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NONLINEAR TRANSIENT AND
DISTORTION ANALYSIS VIA
FREQUENCY DOMAIN
VOLTERRA SERIES*
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Abstract. This paper presents a novel approach for transient and distortion analyses for
time-invariant and periodically time-varying mildly nonlinear analog circuits. Our method
is based on a frequency domain Volterra series representation of nonlinear circuits. It
computes the nonlinear responses using a nonlinear current method that recursively solves
a series of linear Volterra circuits to obtain linear and higher-order responses of a nonlinear
circuit. Unlike existing approaches, where Volterra circuits are solved mainly in the time
domain, the new method solves the linear Volterra circuits directly in the frequency domain
via an efficient graph-based technique, which can derive transfer functions for any large
linear network efficiently. As a result, both frequency domain characteristics, like harmonic
and intermodulation distortion, and time domain waveforms can be computed efficiently.
The new algorithm takes advantage of identical Volterra circuits for second- and higher-
order responses, which results in significant savings in driving the transfer functions. Ex-
perimental results for two circuits—a low-noise amplifier and a switching mixer—are
obtained and compared with SPICE3 to validate the effectiveness of this method.

Key words: Nonlinear transient simulation, distortion analysis, Volterra series.

1. Introduction

Transient analysis of nonlinear analog circuits is the most computationally inten-
sive analysis. Linear multistep (LMS) formulas based on backward difference for-
mulas [10] are widely used methods for transient simulation of nonlinear circuits
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due to their robustness. The predictor-corrector algorithms, with explicit LMS
formulas for the predictor and an implicit LMS formula for the corrector, can
be used to further speed up the transient simulation. These methods are general
enough for both mildly and hard nonlinear circuits. But because Newton-Raphson
iterations are carried out at every time step of integration, these algorithms are
very time consuming. If only a steady-state response is required, some special
analysis methods for nonlinear circuits have been developed such as harmonic
balance methods in the frequency domain and shooting methods in the time do-
main [2], [1].

For wireless/communication applications, some circuits which operate at radio
frequencies (RF) typically exhibit mildly or weakly nonlinear properties, where
devices typically have a fixed dc operating point or periodically changed operating
points and the inputs are ac signals. When the amplitude of these input signals is
small (such that the operation points do not change too much), the nonlinearities
in these circuits can be approximated adequately using a truncated Taylor series
expansion of the nonlinear devices at their dc operating points [11].

Such mild nonlinearities can be exploited to speed up the transient simula-
tion for such nonlinear circuits [4]. Examples are the linear centric method for
nonlinear distortion analysis [3] and the sampled-data simulation method using
Volterra functional series [13]. Volterra functional series can represent a weakly
nonlinear function in terms of a number of linear functions called Volterra kernels.
From circuit theory’s perspective, it leads to a set of linear circuits, called Volterra
circuits, whose responses can adequately approximate the response of the original
nonlinear circuit. In [13], [14], a sampled-data simulation method is used where
the simulation errors are dependent on sampling intervals and sampling window
sizes. As a result, the runtime is dependent on the accuracy requirements. It is also
difficult to obtain frequency domain information such as harmonic distortions as
the algorithm operates in the time domain.

In this paper, we propose a new approach for transient and distortion analysis of
time-invariant and periodically time-varying mildly nonlinear analog circuits. Our
method is also based on the Volterra functional series. But instead of solving the
Volterra circuits in the time domain, as in traditional methods like SPICE3 or the
sampled-data method [13], [14], we solve the Volterra circuits directly in the fre-
quency domain by using a graph-based symbolic analysis method [6], [7]. Once
frequency domain responses are obtained, transient responses can be obtained by
efficient numerical inverse Fourier transformation of all frequency components.
The new method is more efficient than time domain nonlinear analysis as the
analysis is done in the frequency domain which is independent of time intervals
and time steps, and no convergence issues of nonlinear iterations (like Newton-
Raphson) are involved. Another significant benefit is that we can easily obtain
frequency domain characteristics like harmonic distortions and intermodulations
as they can be easily computed from the frequency responses of various orders of
Volterra circuits. Experimental results for some real nonlinear circuits are studied
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and compared with those of SPICE3 to validate the new method. Both transient
and second and third harmonic distortion (HD2, HD3) and intermodulation results
are computed for each nonlinear circuit to show the effectiveness of the new
method.

