

i = 2, . . . ,M are orthonormal and span the orthogonal comple-
ment of b. Furthermore, for any b = 0, X has the Chi-squared
distribution with degree two, and Y has the Chi-squared dis-
tribution with degree 2(M − 1). It follows that Φ has the beta
distribution Beta(1,M − 1). �

With the knowledge of the PDFs of Tb and Φ, one can evaluate
the probability p0 of zero secrecy by

p0 = P{Φ ≤ Tb}

=
∫ t∗

0
fTb

(t)
∫ min{t,1}

0
fΦ(φ)dφdt

=
∫ 1

0
fΦ(φ)

∫ t∗

φ

fTb
(t)dtdφ. (38)

This expression can be used to compute p0 under any ρ, PJ ,
|h|2 , |gA |2 and |gB |2 . A special case of the above is as follows:

Property 9: If PJ is large and ρ is small so that t∗ � 1, and
M ≥ 2, then

p0 ≈
∫ t∗

0
fTb

(t)(M − 1)tdt = (M − 1)E{Tb}

< (M − 1)t∗ = (M − 1)ρ
|gA ||gB |
|h|2 , (39)



126 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 1, JANUARY 1, 2019

and for a large M ,

p0 ≈ Mρ
|gA ||gB |
|h|2 min

{
a′

b′
,
b′

a′

}
. (40)

�
This property says that with a large PJ , one can always keep

p0 small by keeping (M − 1)ρ small. It is also important to note
that the upper bound on p0 shown in (39) is invariant to any CSI
of Eves. The result of (40) implies that for large M , large PJ

and small ρ, the most harmful Eve is at a location where a′ = b′,
i.e., a

|gA | = b
|gB | . When |gA | = |gB |, such a location is at the

half-way between Alice and Bob. (Although p0 here is constant
for all Eves on the y-axis, the secrecy capacity S increases as
Eve moves away along the y-axis from the origin.)

For the special case of M = 1, it is known that Φ = 1, i.e.,
fΦ(x) = δ(x − 1).

Property 10: For M = 1,

p0 = P{1 ≤ Tb} =
∫ t∗

1
fTb

(t)dt (41)

where fTb
(t) is given by (31). Here, p0 is zero iff t∗ ≤ 1. �

Note that for M = 1, one can keep p0 = 0 exactly by keeping
t∗ ≤ 1. But for M > 1, it is unavoidable to have p0 > 0 although
one can make p0 small by having a small ρ(M − 1).

The above properties have shown something rather encourag-
ing in terms of the secrecy capacity of two single-antenna users
against multi-antenna Eves. In other words, provided that PJ is
large enough and ρ is small enough, one can keep p0 small. This
motivates us to look into S based on the OMF at Eve, as shown
next.

C. Properties of S Based on OMF

Now consider S defined in (14)–(16) with SNRA,E and
SNRB,E replaced by SNRA,E ,o and SNRB,E ,o respectively.
One can verify that S = 0 iff Φ ≤ To where

To = min {ZA,B , ZB,A} (42)

where ZA,B = ( c0
XB

+ 1
a )(a − cB

XA
), ZB,A = ( c0

XA
+ 1

b )(b −
cA

XB
), c0 = 1

abPJ
, cB = |h |2

1+ρ|gB |2 PJ
and cA = |h |2

1+ρ|gA |2 PJ
. Ob-

viously, there is a nonzero probability for To < 0.
Property 11: Let FTo

(t) be the CDF of To , and fTo
(t) be the

PDF of To . Then,

P{S = 0} =
∫ 1

0
fΦ(φ)dφ

∫ ∞

φ

fTo
(t)dt

= 1 −
∫ 1

0
fΦ(φ)FTo

(φ)dφ (43)

where fΦ(x) is given by (37), and FTo
(t) for t < 1 is given

by (49). Furthermore, P{To > 1} > 0 iff t∗ > 1 where t∗ is
defined in (27). �

Proof: In the following, both the proof and a discussion are
provided. The CDF of To is

FTo
(t) = P{To ≤ t} = 1 − P{To > t} (44)

where To > t is equivalent to
{

ac0XA − cB

a XB + (1 − t)XAXB > c0cB

bc0XB − cA

b XA + (1 − t)XAXB > c0cA
(45)

Assume t < 1. Then, the first inequality in (45) implies

XB <
ac0XA − c0cB
cB

a − (1 − t)XA
(46)

if 0 ≤ XA < cB

a(1−t) , or

XB >
ac0XA − c0cB
cB

a − (1 − t)XA
(47)

if XA > cB

a(1−t) . The second inequality in (45) implies that

XB >
c0cA + cA

b XA

bc0 + (1 − t)XA
(48)

for all XA ≥ 0. The above conditions are illustrated in Fig. 2.
Let (x∗, y∗) be two positive numbers such that (45) hold with
inequalities replaced by equalities and (XA,XB ) = (x∗, y∗).
Namely, x∗ is the positive solution to k2x

2 + k1x + k0 = 0
where k2 = − cA

b (1 − t) − ac0(1 − t), k1 = −abc2
0 + cA cB

ab +
c0cB (1 − t) − c0cA (1 − t) and k0 = bc2

0cB + c0 cA cB

a .
As illustrated in Fig. 2, one has cB

a < x∗ < cB

a(1−t) . Therefore,
for t < 1,

FTo
(t) = 1 −

∫ c B
a ( 1−t )

x∗
dx

∫ a c 0 x −c 0 c B
c B
a −( 1−t )x

c 0 c A +
c A
b

x

b c 0 + ( 1−t )x

fXA
(x)fXB

(y)dy

−
∫ ∞

c B
a ( 1−t )

dx

∫ ∞
c 0 c A +

c A
b

x

b c 0 + ( 1−t )x

fXA
(x)fXB

(y)dy. (49)

Note that x∗ is also function of t. The PDF fTo
(t) of To can

be found from ∂
∂ t FTo

(t). But the result is too tedious to be
insightful and hence omitted. Given FTo

(t), one can compute
P{S = 0} according to (43).

