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ABSTRACT

This paper presents a novel scheme for estimating an un-
known deterministic vector in a multi-hop progressive de-
centralized fashion in a wireless sensor network. Under this
scheme, each sensor performs the best linear unbiased esti-
mation of the unknown vector using the data measured by the
sensor and the estimations received from its up stream sen-
sors, and the estimation at each sensor is first quantized and
then forwarded to its down stream sensor. The final estimation
of the unknown vector resides at a fusion center. The number
of quantization bits assigned to each sensor is computed off-
line via an optimization algorithm that minimizes the network
transmission energy subject to a pre-determined upper bound
on the mean square error of the final estimation at the fusion
center. This optimization algorithm utilizes any given routing
tree from all sensors to the fusion center. Comparing to the
conventional non-progressive schemes, the proposed progres-
sive scheme yields a significant amount of energy saving.

1. INTRODUCTION

In this paper, we consider a wireless sensor network where
each sensor is capable of sensing, data processing and wire-
less communication. A specific task for this network is to
estimate an unknown vector based on the data vectors mea-
sured by all sensors. The classical approach to this task is
such that a fusion center collects the data from all sensors and
then performs the best estimation of the unknown vector. The
communication from all sensors to the fusion center can be
costly in terms of both spectral usage and energy usage. To
reduce the energy consumption for communication, it is de-
sirable for each sensor to transmit a limited number of bits.
By assuming that each sensor can deliver a given number of
bits (say,Bk bits by sensork) to the fusion center, researchers
in [1]-[4] have recently developed algorithms to optimize the
choice ofBk in terms of minimum transmission energy from
all sensors.
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However, there are deficiencies in those works. The al-
gorithms in [1]-[4] only handle the estimation of a scalar pa-
rameter as opposed to vector parameter. Furthermore, when
sensors are spread out in a field, the sensors far away from
the fusion center must consume much more energy than the
sensors near the fusion center to deliver each bit to the fusion
center if each sensor transmits data directly to the fusion cen-
ter as in the case considered in [1]-[4]. In order to overcome
those deficiencies, we propose a novel scheme called multi-
hop progressive distributed scheme in this paper. For conve-
nience, we will refer to this scheme as proposed progressive
(PP) scheme, and to those in [1]-[4] as non-progressive (NP)
scheme.

In the PP scheme, we allow data to be transmitted from
each sensor to the fusion center via a multi-hop route. In
fact, we let each sensor receive from, and transmit to, only its
neighboring sensor(s). For many potential applications, sen-
sor networks are relatively stationary, and hence a routing tree
from all sensors to the fusion center can be established and
utilized for distributed estimation. It is known (e.g., see [5])
that for large networks, multi-hop routing allows concurrent
co-channel transmissions and hence is more efficient in spec-
tral usage (than the case where the spectrum is divided orthog-
onally among all sensors). Since the distance between adja-
cent sensors is generally much smaller than that from most
sensors to the fusion center, the PP scheme is also expected
to consume less transmission energy than the NP scheme. In
the PP scheme, each sensor performs the BLUE (best linear
unbiased estimation) of the unknown parameter based on the
estimations received from its up stream sensors and the data
measured by itself, and the estimation by each sensor is first
quantized and then forwarded to its down stream sensor. For
the PP scheme, we have also developed an algorithm to op-
timize the bit allocation to each sensor in terms of minimum
transmission energy by all sensors subject to an upper bound
on the MSE (mean square error) of the final estimation at the
fusion center.

In Section 2, we present the PP scheme for 1-D network.
For easy understanding, we first consider the case of scalar
parameter and then the case of vector parameter. In Section
3, we extend the PP scheme to 2-D and 3-D networks. In
Section 4, the performance of the PP scheme is illustrated.



More details of this work are available in [6] and [7].
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Fig. 1. Illustration of the multi-hop progressive decentralized esti-
mation scheme for a 1-D network. The square on the far right is the
fusion center.