2. Volterra circuits and determinant decision diagram
graphs review

2.1. Volterra circuits

A time-invariant nonlinear circuit can be expressed by the following differential
equations:

du(t) .

Gv(t)"_CT = Dw(t) + inon(v(t)). (D
Here G and C represent, respectively, the conductance and capacitance matrices
whose elements are made of the linear devices and first-order terms of the Taylor
series expansion of the nonlinear devices. D is the position vector for input w(z).
inon(v(t)) represents the second- and higher-order currents generated by the non-
linear devices. By substituting Volterra functional series of v(¢) and i () into the
equation, we will obtain a set of linear differential equations [4], [13]:

dvi (1)
Gvi(t)+C p = Dw(?),
Gua(t) + Cd“;t(’) — (01 (1),
d
Gus(t) + C ”;:” — i3(01 (), v2(0),
dvm(t) .
G () + €L = iy 010, 020, V1 O0), @

where vy, () is the mth-order term of the Volterra series expansion of v(¢) and
im (¢) is the input of the mth-order Volterra circuit and can be obtained from lower-
order responses: Uy, —1(2), vy—2(2), ..., v1(2).

For a given nonlinear circuit, we assume that currents are nonlinear functions
of voltages for nonlinear devices. The i-v characteristic of the nonlinear device
can be expanded at the dc operating point as a Taylor series,

I(V)=1Iy+i
(Vo) g
=f(Vo)+’;Tv =Io+’;anv , 3)

where Iy and Vj represent the dc current and voltage values over the nonlinear
device, and i and v represent the corresponding small signal voltage and current
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values, respectively. Hence, i can be expressed as a polynomial function in v with
coefficients a;, i = 1, ..., n. For Volterra functional series, if the input is changed
from v(¢) to Av(t), we have [4]

o0 o0
V() =Y v @OA, i) =Y im(OA". €
m=1 m=1
Substituting equation (3) into (4), we have
o0 o0 o0
D i =) an (Y v A" )
m=1 n=1 m=1
Equating terms of the same order in A, we obtain
im(t) =alvm(t)+-]m(t)7 (6)

where J,,(¢) is the contribution from the responses of low order (less than m)
Volterra circuits. But for m = 1, J,, () = 0. Equation (6) essentially reflects the
fact that each Volterra circuit is a linear circuit (a; is used for all the Volterra
circuits for the nonlinear device), and higher-order responses can be computed in
an order-increasing way starting from the first order. The response of the whole
circuit will be the sum of the responses from all the Volterra circuits.

2.2. The DDD graph-based method for deriving transfer
functions

In this subsection, we briefly review a graph-based method, called determinant
decision diagrams (DDDs), to derive the exact transfer functions of a linear cir-
cuit [5]. DDDs [5] are compact and canonical graph-based representations of
determinants. DDD graphs are similar to binary decision diagrams (BDDs) except
that a sign is associated with each node to represent the sign of product terms from
the expansion of a determinant. Also like BDDs, DDDs can be used to represent
huge numbers of symbolic terms from a determinant. Most importantly, one can
derive the s-expanded polynomial of a determinant symbolically via s-expanded
DDDs [6]. The recent hierarchical approach using DDD graphs can essentially
derive transfer functions for almost arbitrary large networks [7], which makes
the solving of linear networks in the frequency domain much easier and more
efficient.

The concept is best illustrated using the simple RC filter circuit shown in
Figure 1. Its system equations can be written as

1 1 1
R_1+SC1+R_2 R 0 V1 I
1 1 1 1 _
—r R_2+SC2+R_3 R v = 0
_ 1L 1 v 0
0 I I +sC3 3

Let C; and C3 be two symbolic parameters in the circuit. Matrix entries R% +
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Figure 1. A simple RC circuit.
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Figure 2. A complex preordered DDD for the transfer function.

sCy + R% and R% + sC3 will be assigned indices larger than the indices of all
other entries to make them appear on the top of the corresponding DDD graph.
Let T be the 3 x 3 system matrix; we are interested in the following transfer
function:

Vi(s) (=)' det(T13) -
I(s) det(T) ’ @
where 773 is the matrix obtained by removing row 1 and column 3 from 7.
The resulting determinant of the system matrix, its cofactor 713, and their DDD
representations are shown in Figure 2, where each nonzero element is designated
by a symbol and is assigned a unique index in parentheses. The index of each
symbol is also marked along each DDD node in the resulting DDD graph. It can
be seen that symbolic nodes A and G appear above all the other numerical DDD
nodes.

