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ABSTRACT However, there are deficiencies in those works. The al-

orithms in [1]-[4] only handle the estimation of a scalar pa-

This paper presents a novel scheme for estimating an ur?élmeter as opposed to vector parameter. Furthermore, when
known deterministic vector in a multi-hop progressive de-,

i A X sensors are spread out in a field, the sensors far away from
centralized fashion in a wireless sensor network. Under th|§ne fusion center must consume much more energy than the

mation of the unknown vector using the data measured by th&, e if each sensor transmits data directly to the fusion cen-
sensor and the estimations received from its up stream Sefkr as in the case considered in [1]-[4]. In order to overcome
sors, and the estimation at each sensor is first quantized afgh <o deficiencies. we propose a novel scheme called multi-
then forwarded to its down stream sensor. The final estimatioHop progressive di’stributed scheme in this paper. For conve-
of the unknown vector resides at a fusion center. The humb ience, we will refer to this scheme as proposed progressive

of quantization bits assigned to each sensor is computed Of(PP) scheme, and to those in [1]-[4] as non-progressive (NP)
line via an optimization algorithm that minimizes the networkscheme

transmission energy subject to a pre—detgrmined upper bqund In the PP scheme, we allow data to be transmitted from
on the mean square error of the final estimation at the fusiop, .., sensor to the fusion center via a multi-nop route. In

center. This optimization algorithm utilizes any given routingfact’ we let each sensor receive from, and transmit to, only its

tree frotm alllsensors to the_: fusu;n cente:[rr.] Companr(;g to thﬂeighboring sensor(s). For many potential applications, sen-
conventional NON-progressive schemes, the proposed progregy, atyworks are relatively stationary, and hence a routing tree
sive scheme yields a significant amount of energy saving.

from all sensors to the fusion center can be established and
utilized for distributed estimation. It is known (e.g., see [5])
1. INTRODUCTION that for large networks, multi-hop routing allows concurrent
co-channel transmissions and hence is more efficient in spec-
In this paper, we consider a wireless sensor network wherigal usage (than the case where the spectrum is divided orthog-
each sensor is capable of sensing, data processing and wifgally among all sensors). Since the distance between adja-
less communication. A specific task for this network is tocent sensors is generally much smaller than that from most
estimate an unknown vector based on the data vectors me$gnsors to the fusion center, the PP scheme is also expected
sured by all sensors. The classical approach to this task i@ consume less transmission energy than the NP scheme. In
such that a fusion center collects the data from all sensors afi@e PP scheme, each sensor performs the BLUE (best linear
then performs the best estimation of the unknown vector. Thenbiased estimation) of the unknown parameter based on the
communication from all sensors to the fusion center can bestimations received from its up stream sensors and the data
costly in terms of both spectral usage and energy usage. Toeasured by itself, and the estimation by each sensor is first
reduce the energy consumption for communication, it is dequantized and then forwarded to its down stream sensor. For
sirable for each sensor to transmit a limited number of bitsthe PP scheme, we have also developed an algorithm to op-
By assuming that each sensor can deliver a given number gmize the bit allocation to each sensor in terms of minimum
bits (say,B}, bits by sensok) to the fusion center, researchers transmission energy by all sensors subject to an upper bound
in [1]-[4] have recently developed algorithms to optimize theon the MSE (mean square error) of the final estimation at the
choice of By, in terms of minimum transmission energy from fusion center.
all sensors. In Section 2, we present the PP scheme for 1-D network.
For easy understanding, we first consider the case of scalar
EN CTEHL%VJSSXT%,\ISSEEEEF:;FEE,\:_T EAO'?TTFBI)STﬂEQ‘GATAﬁgATLHSECG. parameter and then the case of vector parameter. In Section
S. ARMY RESEARCH LABORATORY UNDER THE CTA PROGRAM 3, We extend the PP scheme to 2-D and 3-D networks. In
COOPERATIVE AGREEMENT DAAD19-01-2-0011. Section 4, the performance of the PP scheme is illustrated.




More details of this work are available in [6] and [7].
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Fig. 1. lllustration of the multi-hop progressive decentralized esti-
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mation scheme for a 1-D network. The square on the far right is the

fusion center.