Now consider t = 1. In this case, the two nonlinear terms
in (45) vanish, which results in two linear inequalities. Further-
more, one can verify that both conditions in (45) can be satisfied
at the same time with a nonzero probability iff t∗ > 1 (equiva-
lently a2b2c2

0 − cAcB > 0). If t∗ > 1, this nonzero probability
is

P{To > 1}

=
∫ ∞

b c 0 c B (a b c 0 + c A )

a 2 b 2 c 2
0
−c A c B

dx

∫ a c 0 (a x −c B )
c B

c A ( b c 0 + x )
b 2 c 0

fXA
(x)fXB

(y)dy. (50)

When t > 1, the first condition in (45) implies (46) for all
XA ≥ 0, and the second condition in (45) implies (48) if 0 ≤
XA < bc0

t−1 , or the following:

XB <
c0cA + cA

b XA

bc0 + (1 − t)XA
(51)

if XA > bc0
t−1 . Illustrated in Fig. 3 are the two conditions in (45)

with t > 1 and t∗ ≤ 1, for which P{To > t} = 0. �
For the special case of M = 1, it is known that the properties

of S must be independent of the choice of Tb or To since the
BMF and the OMF are now equivalent. For M = 1, it follows
that Φ = 1 and hence p0 = P{1 ≤ Tb} = P{1 ≤ To}, which
holds despite the fact that Tb and To are still different random
variables. Indeed, for M = 1, it follows that

p0 =
∫ t∗

1
fTb

(t)dt = P{To > 1} =
{

> 0, t∗ > 1
= 0, t∗ ≤ 1 . (52)
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For any integer M ≥ 1, Tb is no larger than t∗, but To is not
bounded by t∗. One can make t∗ small by choosing large PJ

and small ρ, which in turn makes Tb small statistically. But for
To , one can show:

Property 12: With probability one,

lim
PJ →∞

To = 1 + O
(

1
PJ

)
(53)

and

lim
M →∞

To = 1 + O
(

1
M

)
. (54)

�
Proof: Here, (53) follows from (42) and the fact that c0 , cA

and cB all decrease towards zero in the order of O( 1
PJ

) as PJ

becomes larger. This holds regardless of any fixed value of ρ.
(54) also follows from (42) where both XA and XB converges
to their means equal to M statistically as M increases. �

Since the mean of Φ is 1
M , the probability of zero se-

crecy P{Φ ≤ To} based on the OMF at a multi-antenna Eve
is generally high for any PJ . One can verify that if PJ = 0,
P{Φ ≤ To} = (1 − FXA

( |h |
2

a ))(1 − FXB
( |h |

2

b )).
Note that for the OMF, Eve needs to know the complete CSI:

hA , hB , a, b and PJ . One can further investigate the sensitivity
of the secrecy capacity to the errors in the knowledge of the
CSI. It is obvious from R−1

A,E and R−1
B,E (e.g., see (7)) that the

above results are not sensitive to the errors in the knowledge
of a, b and PJ provided that PJ is large or M is large. But the
knowledge of hA and hB is essential for eavesdropping. This
motivates the next section on ANECE.

III. ANECE

The insights shown in the previous section motivate the need
of ANECE, for which a novel method is presented next.

A. Two-User Case

Let both Alice and Bob transmit their channel-estimation
pilots simultaneously. (Such pilots cannot be secrets in general
especially if they are standardized and hence accessible by third
parties.) And they receive the following signals, respectively,

yA (k) = h
√

PT pB (k) +
√

ρPT gAwA (k) + nA (k) (55)

yB (k) = h
√

PT pA (k) +
√

ρPT gB wB (k) + nB (k) (56)

where k = 1, . . . ,K is the time index,
√

PT pA (k) is the train-
ing pilots sent from Alice,

√
PT pB (k) is that from Bob,√

ρPT gAwA (k) is the RSI noise at Alice,
√

ρPT gB wB (k) is
that at Bob, and nA (k) and nB (k) are the background noises.

As discussed before, it is reasonable to assume that wA (k),
wB (k), nA (k) and nB (k) are mutually independent, white, and
have zero means and unit variances. Note that no assumption on
the shapes of pA (k) and pB (k) has been made yet.

Alice is interested in the two unknowns: h and |gA |, both
of which are generally affected by the surrounding multipath.
Define the vectors yA and pB stacked from yA (k) and pB (k),
respectively, for all k = 1, . . . ,K. Assuming Gaussian distri-
butions of all noises, the joint maximum likelihood estima-
tion (MLE) estimates of h and |gA | given yA and pB at Alice

can be shown (as in the Appendix) to be ĥ = pH
B yA√

PT ‖pB ‖2 and

Fig. 4. Shown here is an example of the structure of two packets simultane-
ously sent by Alice and Bob. Each packet has a pilot and a payload. (The pilot
and payload samples of each packet can be interleaved via a common permu-
tation.) The two pilots (i.e., pA (k) = pB (k)) are used for channel estimation
by both Alice and Bob at the same time, and the two payloads (i.e., xA (k)
and xB (k)) contain secret information. Eve also knows the pilots but is un-
able to estimate its CSI (e.g., see (58) with pA (k) = pB (k)). Obviously, when
equipped with ideal or near-ideal full-duplex radios, the users would not need
to schedule their payloads orthogonally in time, which hence further inhibits
eavesdropping.

|ĝA |2 = 1
ρPT

( ‖yA −ĥ
√

PT pB ‖2

K − 1). Also, ĥ is unbiased and has
the variance:

var{ĥ} =
ρPT |gA |2 + 1

PT ‖pB ‖2 . (57)

The MLE of h and |gA | are consistent as long as ‖pB ‖2 increases
with K. The simplest choice of pB (k) is such that |pB (k)| = 1
for all k = 1, . . . ,K, for which ‖pB ‖2 = K. In practice, ρ and
K should be such that var{ĥ} is small enough. Obviously, for a
given required var{ĥ}, the smaller is ρ, the smaller is the value
of K that one can allow.

At the same time as Alice performs the above estimation, Bob
can perform a similar consistent estimation of h and |gB | based
on yB (k) and pA (k) = 1 for all k = 1, . . . ,K.

Now let us consider the signal received by Eve, which is

yE (k) = hA

√
aPT pA (k) + hB

√
bPT pB (k) + nE (k) (58)

where k = 1, . . . ,K. If one uses pA (k) = pB (k) for all k, then
yE (k) = (

√
ahA +

√
bhB )

√
PT pA (k) + nE (k). In this case,

the two vectors hA and hB are not identifiable from yE (k) with
k = 1, . . . ,K unless there is some prior knowledge of the two
vectors. Only if a 
 b (Eve is very close to Alice in terms of
channel gain), then can Eve have a reasonable estimate of hA but
not hB . And only if b 
 a (Eve is very close to Bob), then can
Eve have a reasonable estimate of hB but not hA . Otherwise,
Eve cannot estimate any of the two vectors.