Once complex DDDs are obtained, s-expanded DDDs are can be computed
very efficiently [6]. Consider again the circuit in Figure 1 and its system de-
terminant. Let us introduce a unique symbol for each circuit parameter in its
admittance form. Specifically, we introduce a = Rll, b= f= Rlz, d=e= —Riz,
g=k= R%,i =j= _R%’ C1 =c, h = (Cy,1l = C3. Then the circuit matrix can
be rewritten as

a+b+cs d 0
e f+g+hs i .

0 J k+1s

H(s) =
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Figure 3. Semi-symbolic s-expanded DDDs for det(T').

The corresponding s-expanded DDDs are shown in Figure 3.

3. Frequency domain Volterra circuits

In this section, we will first illustrate the representation of frequency domain
Volterra circuits for general time-invariant weakly nonlinear systems. We then
discuss the representation of periodically time-varying nonlinear systems.

For the time-invariant nonlinear system expressed in equation (2), we can take
a Fourier transform on both sides of the differential equations:

GVi(jw) + jwCVi(jw) = DW(jw),
GVa(jw) + jwCVa(jw) = L(jw),
GV3(jw) + jwCV3(jw) = (jw),

GV (jw) + jwCVu(jw) = In(jw), ®)

where W (jw) is the Fourier transform of input signal w(¢), and V,,(jw) and
I,,(jw) are those of v, (#) and i, (t), respectively. From equation (6), because
Jm (t) can be expressed as a sum of product terms of vy, —1(¢), v —2(2), ..., v1(2),
we can perform convolution in the frequency domain to obtain I,,, (jw).

We illustrate this by the following simple example. Consider a nonlinear resis-
tor for which the i-v relationship can be expressed as

i(1) = biv(r) + byv* (1) + b3v (1). )
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Figure 4. Periodically time-varying nonlinear system model.

From equation (4), the time domain Volterra series i,,(¢) are

i1(t) = brv1 (1),
i2(1) = bva(r) + bavi (1),
i3(t) = b1v3(t) + 2bavy (D) va(t) + b3v) (7). (10)

Take the Fourier transform on both sides; we obtain
Li(jw) =b1Vi(jw),

1

L(jw) =biVa(jw) + EbZVl(jw) * Vi(jw),
1

B(jw) =bi1V3(jw) + ;szl(jw) * Va(jw)

1
+ thl(jw)*Vl(jw)*Vl(jw), )

where * represents the convolution in the frequency domain. In this way, the mul-
tiplication in the time domain is converted into the convolution in the frequency
domain. We observe that we typically need only a couple of tones of input signals
to decide the circuit performance (for example, a one-tone input for harmonic
distortion and a two-tone input for intermodulation distortion). The convolution
in the frequency domain can be implemented as the shifting product of two signals
at all corresponding discrete frequency points,

m=N
V(kwo) = Vix V2= ) Vi(mwo)Va(kwo — mwo), (12)
m=—N

where N is the number of harmonics we want to consider, which is reasonable
because the higher harmonic component can be ignored in most cases. This sim-
plifies the work for nonlinear system analysis by avoiding the time-consuming
Fourier transform and inverse Fourier transform between the time domain and
frequency domain. It also facilitates the calculation of harmonic and intermodu-
lation distortion because they are frequency domain characteristics.

Now we extend our approach to solve periodically switching nonlinear circuits.
As shown in Figure 4, the system can be split into two parts: one for the switching
operation and another for the nonlinear operation. The input has two ports: s(z)
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and c(?). s(¢) is a small input signal and c(#) is the controlling signal, usually a
square wave. The output w(z) from the switching is

w(t) = s@t)e(t). (13)

In the frequency domain, it becomes
. . .
W(jw) = ——S(jw) * C(jw). (14)

When the square wave is the controlling signal, it becomes

e8]

W(jw) = Y axS(jw + kwo), (15)

k=—o00

where wy is the frequency of the square wave, ag = % when k = 0, and a; =
@ when k # 0. W(jw) is then fed into the nonlinear part for further cal-
culation. We note that many typical analog circuits, such as switching mixer and

switching capacitor circuits, can be analyzed very efficiently using this method.