2. THE PP SCHEME FOR 1-D NETWORK

2.1. Scalar Parameter

We first consider the case of scalar parameter estimation.

which follows from (3) ando.,,_, 04, < 02,  +02 . The
above inequality recursion leads to
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Assume that the communication channel between sensors
has additive white Gaussian noise with power spectral den-
sity N, and the channel power attenuation factatjis= dj,
whered, is the transmission distance from sensdo sen-
sork + 1 andr is the path loss exponent. Then, to transmit

By, bits reliably from sensok to sensotk + 1, the minimum
pequired transmission enerdy, must satisfy the following,

K 1 K—k+1
() e
k=2
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T

+ = MSEp.

simple 1-D sensor network is shown in Fig. 1 where there ar@ased on Shannon theory:

totally K sensors. The input to thgh sensor consists af,
andmy_;. Here,z; is the measurement at thi¢h sensor,
which is modelled as

(1)

whered is the unknown parameter to be estimated, apds

the noise with the:-dependent varianoe,%k_. And my_; is

the quantized estimation received from seriserl. The out-

put from thekth sensor is denoted by, which is quantized

from the BLUE off at sensok. Let the variances af;, and

my,—1 be denoted by?2 ando?, , respectively. Obviously,
2 2

oy, =0, . Then, assumin@;_, > 0, the BLUE of¢ based
mrE—1

onk}z:k andmg_; at sensok is
-1
g, g,
mrg—1
With B, bits for quantizatiqn of;,, we haven,, as the output
of sensork. Assume tha¥) is bounded within—W, W1,

then the variance of quantization error at serisis o,
S 2 . . .
aW? - W2 \wherecy, < 1. The variance ofn; is given by

928, > 32B;
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To determineB,, for all &, we will formulate a criterion
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that minimizes a measure of the network transmission energy

subject to a MSE constraint. The details are shown next.
Since (3) is a nonlinear recursion foﬁw it is hard to
find the exact form ofr?, ;- which is the MSE of the final

estimaten g transmitted to the fusion center. But we can use

the following inequality:
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Ej = apNy (2%F — 1) < apN2P (6)

Under a practical coding and modulation scheme, the right
side of (6) should be multiplied by a factor larger than one
but independent of. This factor, however, does not affect
our theory on the choice dBy.

It is therefore meaningful to set up the following criterion
for determination ofB;,:

K
. 2 A7262B
min ar INZ2%7k 7
pain > ot Vi )
subject to
MSEp < MSE (8)

where (7) is thels-norm of an upper bound of the minimum
required network transmission energy, aldSE, is a pre-
specified tolerance of the upper bound on the MSE at the fu-
sion center. An equivalent form of (8) is

K
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0= (MSE - S/, (3) - (4 ).

Then, by applying the fact that for any real numbers
andy;, (3, 22) (X, v2) > (O, miy:)? with equality when
x; = Ay;, we can show [6] that a close-form solution to the
above optimization problem is

Tk

1
By = 2 (k— K +logy A — logy(axNk)) ™ (10)

K
1 .
A== apN2h K (11)
k=ko
where(z)* = zif x > 0 and(z)* = 0if 2 < 0. Note that
we requireB;, to be nonnegative. In practic8&;, need to be
rounded up to the nearest integer.



2.2. Vector Parameter

For the case of vector parameter, we now model the observ
tion at each sensor as follows:

x, = GLO + wy.

where@ = [01,0,,---,0,/]" is the vector parameter to be
estimatedg;, is aN x 1 observed data vector at sensoG,

is aN x M known matrix with full column rank an&/ > M,
andwy, is the observation noise vector at sensor

(12)

The PP scheme for the vector case hinges on the QR de-

compositionG, = Q. Ry whereQ,, is atallN x M unitary
matrix andRy, is upper triangular. We can now write

Ye = Qi xy = R0 + vy, (13)
wherev;, = QkHwk. The sth row of (13) can be written as

M

Yk,s = Tk,s,ses + § rkﬁ,jej + Vik,s-
Jj=s+1

(14)

wherer;, ; ; is the(i, j)th element ofR;.

At sensork, the estimate of theth component; of 8
is denoted by§k,s, which is computed frony;, ; andmy_1 s
sequentially with respect to Here,m_; , is thesth element
of m;_,. Specifically, we let

" )
Yk — Dt This, Ok,

Zk,s = (15)
Tk,s,s
The variance og;, ; is given by
M
ol =(on + > rheios )ries  (16)

Jj=s+1

Note thatr?, = o2 . Then, the BLUB); , of 0, is

5 ME—1,s |, Zk,s 1 1
ek,s = : : / + (17)
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In order to transmitf)k;}S fors = 1,2,..., M from sensor
k to sensok + 1 over bandlimited wireless channel, we have
to quantizedy, .. We will use By, , bits to quantizey, . into
my, 5. ASsume thaﬁm is bounded withirj—W, W]. Then,
the variance of the quantization error ofy, 5 is aék L=
C, SVV2

~ wherecy, < 1. The variance ofny , is

t?ren grven %y

2

Omy, s

_ 2 2
- o—ékws + O—Qk,s

We now develop an algorithm for computing the bit allo-
cations, i.e.,By s. Similar to the scalar case, we can derive
the following upper bound onfnk 70