2. THE PP SCHEME FOR 1-D NETWORK

2.1. Scalar Parameter

We first consider the case of scalar parameter estimation. A
simple 1-D sensor network is shown in Fig. 1 where there are
totally K sensors. The input to thekth sensor consists ofxk

andmk−1. Here,xk is the measurement at thekth sensor,
which is modelled as

xk = θ + nk (1)

whereθ is the unknown parameter to be estimated, andnk is
the noise with thek-dependent varianceσ2

nk
. And mk−1 is

the quantized estimation received from sensork−1. The out-
put from thekth sensor is denoted bymk which is quantized
from the BLUE ofθ at sensork. Let the variances ofxk and
mk−1 be denoted byσ2

xk
andσ2

mk−1
, respectively. Obviously,

σ2
xk

= σ2
nk

. Then, assumingBk−1 > 0, the BLUE ofθ based
onxk andmk−1 at sensork is

θ̂k =

(
1

σ2
mk−1

+
1

σ2
xk

)−1 (
mk−1

σ2
mk−1

+
xk

σ2
xk

)
(2)

With Bk bits for quantization of̂θk, we havemk as the output
of sensork. Assume that̂θk is bounded within[−W,W ],
then the variance of quantization error at sensork is σ2

qk
=

ckW 2

22Bk
≤ W 2

22Bk
whereck ≤ 1. The variance ofmk is given by

σ2
mk

= σ2
qk

+ σ2
θk
≤ W 2

22Bk
+

(
1

σ2
mk−1

+
1

σ2
xk

)−1

(3)

To determineBk for all k, we will formulate a criterion
that minimizes a measure of the network transmission energy
subject to a MSE constraint. The details are shown next.

Since (3) is a nonlinear recursion forσ2
mk

, it is hard to
find the exact form ofσ2

m,K which is the MSE of the final
estimatemK transmitted to the fusion center. But we can use
the following inequality:

σ2
mk

≤ W 2

22Bk
+

σ2
mk−1

4
+

σ2
xk

4
(4)

which follows from (3) and2σmk−1σxk
≤ σ2

mk−1
+σ2

xk
. The

above inequality recursion leads to

MSE
.= σ2

m,K (5)

≤
K∑

k=1

(
1
4

)K−k
W 2

22Bk
+

K∑

k=2

(
1
4

)K−k+1

σ2
xk

+
(

1
4

)K−1

σ2
x1

.= MSEB .

Assume that the communication channel between sensors
has additive white Gaussian noise with power spectral den-
sity Nk, and the channel power attenuation factor isak = dr

k

wheredk is the transmission distance from sensork to sen-
sork + 1 andr is the path loss exponent. Then, to transmit
Bk bits reliably from sensork to sensork + 1, the minimum
required transmission energyEk must satisfy the following,
based on Shannon theory:

Ek = akNk

(
2Bk − 1

)
< akNk2Bk (6)

Under a practical coding and modulation scheme, the right
side of (6) should be multiplied by a factor larger than one
but independent ofk. This factor, however, does not affect
our theory on the choice ofBk.

It is therefore meaningful to set up the following criterion
for determination ofBk:

min
{Bk}

K∑

k=1

a2
kN2

k22Bk (7)

subject to
MSEB ≤ MSE0 (8)

where (7) is theL2-norm of an upper bound of the minimum
required network transmission energy, andMSE0 is a pre-
specified tolerance of the upper bound on the MSE at the fu-
sion center. An equivalent form of (8) is

K∑

k=1

(
1
4

)K−k 1
22Bk

≤ η (9)

where
η = 1

W 2

(
MSE0 −

∑K
k=2

(
1
4

)K−k+1
σ2

xk
− (

1
4

)K−1
σ2

x1

)
.