4. New approach to transient and distortion analysis of
nonlinear circuits

4.1. Nonlinear analysis flow

From previous analysis on Volterra functional series, we know that all Volterra
circuits are linear circuits similar to the original circuit. All second- and higher-
order Volterra circuits are the same except that the input current sources are
different. As a result, the new method consists of the following steps to obtain
the transient response and harmonic and intermodulation distortion of a nonlinear
circuit. (1) Based on the nonlinear analytical expressions of the i-v curve for each
nonlinear device in the nonlinear circuit, derive the corresponding relationship
between i, and v, for each of them and generate the corresponding Volterra
circuits. (2) Compute the transfer functions for each Volterra circuit using the
DDD-based method. Note that only two linear circuits are required; i.e., a circuit
for the first-order response and a circuit for the higher-order responses. (3) Add
all the frequency/transient responses of different-order Volterra circuits to obtain
the frequency/transient responses of the original nonlinear circuit. The transient
responses are obtained by using an efficient numerical inverse Fourier transfor-
mation [10]. Specific harmonic and intermodulation distortion can be obtained by
tone-tracking for a specified frequency at the output of each Volterra circuit of
different orders. In the following subsection, we show how to perform harmonic
and intermodulation analysis.
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Figure 5. A nonlinear circuit and its first-, second-, and third-order Volterra circuits with linear transfer
functions.

4.2. Harmonic and distortion analysis

As usual, we use a one-tone input signal for the harmonic distortion calculation,
and a two-tone input signal for the intermodulation analysis. We use the following
nonlinear circuit with three-order Volterra circuits to demonstrate how the tone-
tracking method is used in our frequency domain analysis framework.

For the nonlinear circuit shown in Figure 5, we include a nonlinear resistor
which has the i-v relationship described by equation (9). We calculate the output
response from the first-order Volterra circuit. The first-order output is

Vourt(jw) = W(jw)Hjo(jw), (16)

where W (jw) is the Fourier transform of input signal w(#), and H;, is the transfer
function from the input to the output for the first-order Volterra circuit. We can
obtain the voltage at the nonlinear port as

Viw) = W(jw)Hin(jw), a7

where H;, (jw) is the transfer function from input to nonlinear port for the first-
order Volterra circuit. Following equation (11) to obtain J,(jw), we then calculate
the response at the output and nonlinear port for the second-order Volterra circuit,

VoutZ(jw) = Jz(jw)H(m(jU)), (18)
Va(jw) = Ja(jw)Hpn (jw), (19)

where H,,(jw) is the transfer function from the current source to the voltage
at the output and H,,(jw) is the transfer function from the current source at
the output to the nonlinear port. Both of them are for the second- and higher-
order Volterra circuits. Similarly, we can obtain the output for the third-order
and higher-order Volterra circuits. Then, by taking into account all the frequency
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Figure 6. The harmonic and intermodulation frequencies at different-order Volterra circuits with
single-tone and two-tone tests.

components for each Volterra circuit, we can easily obtain the transient response
for the whole circuit.

Note that only four transfer functions, H;,(jw) and H;,(jw) for the first-
order Volterra circuit and H,, (jw) and H,,(jw) for other higher-order Volterra
circuits, need to be calculated. The DDD graph-based approach is a very efficient
tool for obtaining these transfer functions for very large linear circuits [5], [7].
Because the transfer functions are reused in second- and higher-order Volterra
circuits, we achieve significant saving on the calculation of circuit response re-
peatedly for any higher-order Volterra circuits.

As shown in Figure 6, the signal w(¢) containing one frequency component
wo is the input signal to a general nonlinear system. According to the input-
output frequency-invariant property of linear systems and the frequency-shifting
property of convolution, we can derive all the frequency components in different-
order Volterra circuits. To obtain the second harmonic distortion (HD2), we need
to compute the frequency 2wy component contained in the output of the second-
order Volterra circuit. From the equation of frequency domain Volterra circuits,
the second-order current source is

1
J2(j2wp) = bngl(jwo)Vl(ij) (20
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Then the output V,,;2(j2wo) of the second-order Volterra circuit can be obtained
by the multiplication of J(j2wg) and H,,(j2wo). The HD2 distortion can be
calculated as

A
HD2 = 2010g<| 2'”0'), @1
[Auwy, |

where Ay, is the amplitude of the output signal at frequency wo and Ay, is the
second harmonic amplitude at frequency 2wq at the output port.