Note that if the reciprocal property of the channel between
Alice and Bob holds, once Alice and Bob have found h, they al-
ready have some level of shared secret information unknown to
Eve. Due to noise, any estimate of h needs to be quantized at Al-
ice and Bob (although separately) according to a pre-determined
scheme in order for them to obtain the same quantized estimate
of h with high probability. The amount of secret bits shared by
Alice and Bob after the estimation of h is upper bounded by the
mutual information between yA (k) and yB (k). Such an analysis
is available in [39].

In mobile applications, channel estimation pilot is in general
an integral part of a data packet. This is because CSI varies
significantly from one packet to the next due to mobility. The
change of CSI is also often caused by imperfections of circuits
(including carrier frequency offset). An example of a simplified
packet structure based on the above channel estimation method
is illustrated in Fig. 4.
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Let us revisit (2) with PJ = 0 but for Eves without the knowl-
edge of their CSI with respect to Alice and Bob, i.e.,

yA,E (k) =
√

aPT hAxA (k) + nA,E (k) (59)

where hA is unknown and k = 1, . . . ,K. In order for Eve to
obtain any information from Alice, Eve now has to do blind
estimation of xA (k). However, with unknown hA , the sequence
{xA (k)} is not identifiable from the sequence {yA,E (k)} due
to a complex scalar ambiguity [35]–[37]. For security against
eavesdropping, the ambiguity of the blind problem should be
maximally exploited to degrade the capacity of Eve. It is shown
in Appendix B that the capacity of Eve without CSI to receive
information from a transmitter can be degraded severely by
some coding scheme used at the transmitter. In particular, if PT

is large, the secrecy capacity between users over a short time
interval can generally be made relatively close to the channel
capacity between users.

If Eve is very close to Alice such that a 
 b, Eve can estimate
hA but not hB . This Eve can potentially (if it also knows the
code book used by Alice) receive the secret key sent from Alice
in phase 1, but not the secret key sent from Bob in phase 2. A
similar statement holds if Eve is very close to Bob. Hence, even
in the extreme cases, no Eve can steal both secret keys.

If there is a sufficient radius around each of Alice and Bob
within which there is no Eve (i.e., max{ a

b , b
a } is not too large),

then no Eve can have a good estimate of any of the two vectors
hA andhB . In this case, each of the two keys exchanged between
Alice and Bob is secure even if all Eves try to collude. This is
because physical layer collusion among Eves without knowing
their CSI can be made infeasible as discussed in Appendix B.

Property 13: With the proposed two-user channel estimation
method in an environment where the CSI of Eves is previously
unknown to them, the secrecy capacity of the two users against
all Eves over a short time interval can be made close to the
channel capacity between the users. �

With a single antenna on each user, the short time interval
corresponds to a single sample2 (or two samples) if the pay-
loads are scheduled orthogonally (or concurrently). To increase
the amount of secret information, the users could increase their
transmission power (or use a repetition code). Alternatively,
both users could use smart antennas to change their CSI for
each of several new cycles of channel estimation and secret key
transmissions. Obviously, to precisely quantify the overall se-
crecy capacity, one also needs to take into account the overhead
of channel estimation.

If Eve knows the large-scale fading of its CSI with respect to
Alice and Bob (i.e., a and b) and also knows a reliable statistical
model of hA and hB , then Eve can try to estimate hA and
hB based on yE (k) received during training or based on an
estimate of hE

.=
√

ahA +
√

bhB . Such an example is shown
in Appendix C. But in practice, the statistical model of a channel
at an arbitrary location is very difficult to establish accurately.

With a partial knowledge of hA , for example, there is in
theory a positive capacity CA,E from Alice to Eve. Assuming
one sample per coherent period of hA , a lower bound and an
upper bound of CA,E can be translated from equations (61) and
(62) in [40] respectively. The lower bound diminishes to zero if
the mean of hA is much smaller than its variance, and the upper

2This does not prevent a user from using multiple symbols to transmit a key
packet although only one symbol is totally protected.

bound corresponds to the case where hA is completely known
to Eve.

On the other hand, if K in (59) is large (i.e., a large number of
samples per coherent period of hA ), then the averaged capacity
from Alice to Eve without knowledge of hA could in theory
approach the capacity from Alice to Eve with knowledge of
hA . This is because the amount of ambiguity associated with an
unknown scalar becomes negligible when compared to the total
amount of information carried by xA (k) for large K. One can
verify this by reconsidering (88) in Appendix B. For example,
if MA = ME = 1, and x(k) is i.i.d. and has constant modulus,
then the equality in (88) holds (since Hx(k) is now Gaussian
distributed), and the second term in (88) diminishes to zero as
K increases, which leads to CA,E = log2(1 + σ2

xσ2
h). But it is

important to note that this capacity is achievable only if there
is a joint coding (between Alice and Eve) over many of such
large independent blocks (each corresponding to an independent
realization of H). Blind detection is not a trivial problem as
shown in [37] where a single block is considered, and no method
can resolve the ambiguity inherent in the problem unless there
is additional side information.

Once the secret keys have been shared between the users, they
could switch back to conventional modes of communications
and still maintain secrecy through network-layer cryptography.
The frequency band used for the key exchange can also be
different from that for normal communications, and hence the
required full-duplex radio can be implemented in any frequency
band.

In Appendix D, an extension of the above channel estimation
method to the case of multi-input multiple-output (MIMO) user
channels is presented.

B. Multi-User Case

This section considers a multi-user problem where multiple
(N ≥ 3) full-duplex single-antenna users want to share their
secret keys with each other. If the number of users is large and
multi-hop transmissions are necessary, the problem is complex
and needs to be treated separately. Related works on this sub-
ject include [30]–[33]. But the focus here is on a single-hop
multi-user wireless network, where every user is within a single
transmission range of any other user.