Then, by applying the fact that for any real numbersxi

andyi, (
∑

i x2
i )(

∑
i y2

i ) ≥ (
∑

i xiyi)2 with equality when
xi = λyi, we can show [6] that a close-form solution to the
above optimization problem is

Bk =
1
2

(k −K + log2 λ− log2(akNk))+ (10)

λ =
1
η

K∑

k=k0

akNk2k−K (11)

where(x)+ = x if x ≥ 0 and(x)+ = 0 if x < 0. Note that
we requireBk to be nonnegative. In practice,Bk need to be
rounded up to the nearest integer.



2.2. Vector Parameter

For the case of vector parameter, we now model the observa-
tion at each sensor as follows:

xk = Gkθ + ωk. (12)

whereθ = [θ1, θ2, · · · , θM ]T is the vector parameter to be
estimated,xk is aN ×1 observed data vector at sensork, Gk

is aN×M known matrix with full column rank andN ≥ M ,
andωk is the observation noise vector at sensork.

The PP scheme for the vector case hinges on the QR de-
compositionGk = QkRk whereQk is a tallN ×M unitary
matrix andRk is upper triangular. We can now write

yk
.= QH

k xk = Rkθ + νk (13)

whereνk = QH
k ωk. Thesth row of (13) can be written as

yk,s = rk,s,sθs +
M∑

j=s+1

rk,s,jθj + νk,s. (14)

whererk,i,j is the(i, j)th element ofRk.
At sensork, the estimate of thesth componentθs of θ

is denoted bŷθk,s, which is computed fromyk,s andmk−1,s

sequentially with respect tos. Here,mk−1,s is thesth element
of mk−1. Specifically, we let

zk,s
.=

yk,s −
∑M

j=s+1 rk,s,j θ̂k,j

rk,s,s
(15)

The variance ofzk,s is given by

σ2
zk,s

= (σ2
νk,s

+
M∑

j=s+1

r2
k,s,jσ

2
θ̂k,j

)/r2
k,s,s (16)

Note thatσ2
νk,s

= σ2
ωk

. Then, the BLUÊθk,s of θs is

θ̂k,s =

(
mk−1,s

σ2
mk−1,s

+
zk,s

σ2
zk,s

)
/

(
1

σ2
mk−1,s

+
1

σ2
zk,s

)
(17)

In order to transmit̂θk,s for s = 1, 2, ..., M from sensor
k to sensork + 1 over bandlimited wireless channel, we have
to quantizeθ̂k,s. We will useBk,s bits to quantizêθk,s into
mk,s. Assume that̂θk,s is bounded within[−Ws,Ws]. Then,
the variance of the quantization error ofmk,s is σ2

Qk,s
=

ck,sW 2
s

22Bk,s
≤ W 2

s

22Bk,s
whereck,s ≤ 1. The variance ofmk,s is

then given by
σ2

mk,s
= σ2

θ̂k,s
+ σ2

Qk,s
(18)

We now develop an algorithm for computing the bit allo-
cations, i.e.,Bk,s. Similar to the scalar case, we can derive
the following upper bound onσ2

mk,s
[7]:

σ2
mk,s

≤
M∑

j=s

pk,s,jσ
2
mk−1,j

+ qk,s +
W 2

s

22Bk,s
(19)

where

pk,s,j =





0, j < s
1
4 , j = s
1
4

∑j
i=s+1

r2
k,s,i

4r2
k,s,s

∏j
l=i+1

r2
k,l−1,l

4r2
k,l−1,l−1

, j > s

(20)

andqk,s =
∑M

j=s

σ2
νk,j

r2
k,j,j

pk,s,j .

We want the MSE of the final quantized estimatemK of
θ to be upper bounded by a predetermined valueMSE0, i.e.,
MSE

.= E{(mK − θ)H(mK − θ)} ≤ MSE0. Based on
the inequality (19), we have an upper bound on theMSE:

MSE
.=

M∑
s=1

σ2
mK,s

≤
K∑

k=1

M∑
s=1

hk,s
W 2

s

22Bk,s
+ ξ

.= MSEB

(21)
wherehK,s = 1, 1 ≤ s ≤ M , hk,s =

∑s
l=1 pk+1,l,shk+1,l, k =

K − 1, · · · , 1, 1 ≤ s ≤ M , andξ =
∑K

k=1

∑M
s=1 hk,sqk,s.