For the third-order harmonic distortion, we need to consider the frequency com-
ponent at 3wy, contained in the output of the third-order Volterra circuit. There
are two signal paths corresponding to the two higher-order items in equation (10):
wo from vy (¢) and 2wg from vy (¢) for the first item 2b,v1 (#)v,(t), and three wy
from v; (¢) for the second item b3v; (£)3. We have

) 1 . .
J3(j3wo) = 2by o Vi(jwo) V2(j2wop)

1
+ b3 ) Vi(Gwo) Vi(jwo) Vi(jwo). (22)

Then V,,:3(j3wp) can be obtained by the multiplication of J3(j3wg) and
H,,(j3wp). The HD3 distortion can be calculated as

HD3 = 201og<|A3’”°|>, (23)
[ A

where A, is the amplitude of the output signal at frequency wo and A3y, is the

third harmonic amplitude at frequency 3wy at the output port.

Now we consider a two-tone input test for the intermodulation calculation.
Assume that the input signal only contains two closely located frequency com-
ponents: wo and wi. The frequency component at 2wg — w at the output is what
we are interested in. For the frequency component 2wg — w1, we have three signal
paths corresponding to the two higher-order items: wg from v (¢) and wg — w;
from v;(t), or —w; from vy (¢) and 2wq from vy (¢) for the first item 2br vy (£)v2(2);
and wg, wg and —w; from v (¢) for the second item b3 vf(t). It can be written as

: 1 . .
J3(j Qwo — wy)) = 2b2EV1 (Jwo) V2 (j(wo — w1))
1
+ 2by — Vi (—jw1) V2(j2wo)
21

1
+ b3mV1 (Jwo)Vi(jwo) Vi(—jwr). (24)

The output V,,;3(j (2wg—wy)) for the third-order Volterra circuit can be obtained
by the multiplication of J3(j (2wg — w1)) and Hy, (j (2w — w1)). The intermod-
ulation distortion can be calculated as

A _
M3 = 2010g<M>, (25)
A

Author: see equa-
tion (10) should

be b3v3 (t)?
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where A, is the amplitude of the output signal at frequency wo and Azyy—vw, is
the intermodulation amplitude at frequency 2wo — w1 at the output port.

For periodically time-varying nonlinear circuits, the input signal frequency for
the single-tone test is changed from wy to wo — kwy, where wj is the frequency of
the square wave signal. For the two-tone test, the frequencies at wg and w are also
shifted by kwj; individually. The procedures are the same for calculating HD2,
HD3, and intermodulation when we only consider a limited number of harmonic
points (k is limited) and truncate the higher-order harmonic components.

5. Discussion

In this section, we discuss the factors that affect the accuracy and efficiency of our
frequency domain method and explore the benefits of this method compared with
the time domain method.

5.1. Accuracy

Based on the procedure of the frequency domain method described in the previous
section, the accuracy is related to the following factors: (1) the order of the Taylor
series characterizing the nonlinear devices, (2) the order of the linear Volterra
circuits representing the nonlinear circuits, and (3) the highest order of harmonics
considered for the calculation of the frequency domain convolution. These are
discussed in more detail as follows.

5.1.1. Order of Taylor series

In our analysis, we use a Taylor expansion to approximate the characteristics of
nonlinear devices. For a function f(x) that has continuous derivatioves up to (n +
1)th order, it can be expanded in the following fashion:

[P@x—a? M@ -a)
+
2! n!
where R, called the remainder after n + 1 terms, is given by

@ — o)t
B (n+ 1)

fx) = f@+fPayx—a)+ +Ry, (26)

Ry

, a<n<x. 27)

In our frequency domain analysis, a is actually our dc operating point. So to keep
the remainder R, in a limited range, the order of the Taylor expansion will rely on
the input signal amplitude and the derivative properties of the nonlinear devices
themselves.
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5.1.2. Order of linear Volterra circuits