(18)

M
2
S E Ph,s,jOmy_y, T Qhys +

Jj=s

2

WS
s (19)

where
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We want the MSE of the final quantized estimatg, of
0 to be upper bounded by a predetermined valli8Ey, i.e.,
SE = E{(mg — 0)"(my — 0)} < MSE,. Based on
the inequality (19), we have an upper bound onMs E:
K
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MSE =Y o7,
k=1 s=1
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(21)

wherehy s =1,1 < s < M, hys =Y 1 Pkt1,1,shet1,0,k =
K — ]-7 e 11a 1<s< M; andg = Zi-(:l Zi\il hk,sqk,s-

Assume there are totally wireless channels between sen-
sork andk + 1. We further assume that the model of each
channel is the same as in the scalar case. Then, the minimum
energyFE, required to reliably transm[jii1 By, s bits from
sensork to sensolk + 1 throughL channel uses is given by
the following expression according to the Shannon theory:

) 22)

For any givenBj, ; for s ., M, the energy efficiency
increases (i.e.F; decreases) ab increases. However, the
spectral efficienc;% Zi‘i 1 Bi,s inbits/second/Hertz decreases
asL increases. So, in practice, there is always a tradeoff be-
tween energy efficiency and spectral efficiency.

According to the fact that for positive real numbers
11 gpz;’zl al/n, we can upper bound,, by £, <

1 M M .

LagNy2t =1 Brs < Ly Ny Z , 27 Brs . We now aim
to minimize theL,y, 5, norm of the upper bound oA}, ; as
a design approach to determibg ;, i.e.,

Py
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Ek = Laka (2%

n .
i=1 i

K M 2L
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min = —
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subject to
MSEg < MSE, (24)
or equivalently
hk s .

k=1 s=1
The solution to the above problem can be shown to be [7]:

+
Bis = §<log2)\—|—log2 (Vhi,sWs) —log, (Ak))
A= LS VR
N (k, S)ES+
Ak; — ( > I\INJ\I



whereS* = {(k,s)|By,s > 0}. The computations 0B, ;  where
and) need to be performed iteratively until convergence. The

iteration starts with a fuls* (corresponding tdy s > 0 for 0, ]1 < .

all £ ands). After convergenceB; ; is rounded up into an (1+ek)2’ =9

1 Ol T S,1 28
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andg s = Zj‘”s j Lpk,s.;- Notice that (20) is a special
z.
case of (28) by S|mply setting, = 1. Then, at the fusion
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wherehy s = Z'—, 1 € €k, 5 = 1, M; by =
K+1

1 DPkjshkj, 1 € € s = 1,---, M. With the above
finedhy, s, the previous procedure for compultifiy ; and
X is now also valid for 2-D or 3-D networks.

fusion center is denoted by the circle in the center. Here, there al

Fig. 2. An example of 2-D sensor network with a routing tree. The%:
400 nodes, each denoted by e

4. PERFORMANCE EVALUATION

3. THE PP SCHEME FOR 2-D OR 3-D NETWORKS We now compare the performance of the PP scheme with that
of the NP scheme in [1]. For comparison, we also include a

For a 2-D or 3-D network, a routing tree must be first estaptniform progressive (UP) scheme for which a constant num-

lished as illustrated in Fig. 2 where each branch of the treBer of bits for each sensor is assigned.
represents a path of data flow. We will consider a 2-D network of00 sensors as shown

Let each sensor in the network have a unique lalvehere in Fig. 2. This network is constructed in such a way that
the distance between a parent sensor and its child sensor is
k=1,2,---, K. Forconvenience, we assume the fusion cen-

ter has a Iabel: K + 1. The set containing the up stream Dé whereé is uniformly distributed within the range [0.5,

sensors of sensdr is denoted byé),, and the size ot} is 1'25] Enodéé IS En:psr?gﬁd'_\/\lle further assume tht = 1,
denoted by;,. Sensolk computes the estimaéh, of the vec- Ty = 500 T = ko

tor paramete# using its local measurememnj, and the data ter Lé?de:; ;[:rg)emcoanrztsratuhybkiqt i‘h;;'ig?é?’battt:s Iiluslgrll’c;:c; UP
{my,l € )} received from%. Then, sensok usesBy, s 9. P y '

bits t tize theth el @ £0. int h schemes. The figure shows the number of bits for each sensor
ItS to quantize theth element , of 0, 10 my,s WNETE 0 rq 5 the Euclidean distance (dividedByfrom the sensor