Extending the channel estimation method presented in the
previous section, there are now N users transmitting their pack-
ets simultaneously. The packet from the ith user consists of a
pilot pi(k) and a payload xi(k) where i = 1, . . . , N . At the same
time that user i transmits pi(k) and xi(k), user i also receives

yi(k) =
∑

j =i

hj,i

√
PT pj (k) +

√
ρPT giwi(k) + ni(k) (60)

in the pilot region, and

yi(l) =
∑

j =i

hj,i

√
PT xj (l) +

√
ρPT giwi(l) + ni(l) (61)

in the payload region. Here, hj,i is the CSI (including both
large-scale and small-scale fading) from user j to user i, and
all other notations are obviously defined. Also at the same
time, the signals received by any Eve with M antennas can be
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expressed as

yE (k) =
N∑

j=1

hj,E

√
PT pj (k) + nE (k) (62)

in the pilot region, and

yE (l) =
N∑

j=1

hj,E

√
PT xj (l) + nE (l) (63)

in the payload region.
To simplify the notations, one can stack all yi(k), k =

1, . . . ,K, vertically into a column vector yi , and all yE (k),
k = 1, . . . ,K, horizontally into a matrix YE , and rewrite (60)
and (62) as

yi =
√

PT Pihi +
√

ρPT giwi + ni (64)

YE =
√

PT HE PT + NE (65)

where P = [p1 , . . . ,pN ] is the K × N pilot matrix shared by
all users, the ith column of which is the pilot sent from user i
(i.e., pi = [pi(1), . . . , pi(K)]T ), Pi of K × (N − 1) is P with
its ith column removed, hi of (N − 1) × 1 is the CSI vector of
user i with respect to all other users, and the jth column of the
M × N matrix HE is the CSI vector hj,E of Eve with respect
to user j. In order for all users to be able to identify their CSI
locally, it is necessary and sufficient that each Pi has the full-
column rank N − 1. In order to make Eve unable to identify its
CSI, it is necessary and sufficient that P (of N columns) has a
rank no larger than N − 1.

An ideal choice of P is as follows. Let K = k0(N − 1) where
k0 is an integer and P is

P = [QT , . . . ,QT ]T (66)

where the (m, l)th element of the (N − 1) × N matrix Q is

(Q)m,l = e−j2π
(m −1 ) ( l−1 )

N (67)

with 1 ≤ m ≤ N − 1, 1 ≤ l ≤ N , and j =
√−1. (j is also used

elsewhere as an integer which should be clear in the context.) It
is easy to verify that the rank of P is N − 1; every column of
P has the same norm

√
K =

√
k0(N − 1); and the normalized

inner product between the ith and lth (distinct) columns of P is

pH
i pl

‖pi‖‖pl‖ =
−1

N − 1
ej2π

( i−l ) (N −1 )
N , (68)

the magnitude of which is the same for all pairs of the columns
of P. In a sense, all columns of P are equally spaced from each
other in a (N − 1)-dimensional subspace. This is why the above
P is considered to be ideal.

The MLE of hi from yi at user i is

ĥi =
1√
PT

P+
i yi (69)

where P+
i = (PH

i Pi)−1PH
i . Furthermore, one can verify that

PH
i Pi = k0(NI − eieH

i ) (70)

where (ei)l = ej2π
m i , l (N −1 )

N with mi,l being an integer depen-
dent on i = 1, . . . , N and l = 1, . . . , N − 1. It follows that

(PH
i Pi)−1 =

1
k0N

(I + eieH
i ) (71)

Fig. 5. An example of structure of packets from three users where the payload
structure is such that each user can transmit a secret key to all other users in a
given payload region.

and hence the computation for ĥi is very simple.
The estimate ĥi is unbiased and has the covariance matrix

ρPT |gi |2 +1
PT

(PH
i Pi)−1 . The MLE of |gi |2 is

|ĝi |2 =
1
K ‖yi −

√
PT Piĥi‖2 − 1
ρPT

. (72)

Both ĥi and |ĝi |2 are consistent estimates with respect to k0 .
Because of P being of rank N − 1, there is a null vector h0

such that Ph0 = 0. Then, YE is unchanged if HE is replaced
by HE + c0hT

0 where c0 is any M × 1 complex vector. Hence,
given YE at Eve, HE is not identifiable. If the range of HT

E
does not include h0 , then HE would be identifiable. But for a
random HE , that assumption holds with probability zero.

It should be noted that the above discussion assumes that
Eve has no statistical knowledge of HE , which is often the
case in practice especially if Eve does not know its large-scale
fading with respect to the users. Otherwise, if an Eve knows
the statistics of HE , the linear minimum mean squared error
(LMMSE) estimation of it, for example, can be easily applied,
and there is a nonzero capacity from any of the users to the Eve
although this capacity can be degraded greatly by the uncertainty
of HE .

If the payloads xi(l) from all users are not overlapping in
time, one can write from (61) that

yi(lj ) = hj,i

√
PT xj (lj ) + ni(lj ) (73)

where i = j, lj is the time index where xj (lj ) = 0 (but xm (lj ) =
0 with m = j). Also note that wi(lj ) = 0 due to xi(lj ) = 0.
The secrecy capacity from user j to user i against any Eve who
does not know hj,E can be made relatively close to log2(1 +
PT |hj,i |2) subject to a high power and a short period of time as
in the two-users case. This choice of non-overlapping payloads
is effective for each user to broadcast a secret key to all other
users. An example of the packet structure is shown in Fig. 5.

With the multi-user channel estimation method shown above,
each user obtains its CSI with respect to all other users. With
the reciprocal property, the CSI obtained by each user is the CSI
of both to and from all other users. Namely, hj,i for all j = i
obtained by user i are the same as hi,j for all j = i. If all users
broadcast their estimated CSI using non-overlapping payloads,
then every user will know the global CSI. This could allow any
subset of users to transmit to another user in a multiple-access
fashion in another set of transmissions. An illustration of this
idea is shown in Fig. 6. For example, if users 1 and 2 simul-
taneously send x1 of power P1 and x2 of power P2 to user
3, then user 3 can receive the information from them at the
rate given by log2(1 + |h1,3 |2P1 + |h2,3 |2P2) [29]. Ideally, the
users could also share each other’s received signals secretively to
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Fig. 6. An example of structure of packets from three users where the payloads
are overlapped to allow multiple access transmissions.

form virtual MIMO among them. But this could require exces-
sive overheads due to relatively long pilots required for ANECE.
But if all channels stay static after the initial ANECE, and the
users can receive each other’s information without further use of
pilots, then the above is a feasible notion. Naturally, this is under
the assumption that Eve cannot perform its channel estimation
without receiving a pilot-driven signal.

Shown in Appendix E is an extension of the above channel
estimation idea to the MIMO case. Shown in Appendix F is
a broadband OFDM-based MIMO channel estimation method
against eavesdropping.

In practice, users cannot rely on full-duplex for all transmis-
sions. For example, in order to initiate the proposed ANECE,
users may need to communicate with each other to set up the
time for channel estimation.3 If users do not change to a new
frequency or new antenna positions (including possibly antenna
orientations and polarizations) before they start the ANECE,
the packets they sent previously (which typically contain pilots)
could be used by Eve for channel estimation. So, users must do
something to alter the CSI of Eves before they transmit packets
simultaneously for ANECE. If one also needs to prevent Eves
from finding their large-scale fading with respect to the users,
the users (such as drones) must also move to new locations be-
fore the ANECE is conducted at a pre-agreed time. Of course,
such a requirement will have an impact on the scope of possible
applications.