In equation (6), for the accurate representation of the Volterra series, m should
take values from O to infinity. But for an actual mildly nonlinear circuit, we can
usually take m as a proper number to meet the corresponding accuracy require-
ments. As an example, in equation (11), we use third-order Volterra circuits to
approximate the original nonlinear circuit. If fourth-order Volterra series are ap-
plied for the approximation, the frequency domain representation of the Volterra
circuits is

L(jw) =b1Vi(jw),

L(jw) =b1V2(jw) + %szl (Jw) x Vi(jw),
L(jw) =biV3(jw) + %szl(jw) * Va(jw)
b ViGu) x Vi) x Vi),
Li(jw) =b1Va(jw) + %szl(jw) * V3(jw) + %szz(jw) * Va(jw)

3
+ mb3V1 Gw) * Vi(jw) * V2(jw). (28)

The last item I4(jw) will be appended to the final solution for higher accuracy,
which means the higher-order Volterra circuits will produce more accurate results.
But for a mildly nonlinear circuit it can be characterized by low-order Volterra
series expansions, usually up to the fifth-order [13].

5.1.3. Harmonic order for convolution calculation

The evaluation of the convolution at the frequency domain can be implemented as
the shifting product of two signals at all corresponding discrete frequency points,
m=N
Vikwo) = Vix Vo= ) Vi(mwo)Va(kwo — mwy), (29)
m=—N
where N is the number of harmonics we want to consider. This is reasonable as
the higher harmonic component can be ignored in most cases [9].

Based on the above discussion, we see that all the possible errors can be
controllable and negligible in the frequency domain based on the properties of
a mildly nonlinear circuit. Compared with the time domain calcaulation, this
method avoids the calcaulation of the inverse fast Fourier transform (IFFT) in
which process the interpolation error will dominate [13]. From this aspect, we see
that this method is more straightforward and that the errors are more controllable
than in time domain methods for the evaluation of frequency domain properties
of mildly nonlinear circuits, such as distortion and intermodulation.

Author:
means
fast
transform

IFFT
inverse
Fourier
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5.2. Efficiency

In the analysis flow of the nonlinear circuit, we have stated that the circuit can be
approximated as a series of linear Volterra circuits and that second- and higher-
order circuits can be taken as the same circuit because they are only different in
the current sources. That means we only need to deal with two linear circuits no
matter what order Volterra circuits are used for the approximation. The power of
the DDD is exploited to expediate this process.

Unlike the exponential growth of product of most symbolic analysis methods,
DDD construction takes time almost linear in the number of DDD vertices. For
practical analog circuits, the number of DDD vertices is several orders of mag-
nitude less than the number of product terms. It is based on two observations
concerning symbolic analysis of large analog circuits: (1) the circuit matrix is
sparse and (2) a symbolic expression often shares many subexpressions. Also, the
derivation, manipulation, and evaluation of the DDD representations of symbolic
determinants have a time complexity proportional to the DDD sizes [5].

Furthermore, compared with the time domain method, the IFFT is avoided,
which is usually time consuming and error prone. Also, our method is independent
of time intervals and time steps, and no convergence issues of nonlinear iterations
(like Newton-Raphson) are involved.

6. Experimental results

We simulate a number of nonlinear analog circuits using the new algorithm. The
experimental results are obtained using a PC with 2.4 GHz P-4 CPU and 484 MB
memory. Here we report the detailed simulation results for one bipolar low-noise
amplifier (LNA) and one switching mixer.

The LNA circuit is shown in Figure 7. First, we obtain the dc conditions with
SPICE3 and we get Vp = V(3) =0.73V, Vc = V(6) = 4.8V, Ic1 = 0.19 mA,
and then the ac parameters are computed as follows: r, = 1.0, r; = 13.16 k<2,
C, = 1338 fF, C; = 20.66 {F, g, = % = 0.0076 A/V, r, = 510 k2. The ac
equivalent circuit is shown in Figure 8 along with the second- and higher-order
Volterra circuits.