s=1,---, M, which are to be transmitted to its down stream

sensor. One can verify that

Zle‘gk 0'2 ‘ + o

gk.,s =

wherezy s = (yp.s — ij\isﬂ Ths Ok j)/Thss Likewise,

we can obtain

1
Ele(fk o2 + o

to the fusion center. For the UP scheme, each sensor is allo-
cated with the same number of bits. We see that the number
of bits allocated by either the PP scheme or the UP scheme
for a sensor at medium or high distance is much higher than
that by the NP scheme. This is because of the short transmis-
sion range for each sensor under the progressive scheme. We
also see that the PP scheme allocates a much smaller number
of bits for each sensor at medium or high distance than the
UP scheme. This is because of the optimization used in de-
veloping the PP scheme. Compared to the PP scheme, the NP
scheme collects too little information from sensors at medium

M
w2 iah di infor-
s S Z Zpk 5siTmy; T ks + B (27)  or high distance and the UP scheme collects too much infor

ez, i=s mation from sensors at medium or high distance.



Fig. 4 shows the total normalized transmission energy
consumed by the network, i.€.,, ., ., Er/D", versus the
targetM SE,. We see that the PP scheme requires the least
amount of energy throughout the whalé SE, region. At
high M SEy, the PP scheme and the NP scheme consume ap-
proximately the same energy because almost all bits are allo-
cated to the sensors right next to the fusion center.

We then evaluate the progressive scheme for the vector
parameter estimation. We assume thags10 elements, i.e.,

M = 10. We setiWW, = 1. We choose&i;, to be20 x 10
matrices of i.i.d. Gaussian random variables with zero mean
and variance ofl0. We also choose?, = 0.05, N}, = 1
anda = 4. We choosel. = M initially unless mentioned
otherwise later.

UnderMSEy; = 1.0x 1
shows the average transmission energy per sensok &, =
e L S°% | E,./D", versus the sizé& of the network. We see
that E,,,4. decreases witli. However, as the network be-
comes very large, the change becomes negligible. This is be-
cause the information from far away sensors is heavily filtered
out as it moves towards the fusion center. This phenomenon is
directly due to a finite number of bits allocated to each sensor.
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Fig. 3. The number of quantization bits allocated for each sensor
versus the normalized Euclidean distance from the sensor to the fu-
sion centerM SE, = 0.0043. The network used is Fig. 2.

5]
5. REFERENCES

[1] J.-J. Xiao, S. Cui, Z.-Q. Luo, A. J. Goldsmith, “Power Schedul- [6]
ing of Universal Decentralized Estimation in Sensor Networks,”
IEEE Trans. on Signal Processingol. 54, pp. 413-422, Feb.
2006. 7]

[2] Z.-Q. Luo, “Universal Decentralized Estimation in a Bandwidth

Constrained Sensor NetworkEEE Trans. on Information The-

ory, vol. 51, pp. 2210-2219, Jun. 2005.
[3]

J.-J. Xiao, and Z.-Q. Luo, “Decentralized Estimation in an Inho-
mogeneous Sensing EnvironmetEEE Trans. on Information

Theory vol. 51, pp. 3564-3575, Oct. 2005.

4000

T T
—&— non-progessive scheme
—+— proposed progressive scheme
uniform progressive scheme

3500

3000

N
a
o
=}

2000

1500

Total transmission energy

1000

500

5
077 at the fusion center, Fig. 5 Fig 4. Total amount of normalized transmission energy consumed
by the network versus/SEy. The network used is Fig. 2.

x 10

T T T T
—H8— proposed progressive scheme
uniform progressive scheme

25r

15r

Average transmission energy per sensor

0.5

. . . . .
500 600 700 800 900
Network size

. . .
100 200 300 400 1000

Fig. 5. The average amount of normalized energy per sensor versus
the number of sensors in the networkl SE; = 1.0 x 1075, The
network used is Fig. 2.

Z.-Q. Luo, “An Isotropic Universal Decentralized Estimation
Scheme for a Bandwidth Constrained Ad Hoc Sensor Net-
works,” IEEE J. Select. Areas Communol. 23, pp. 735-744,
Apr. 2005.

Y. Hua, Y. Huang, and J. J. Garcia-Luna-Aceves, “Maximizing
the Throughput of Large Ad Hoc Wireless Network$ZEE
Signal Processing Magazineol. 23, pp. 84-94, Sep. 2006.

Y. Huang and Y. Hua, “Multi-Hop Progressive Decentralized
Estimation in Wireless Sensor NetworkHZEE Signal Process-
ing Letters in press.

Y. Huang, Y. Hua, and A. Swami, “Multi-Hop Progressive
Decentralized Estimation of Vector Parameters,” submitted to
IEEE Trans. on Signal Processing.