As shown earlier, no Eve is able to identify its CSI with
respect to all users when the users apply the ANECE. But if
an Eve is much closer to a user than to all other users, the
Eve may be able to approximately identify its CSI with respect
to this user and hence may succeed in eavesdropping this user.
Furthermore, if an Eve is much closer to a subset of users than to
all other users, then the Eve may succeed in eavesdropping this
subset of users. In order to avoid this situation, the distribution
of the users should be such that the ratio of the maximum and
minimum distances (or max-min ratio) between the users is
below some pre-specified value. For a given number of points in
2D space, the minimum achievable max-min ratio is studied in
[34]. For example, for 30 points in 2D space, the currently known
minimum max-min ratio is 5.18. This ratio is generally small
enough to prevent any Eve from being much closer to more than
one users than to all other users. For a given number of points,
the minimum max-min ratio in 3D space is obviously even
smaller than that in 2D space. With a fixed path loss exponent,
the max-min ratio can be measured in terms of the large-scale
fading gains between users. With a fixed distribution of users, a
process of measuring the large-scale fading gains and computing
the max-min ratio is desirable before the users are selected to

3An alternative could be that users periodically perform the ANECE.

participate in a session of the ANECE and the corresponding
sharing of secret information.

Provided that the max-min ratio of the users is not too high,
the only way that an Eve can succeed in eavesdropping is when
the Eve is very close to one of the users. Specifically, around
user i, there is a region Ai within which an Eve could succeed
in identifying its CSI with respect to this user and hence in
stealing the secret sent by this user. And Ai , and its size |Ai |,
are governed by the users that are the closest to user i. The closer
are the nearby users around user i, the smaller is |Ai |.

If some Eves are directional, the success of the ANECE re-
quires the directional Eves to be sufficiently far away from
the users so that the users appear clustered together from the
perspective of any of the directional Eves. If some users are di-
rectional, then the directional users should either all face toward
or all face away from any given Eve. This appears difficult to
realize in practice. This paper is mainly concerned with omni-
directional users and Eves. The following property is easy to
prove.

Property 14: Assume a sufficient constraint on the max-min
ratio of the user distribution and the use of the proposed multi-
user ANECE method. Also assume that the CSI of every Eve
changes (or is previously unknown to itself) before the pilots are
sent by all N users, the users send secret keys to each other with
orthogonal scheduling4, and user i sends a secret key with the
rate Ri (in bits/s/Hz) to all other users over a short time interval
sufficient to suppress the capacity of Eves without CSI. Then:

1) If no Eve is close enough to any of the users to be able
to identify its CSI, then the rate of secrecy shared by all
users (not counting the overhead of pilots) against all Eves
which may try to collude is 1

N

∑N
i=1 Ri .

2) With respect to non-colluding Eves, some of which may be
close enough to some of users, the rate of secrecy shared
by all users is no smaller than 1

N (
∑N

i=1 Ri − maxj Rj ).
3) With respect to any group of colluding Eves, if not every

user has an Eve close enough to identify its CSI, then the
secret from at least one user is safe from eavesdropping
and hence the rate of secrecy shared by all users is no
smaller than 1

N mini Ri .
4) If Eves are distributed randomly according to the Poisson

distribution with λ being the averaged number of Eves in
a unit area, and Ai is the only region where an Eve can
steal the secret sent from user i, then the probability for
the overall secrecy to be zero, subject to collusion among
Eves, is the probability that there is an Eve in every Ai .
This probability is ΠN

i=1(1 − e−λ|Ai |), which goes to zero
as N increases.

�

IV. CONCLUSIONS

This paper has provided a novel perspective of the potential of
full-duplex radio for securing wireless network against passive
multi-antenna Eves at unknown locations. The paper shows that
if a multi-antenna Eve (or a network of colluding Eves) is al-
lowed to know its CSI with respect to the legitimate users, the se-
crecy capacity of the single-antenna users could degrade rapidly
as the total number of antennas on Eve increases, regardless of
the quality of full-duplex radio. This detrimental phenomenon of

4In the case of concurrent scheduling for all users with ideal full-duplex
radios, the factor 1

N shown next should be removed.
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decreasing secrecy capacity against Eve with increasing number
of antennas is similar to that of all conventional setups where
Eve knows its CSI, including those of multi-antenna users as
in [44]–[45]. Motivated by this finding, this paper also presents
a novel method for ANECE. This method allows all users to
estimate their own CSI, but at the same time denies any Eve
from finding their CSI with respect to any of the users subject to
a mild constraint. This paper also shows that without knowing
its CSI, Eve with any number of antennas can be virtually dis-
abled over a time window. In other words, by using ANECE, the
secrecy capacity between users against Eve with any number of
antennas can increase without bound over such time window as
the transmission power increases.

To mimic the ANECE property of full-duplex radio by using
half-duplex (HD) radio, it would require one or more collabo-
rative HD nodes to perform jamming against Eves5 during the
transmission of pilot from a HD transmitter to a HD receiver.
But the unknown locations of Eves and the constraints on jam-
ming interference to the legitimate HD receivers would make
the deployment of such collaborative HD nodes highly infea-
sible. Therefore, it seems reasonable to think that the ANECE
method shown in this paper is a ground-breaking discovery use-
ful to drive a full development of full-duplex radio for wireless
network security.

Finally, it seems useful to note that explicit channel estimation
is not always necessary for users to exchange secret information.
Such an example in high SNR channel environment is available
in [43]. Further development of this idea with exploitation of
full-duplex radio is definitely a logical direction of research. One
should also address such important questions as: whether and
how can other approaches including [43] challenge the ANECE-
based approach against Eve (or a network of colluding Eves)
with virtually unlimited number of antennas, and how can the
ANECE-based approach be further understood and improved?

APPENDIX

A. Proof of Lemma 1

It is known that ΦXB = |hH
A hB |2
‖hA ‖2 which is the magnitude-

squared of hH
A hB

‖hA ‖
.= GB . The distribution of GB is

fGB
(gB ) =

∫
fGB |hA

(gB |hA )fhA
(hA )dhA . (74)

However, given hA , GB is complex Gaussian distributed with
zero mean and unit variance. (A similar argument was made
earlier.) In other words, the distribution of GB conditional on
hA is invariant to hA . Therefore, it follows from (74) that
fGB

(gB ) = fGB |hA
(gB |hA ) and its distribution is CN (0, 1).