Assume there are totallyL wireless channels between sen-
sor k andk + 1. We further assume that the model of each
channel is the same as in the scalar case. Then, the minimum
energyEk required to reliably transmit

∑M
s=1 Bk,s bits from

sensork to sensork + 1 throughL channel uses is given by
the following expression according to the Shannon theory:

Ek = LakNk

(
2

1
L

PM
s=1 Bk,s − 1

)
(22)

For any givenBk,s for s = 1, ..., M , the energy efficiency
increases (i.e.,Ek decreases) asL increases. However, the
spectral efficiency1L

∑M
s=1 Bk,s in bits/second/Hertz decreases

asL increases. So, in practice, there is always a tradeoff be-
tween energy efficiency and spectral efficiency.

According to the fact that for positive real numbersai,∏n
i=1 ai ≤

∑n
i=1 an

i /n, we can upper boundEk by Ek ≤
LakNk2

1
L

PM
s=1 Bk,s ≤ L

M akNk

∑M
s=1 2

M
L Bk,s . We now aim

to minimize theL2L/M norm of the upper bound onEk,s as
a design approach to determineBk,s, i.e.,

min
{Bk,s}

J
.=

K∑

k=1

M∑
s=1

(
L

M

) 2L
M

a
2L
M

k N
2L
M

k 22Bk,s (23)

subject to
MSEB ≤ MSE0 (24)

or equivalently

K∑

k=1

M∑
s=1

hk,sW
2
s

22Bk,s
≤ MSE0 − ξ

.= η (25)

The solution to the above problem can be shown to be [7]:

Bk,s =
1
2

(
log2 λ + log2 (

√
hk,sWs)− log2 (Ak)

)+

λ =
1
η

∑

(k,s)∈S+

√
hk,sWsAk

Ak =
(

L

M

) L
M

a
L
M

k N
L
M

k



whereS+ = {(k, s)|Bk,s > 0}. The computations ofBk,s

andλ need to be performed iteratively until convergence. The
iteration starts with a fullS+ (corresponding toBk,s > 0 for
all k ands). After convergence,Bk,s is rounded up into an
integer.
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Fig. 2. An example of 2-D sensor network with a routing tree. The
fusion center is denoted by the circle in the center. Here, there are
400 nodes, each denoted by∗.

3. THE PP SCHEME FOR 2-D OR 3-D NETWORKS

For a 2-D or 3-D network, a routing tree must be first estab-
lished as illustrated in Fig. 2 where each branch of the tree
represents a path of data flow.

Let each sensor in the network have a unique labelk where
k = 1, 2, · · · ,K. For convenience, we assume the fusion cen-
ter has a labelk = K + 1. The set containing the up stream
sensors of sensork is denoted byCk, and the size ofCk is
denoted byek. Sensork computes the estimatêθk of the vec-
tor parameterθ using its local measurementxk and the data
{ml, l ∈ Ck} received fromCk. Then, sensork usesBk,s

bits to quantize thesth elementθ̂k,s of θ̂k into mk,s where
s = 1, · · · , M , which are to be transmitted to its down stream
sensor. One can verify that

θ̂k,s =

∑
l∈Ck

ml,s

σ2
ml,s

+ zk,s

σ2
zk,s∑

l∈Ck

1
σ2

ml,s

+ 1
σ2

zk,s

(26)

wherezk,s = (yk,s −
∑M

j=s+1 rk,s,j θ̂k,j)/rk,s,s. Likewise,
we can obtain

σ2
mk,s

≤
∑

l∈Ck

M∑

j=s

pk,s,jσ
2
ml,j

+ qk,s +
W 2

s

22Bk,s
(27)

where

pk,s,j =





0, j < s
1

(1+ek)2 , j = s

1
(1+ek)2

∑j
i=s+1

r2
k,s,i

(1+ek)2r2
k,s,s

×
∏j

l=i+1

r2
k,l−1,l

(1+ek)2r2
k,l−1,l−1

, j > s

(28)

andqk,s =
∑M

j=s

σ2
νk,j

r2
k,j,j

pk,s,j . Notice that (20) is a special

case of (28) by simply settingek = 1. Then, at the fusion
center whose label isk = K + 1, the MSE is bounded as
follows:

MSE
.=

M∑
s=1

σ2
mK+1,s

≤
K∑

k=1

M∑
s=1

hk,s
W 2

s

22Bk,s
+ ξ

.= MSEB

ξ =
K∑

k=1

M∑
s=1

hk,sqk,s

wherehl,s = 1
e2

K+1
, l ∈ CK+1, s = 1, · · · ,M ; hl,s =

∑M
j=1 pk,j,shk,j , l ∈ Ck, s = 1, · · · ,M . With the above

definedhk,s, the previous procedure for computingBk,s and
λ is now also valid for 2-D or 3-D networks.

4. PERFORMANCE EVALUATION

We now compare the performance of the PP scheme with that
of the NP scheme in [1]. For comparison, we also include a
uniform progressive (UP) scheme for which a constant num-
ber of bits for each sensor is assigned.

We will consider a 2-D network of400 sensors as shown
in Fig. 2. This network is constructed in such a way that
the distance between a parent sensor and its child sensor is
Dδ whereδ is uniformly distributed within the range [0.5,
1.5] andD is unspecified. We further assume thatW = 1,
σ2

xk
= 0.05, r = 4, andNk = 1.

Under the constraintMSE0 = 0.0043 at the fusion cen-
ter, Fig. 3 compares the bit allocations by the NP, PP and UP
schemes. The figure shows the number of bits for each sensor
versus the Euclidean distance (divided byD) from the sensor
to the fusion center. For the UP scheme, each sensor is allo-
cated with the same number of bits. We see that the number
of bits allocated by either the PP scheme or the UP scheme
for a sensor at medium or high distance is much higher than
that by the NP scheme. This is because of the short transmis-
sion range for each sensor under the progressive scheme. We
also see that the PP scheme allocates a much smaller number
of bits for each sensor at medium or high distance than the
UP scheme. This is because of the optimization used in de-
veloping the PP scheme. Compared to the PP scheme, the NP
scheme collects too little information from sensors at medium
or high distance and the UP scheme collects too much infor-
mation from sensors at medium or high distance.



Fig. 4 shows the total normalized transmission energy
consumed by the network, i.e.,

∑
1≤k≤K Ek/Dr, versus the

targetMSE0. We see that the PP scheme requires the least
amount of energy throughout the wholeMSE0 region. At
highMSE0, the PP scheme and the NP scheme consume ap-
proximately the same energy because almost all bits are allo-
cated to the sensors right next to the fusion center.

We then evaluate the progressive scheme for the vector
parameter estimation. We assume thatθ has10 elements, i.e.,
M = 10. We setWs = 1. We chooseGk to be20 × 10
matrices of i.i.d. Gaussian random variables with zero mean
and variance of10. We also chooseσ2

ωk
= 0.05, Nk = 1

andα = 4. We chooseL = M initially unless mentioned
otherwise later.

UnderMSE0 = 1.0 × 10−5 at the fusion center, Fig. 5
shows the average transmission energy per sensor, i.e.,Enode =
1
K

∑K
k=1 Ek/Dr, versus the sizeK of the network. We see

that Enode decreases withK. However, as the network be-
comes very large, the change becomes negligible. This is be-
cause the information from far away sensors is heavily filtered
out as it moves towards the fusion center. This phenomenon is
directly due to a finite number of bits allocated to each sensor.
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Fig. 3. The number of quantization bits allocated for each sensor
versus the normalized Euclidean distance from the sensor to the fu-
sion center.MSE0 = 0.0043. The network used is Fig. 2.
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