Hence, 2ΦXB is the standard Chi-squared of degree two, i.e.,

f2ΦXB
(z) =

1
2
e−

z
2 . (75)

5This paper focuses on passive Eves. An active Eve could use jamming to
prevent the legitimate users from finding their CSI. But a wrong estimate of CSI
by a receiver can be easily detected if the packet has some embedded check-bits.

Since Φ and XB are independent, the PDF of their product can
be shown to be f2ΦXB

(z) =
∫ 1

0 fΦ(x)f2XB
( z

x ) 1
x dx. Therefore,

1
2
e−

z
2 =

∫ 1

0
fΦ(x)

1
2M Γ(M)

( z

x

)M −1
e−

z
2 x

1
x

dx. (76)

Let vA and vB be two N × 1 real-valued Gaussian random
vectors with the distribution N (0, I), it is known from equation

(22) in [26] that Qv
.= vT

A vB

‖vA ‖‖vB ‖ has the following distribution:

fQv
(x) =

1√
π

Γ(N
2 )

Γ(N −1
2 )

(1 − x2)
N −3

2 (77)

where |x| < 1 (and N ≥ 2), and hence Pv
.= Q2

v has the fol-
lowing distribution

fPv
(x) = fQv

(
√

x)
1√
x

=
1√
π

Γ(N
2 )

Γ(N −1
2 )

(1 − x)
N −3

2
1√
x

(78)

where 0 < x < 1. Note that the first equation in the above has
applied the fact that fQv

(x) is symmetric. Furthermore, it is

known that Pv‖vB ‖2 = |vT
A vB |2
‖vA ‖2 which is the standard Chi-

squared of degree one, i.e.,

fPv ‖vB ‖2 (x) =
1

2
1
2 Γ( 1

2 )
x− 1

2 e−
x
2 (79)

and ‖vB ‖2 is the standard Chi-squared of degree N , i.e.,

f‖vB ‖2 (x) =
1

2
N
2 Γ(N

2 )
x

N
2 −1e−

x
2 . (80)

It follows from fPv ‖vB ‖2 (z) =
∫ 1

0 fPv
(x)f‖vB ‖2

(
z
x

) 1
x dx that

1
2

1
2 Γ( 1

2 )
z−

1
2 e−

z
2 =

∫ 1

0

1√
π

Γ(N
2 )

Γ(N −1
2 )

(1 − x)
N −3

2

× 1√
x

1

2
N
2 Γ(N2 )

( z

x

)N
2 −1

e−
z

2 x
1
x

dx (81)

which is equivalent to

1
2
e−

z
2 =

∫ 1

0

1

2
N + 1

2

1
Γ(N −1

2 )
(1 − x)

N −3
2

( z

x

)N −1
2

e−
z

2 x
1
x

dx.

(82)
Comparing (76) against (82) with N = 2M − 1 yields (37).

B. Capacity of Multi-Antenna Eve Without CSI

As a generalization of (59), assume that an Eve of ME anten-
nas receives the following signals from Alice with MA antennas:

y(k) = Hx(k) + n(k) (83)

where k = 1, . . . ,K, the k-independent ME × MA channel
matrix H is unknown to Eve but modelled to be such that
h = vec(H) (stacking columns of H vertically) is CN (m,Rh),
the noise n(k) is CN (0, IME

), and x(k) has zero mean and the
correlation matrix E{x(l)x(m)H } = σ2

xδl,m IMA
. By stacking

the K equations in (83) horizontally, one has Y = HX + N.
Like h, also define y = vec(Y), x = vec(X) and n = vec(N).
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It follows that

y = (XT ⊗ IME
)h + n (84)

= (IK ⊗ H)x + n. (85)

From [38], one knows that the capacity in bits/s/Hz from Alice
to Eve is CA,E = 1

K I(x;y) = 1
K (h(y) − h(y|x)) ≤ 1

K (log2
|Ry | − E{log2 |Ry (x)|}) where the inequality comes from the
differential entropy of y, i.e., h(y) ≤ log2((2πe)ME K |Ry |) as
HX is likely non-Gaussian. Here, Ry is the covariance ma-
trix of y, i.e., Ry = σ2

x(IK ⊗ E{HHH }) + IME K which fol-
lows from (85), and Ry (x) is the covariance matrix of y con-
ditional on x, i.e., Ry (x) = (XT ⊗ IME

)Rh(X∗ ⊗ IME
) +

IME K which follows from (84). Let the mean of H be M,
and the ith ME × ME diagonal block of Rh be Rh,i . Then,
E{HHH } = MMH +

∑MA

i=1 Rh,i . It follows that

|Ry | = |σ2
x

(

MMH +
MA∑

i=1

Rh,i

)

+ IME
|K (86)

|Ry (x)| = |R1/2
h (X∗XT ⊗ IME

)R1/2
h + IME MA

| (87)

where for the second equation, the fact |AAT + I| = |AT A +
I| has been applied.

For unknown H, one can assume that MMH � ∑MA

i=1 Rh,i .
For convenience, let us also assume that Rh = σ2

hIME MA
. It

then follows that

CA,E ≤ CA,E ,up
.=

1
K

(log2 |Ry | − E{log2 |Ry (x)|}) (88)

where |Ry | = (MAσ2
xσ2

h + 1)ME K and |Ry (x)| = |σ2
hX

∗XT

+ IMA
|ME .

One can now verify the following:
1) If K = MA = 1 and the symbol from Alice has a constant

modulus, then CA,E ,up = 0.
2) If K = MA 
 1, then X∗XT ≈ Kσ2

xIMA
and hence

CA,E ,up ≈ 0.
3) For any fixed K = MA but a large σ2

hσ2
x , CA,E ,up be-

comes a constant independent of σ2
h and σ2

x while CA,B

is always independent of σ2
h and scales with σ2

x as
O(log2 σ2

x), and hence one can achieve CA,B 
 CA,E ,up .
The above suggests that for Eve with unknown CSI, its ca-

pacity to receive information over a short period of time (i.e.,
K = MA ) can be degraded severely (if not completely) regard-
less of the number ME of antennas on Eve. Also note that
the above analysis applies to the case where multiple or many
(colluding) Eves combine their received signals to form a large
antenna array. Such collusion would result in the same signal
model as in (83) except that ME is increased.

For K > MA , there are still coding schemes that prevent Eve
without CSI from obtaining any information. For example, if
a constant modulus repetition code with any K > MA = 1 is
used, CA,E can be shown to be zero.

On the other hand, if x(k) for k = 1, . . . ,K are independent
and K is large, then the amount of information (or ambiguity)
carried by H becomes less significant compared to that carried
by x(k) for k = 1, . . . ,K. To suppress the capacity of Eve, K

should be small in general. One may choose K = MA but some
large σ2

x to achieve a sufficient amount of secrecy.

C. Estimation of hA and hB From Estimate of hE

Let a and b be known to Eve, and ĥE be the estimate of hE
.=√

ahA +
√

bhB obtained by Eve from {yE (k), k = 1, . . . ,K}
in (58). Assume ĥE =

√
ahA +

√
bhB + e where hA and hB

are independent of each other, and each has the distribution
CN (0, IM ). Also assume e is CN (0, σ2

e IM ). Then, one can
verify that the minimum-mean-squared-error (MMSE) estimate
of hA given ĥE is ĥA =

√
a

a+b+σ 2
e
ĥE , and its MSE matrix

is E{(ĥA − hA )(ĥA − hA )H } = b+σ 2
e

a+b+σ 2
e
IM . Similar expres-

sions hold for the MMSE estimation of hB given ĥE . Note that
only when a and b are known to Eve, is the above estimation
applicable by Eve.

D. ANECE for Two-User MIMO Channel

Let Alice, Bob and Eve all have multiple antennas. The chan-
nel matrix from Alice to Bob is HA,B (including both large-
scale and small-scale fading), and those between other nodes
are defined similarly. Let Alice and Bob transmit the pilot vec-
tors pA (k) and pB (k) respectively and simultaneously. Then,
Alice, Bob and Eve receive the following signals:

yA (k) =
√

PT HB,ApB (k) +
√

ρPT GAwA (k) + nA (k)
(89)

yB (k) =
√

PT HA,B pA (k) +
√

ρPT GB wB (k) + nB (k)
(90)

yE (k) =
√

PT HA,E pA (k) +
√

PT HB,E pB (k) + nE (k)
(91)

where
√

ρPT GAwA (k) is the residual self-interference noise
at Alice after the cancellation of the self-interference caused
by pA (k), nA is the background noise, and other notations are
similarly defined. Also assume thatwA is white and independent
of pA (k), and wB is white and independent of pB (k). Due
to mutual couplings between antennas, GA and GB are not
diagonal in general.

Let us first consider yE (k) with k = 1, . . . ,K, which can be
rewritten into:

YE =
√

PT HE PE + NE (92)

where the kth column of YE is yE (k), HE = [HA,E ,HB,E ],
and the kth column of PE is

[
pT

A (k),pT
B (k)

]T
. The necessary

and sufficient condition for Eve to identify HE from YE and
PE (uniquely in the absence of noise) is that PE has a full row
rank. If one chooses pA (k) = pB (k), then the rank of PE is no
larger than half of the number of rows in PE , and hence HE

is not identifiable by Eve. Therefore, Alice and Bob can easily
follow some simple protocol to make sure that the CSI at Eve is
not identifiable by Eve. If Alice has MA antennas and Bob has
MB ≤ MA antennas, one can choose pA (k) and pB (k) such
that the first MA rows of PE are independent, the last MB rows
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of PE are also independent, but the span of the latter belongs to
that of the former.

The signals received by Alice can be rewritten as

YA =
√

PT HB,APB + VA (93)

where the kth column of YA is yA (k), the kth column of
PB is pB (k), and VA =

√
ρPT GAWA + NA contains all the

noises. Obviously, provided that rows of PB are independent,
HB,A is identifiable from YA and PB . Similar statements can
be made for estimation of HA,B at Bob. If the reciprocal prop-
erty holds, one can write HB,A = HT

A,B which is however not
required in this paper. (The reciprocal property is known to hold
for the electro-magnetics in air. Although it may not hold for
a radio transceiver, the channel gains on a transceiver can be
pre-calibrated and compensated.)

Now consider the channel estimation at Alice, where both
HB,A and GA are unknowns, and wA (k) and nA (k) are inde-
pendent CN (0, I). Obviously, given yA (k) and pB (k) for all k,
GA is ambiguous up to a right unitary matrix. One can further
simplify yA (k) as follows:

yA (k) =
√

PT HB,ApB (k) + vA (k) (94)

where vA (k) is CN (0,RA ) with RA = ρPT GAGH
A + I being

unknown covariance matrix. For any given RA , one can write

R− 1
2

A yA (k) =
√

PT R− 1
2

A HB,ApB (k) + R− 1
2

A vA (k)

=
√

PT (pT
B (k) ⊗ R− 1

2
A )hB,A + ṽA (k) (95)

where ⊗ is the Kronecker product, hB,A = vec{HB,A} (stack-
ing the columns of HB,A vertically), and ṽA (k) is CN (0, I).
And the MLE of hB,A is

ĥB,A =
1√
PT

(
K∑

k=1

(p∗
B (k)pT

B (k)) ⊗ R−1
A

)−1

×
(

K∑

k=1

p∗
B (k) ⊗ R−1

A yA (k)

)

=
1√
PT

K∑

l=1

(
S−1

B p∗
B (l) ⊗ yA (l)

)
(96)

where SB =
∑K

k=1 p∗
B (k)pT

B (k) = (PB PH
B )∗. It turns out that

ĥB,A is invariant to RA . With any given hB,A = vec{HB,A},
the MLE of RA is

R̂A =
1
K

K∑

k=1

(yA (k) −
√

PT HB,ApB (k))

× (yA (k) −
√

PT HB,ApB (k))H . (97)

Therefore, the (exact) joint MLE of HB,A and RA can be com-
puted in two steps. In step 1, compute the MLE of hB,A =
vec{HB,A} by (96). In step 2, compute the MLE of RA by
(97) with HB,A replaced by its MLE. One can verify that
E{ĥB,A} = hB,A and

Cov{ĥB,A} =
1

PT
(PB PH

B )∗
−1 ⊗ RA . (98)

The optimal choice of the pilot matrix PB subject to unknown
RA is such that PB PH

B is proportional to the identity matrix,
e.g., PB PH

B = KI.
The channel estimation algorithm carried out by Bob is sym-

metrical to that by Alice. The algorithm shown in Section A is
a special case of the above.

E. ANECE for Multi-User MIMO Channels

Now consider N ≥ 3 users where user i has ni antennas. For
channel estimation, all users send their pilots simultaneously.
Let user j send

√
PT pj (k) of nj × 1 with k = 1, . . . ,K and

j = 1, . . . , N . Then, user i receives

yi(k) =
√

PT

∑

j =i

Hj,ipj (k) +
√

ρPT Giwi(k) + ni(k)

(99)
where the notations are defined in a similar way as in the previ-
ous section. The signal received by any given Eve is

yE (k) =
√

PT

N∑

j=1

Hj,E pj (k) + nE (k). (100)

The matrix forms of the above two equations are

Yi =
√

PT HiP(i) + Vi (101)

YE =
√

PT HE PT + NE (102)

where the kth column of Yi is yi(k), the kth column of YE is
yE (k), Hi is stacked horizontally from all Hj,i with all j = i,
HE is stacked horizontally from all Hj,E with all j = 1, . . . , N ,
PT is of NT × K with NT =

∑N
i=1 ni , PT = [P1 , . . . ,PN ]T ,

PT
i = [pi(1), . . . ,pi(K)], and P(i) is PT with its ith block

PT
i removed. Also, Vi =

√
ρPT GiWi + Ni and NE are the

noises.
The structure of (101) is identical to (93). Hence, the MLE

method shown there can be directly used here. Now, it is only
necessary to focus on the conditions required for P(i) and P.
Clearly, one needs P of K × NT to be of rank less than NT

so that HE of nE × NT is not identifiable from YE . On the
other hand, for any i = 1, . . . , N , one needs P(i) of (NT −
ni) × K to be of the full-column rank NT − ni so that Hi of
ni × (NT − ni) can be identified from Yi . Also, the smaller
is the condition number (i.e., the ratio of the largest singular
value over the smallest singular value) of P(i) , the more robust
is the MLE of Hi against noise. This is because the covariance
matrix of the MLE of vec{Hi} is proportional to the conjugate

of (P(i)P(i)H
)−1 . See (98).

To meet the above constraints, it is proposed to construct P
as follows. Let 1 ≤ ñ ≤ mini ni and K = k0(NT − ñ) with
k0 being an integer. Then, choose PT = [QT , . . . ,QT ] with k0
identical blocks. Choose the (m, l)th element of the (NT − ñ) ×
NT matrix Q to be e

−j2π
(m −1 ) ( l−1 )

N T with 1 ≤ m ≤ (NT − ñ) and
1 ≤ l ≤ NT . This P has the deficient rank NT − ñ, which can
be verified by using a property of Vandermonde matrix. (Q is
a submatrix of a Vandermonde matrix.) Furthermore, any of
its sub-matrices, P(i) with i = 1, . . . , N , has the full-column
rank NT − ni . One can also verify that the normalized inner



134 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 1, JANUARY 1, 2019

product between the mth and lth (distinct) columns of P is
−1

NT −ñ

∑ñ
k=1 e

j2π
(m −l ) (N T −k )

N T .
If ñ is replaced by one, then every pair of columns of P has the

smallest magnitude 1
NT −1 of the normalized inner product, P

has the deficient rank NT − 1, and P(i) has the full rank NT −
ni and also, as shown next, the best possible condition (i.e.,
smallest condition number). To prove that P(i) has the smallest
condition number when ñ = 1, let us consider the (NT − ni) ×
(NT − ni) matrix P(i)P(i)H

which can be written as

P(i)P(i)H
= k0NT I − k0

ñ∑

k=1

e(k)
i e(k)

i

H
(103)

where (e(k)
i )l = e

−j2π
m i , l (N T −k)

N T and mi,l is an integer dependent
on i = 1, . . . , N and l = 1, . . . , NT − ni . It is obvious that
the largest and smallest eigenvalues of P(i)P(i)H

are λmax

(P(i)P(i)H
) = k0NT and λmin (P(i)P(i)H

)=k0NT −k0λmax

(
∑ñ

k=1 e(k)
i e(k)

i

H
) ≤ k0NT − k0λmax(e(1)

i e(1)
i

H
) = k0NT −

k0(NT − ni) = k0ni . Then, λm a x (P ( i ) P ( i ) H
)

λm i n (P ( i ) P ( i ) H )
≥ NT

ni
where the

equality holds when ñ = 1.
If mini ni > 1, then there are trade-offs as ñ varies from 1 to

mini ni . As ñ increases, the condition number of P(i) increases
(bad for users) but there are more degrees of freedoms in HE

given YE and P (bad for Eves).

F. ANECE for Multi-User Broadband MIMO Channels

If the channels between users are convolutive, then one can
adopt the OFDM approach as follows. Each packet sent from
a user has two regions: the pilot region for channel estimation
and the payload region containing secret information. The pilot
region is divided into K epoches, and the payload region is also
divided into multiple epoches. Each epoch of the pilot region
has Ns time slots, and each epoch of the payload region has
Nc + Ns time slots, where Nc 
 Ns , Nc is the number of
subcarriers, and NsTs is the maximum possible delay spread
of the channel responses with 1

Ts
being the channel bandwidth

utilized. All time slots of the kth epoch in the pilot region of
user i contain zeros except that the first slot is assigned with
pi(k). The (discrete-time) channel response from user j to user
i is H̃j,i(l) with l = 0, 1, . . . , Ns − 1. The Nc -point DFT of this
response is Hj,i(c) where c = 0, 1, . . . , Nc − 1. One can verify
that in the kth epoch of the pilot region, user i receives

ỹi(k, l) =
√

PT

∑

j =i

H̃j,i(l)pj (k) +
√

ρPT G̃j,i(l)wj (k)

+ ñi(k, l) (104)

with l = 0, 1, . . . , Ns − 1 and k = 1, . . . ,K. Taking the Nc -
point DFT of ỹi(k, l) with respect to l yields

yi(k, c) =
√

PT

∑

j =i

Hj,i(c)pj (k) +
√

ρPT Gj,i(c)wj (k)

+ ni(k, c) (105)

where c = 0, 1, . . . , Nc − 1. Similarly, in the frequency domain,
Eve receives

yE (k, c) =
√

PT

N∑

j=1

Hj,E (c)pj (k) + nE (k, c). (106)

For each c, the channel estimation problem is the same as that
of (99) and (100).

For each epoch of the payload region, each user encodes its
information by following the conventional OFDM fashion, but
the information from different users should be non-overlapping
in time (or otherwise multiple-access coding is required). The
conventional OFDM-based channel equalization applies here
straightforwardly.
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