By using the DDD-based method, we obtain all the required transfer functions,

Hia(s) Va(s) 0.0015 — 4.16 x 10715
S) = = ,
4 Vi(s) _ 0.0002 + 4.60 x 10-155 + 4.58 x 10—2752
Vi (s) 0.0002 +4.16 x 107125
Hyz(s) = =

Vi(s)  0.0002 4+ 4.60 x 10-15s +4.58 x 102752’

where Hy4(s) and Hj3(s) are the transfer functions from input node 1 to output
node 4 and node 3, respectively. For the second- and higher-order Volterra circuits,
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Figure 8. The Volterra circuits for the LNA circuit.

we have

Hyy(s) =

Hy3(s) =

Va(s)

0.20 + 2.45 x 10~ 35

second and higher-order volterra circuits

Loi(s)  0.0002 +4.60 x 10~ 155 4 4.58 x 10~2752°
—2.496e — 14s

Vi(s)

Loi(s) — 0.0002 +4.60 x 10~155 +4.58 x 10-2752’

where Hyq(s) and Hyz(s) are the transfer functions from the Volterra current
source of different orders to output node 4 and node 3, respectively, and I, is the
current source for different-order Volterra circuits.

Following the analysis procedure in Section 4, we obtain the transient response
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Steady-state response for the LNA circuit
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Figure 9. Transient response for the LNA circuit.

shown in Figure 9. The SPICE3 simulated results are also shown and compared
with our results. It is clearly seen that the results are in good agreement with each
other when the second- and third-order Volterra circuits are considered. HD2 and
HD3 are also calculated and are shown in Figure 10. We see that they also coincide
with the SPICES3 results. The HD2 and HD3 in SPICE3 are derived from the FFT
of a long period of transient simulation for different input signals, which is very
time consuming.

The entire computation for driving a 30-ns transient response takes 86 seconds
for the new algorithm, while SPICE3 takes 471 seconds to finish the same task.
We note that if we increase the time interval and number of time steps, the SPICE3
simulation time will go up accordingly, but our new method will still take the
same time, as our approach computes responses in the frequency domain and is
independent of time steps and time intervals. Note that if truncation is carried out
for very high-order transfer functions, the Hurwitz polynomial [8] can be applied
to enforce the stability of the transfer functions if required.

Another example is a switching mixer, as shown in Figure 11. It is composed
of a square-wave controlled switch followed by a common-source amplifier. The
input V, s is a small signal, and the controlling signal V. is at 20 MHz. The metal
oxide semiconductor (MOS) transistor M1 is simulated as a resistor with an on-
resistance of 1 €2 and an off-resistance of 100 MS2. The dc bias condition for the
MOS transistor M2 is: V(3) =0, V(5) = —1.559V, Vss = =3V, Vdd =3V,
Id = 3.256 mA. According to the dc analysis, the relationship between the drain
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Harmonic Distortion Analysis
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Figure 10. Second and third harmonic distortions (HD2, HD3) for the LNA circuit.
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Figure 11. The switching mixer circuit.

current iy and gate voltage v, can be represented as

ia = avg + azv; + asv;, 30)
where a; = 0.00084542,a; = —0.0016371, and a3z = 0.0043071. Also
the corresponding ac parameters are calculated as: g, = 0.1253 A/V,

ro = 1.8 MQ, Coq = 12.1 fF, Cgy = 328.26 fF. With our method the
simulated transient response is shown in Figure 12, where a sinusoidal signal
Vi = 0.05sin(2rft), f = 2 MHz is applied at the RF input port. The
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Steady-state response for the switching mixer circuit
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Figure 12. Transient response for the switching mixer circuit.
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Figure 13. Harmonic distortions (HD2 and HD3) for the switching mixer circuit.

highest harmonic considered is 10th harmonic in this case. The harmonic and
intermodulation distortions are shown in Figure 13 and Figure 14, respectively.
Both of them are very close to the results calculated from SPICE3.
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Intermodulation distortion analysis of switching mixer circuit
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Figure 14. Intermodulation distortion for the switching mixer circuit.

7. Conclusion

In this paper, we have proposed a novel approach for transient and distortion
analyses of time-invariance and periodic time-varying mildly nonlinear analog
circuits. The new method is based on Volterra functional series. Instead of solving
the Volterra circuits numerically in the time domain as traditional methods do, we
use a graph-based method to obtain the frequency responses of Volterra circuits of
various orders and the tone-tracking method to obtain harmonics and intermod-
ulation distortions in the frequency domain directly. The new method exploits
identical Volterra circuit structures for higher-order nonlinear responses and the
efficiency of a DDD-based method for deriving transfer functions. Our frequency
domain analysis provides many advantages over traditional time domain-based
methods in terms of efficiency and easy computation of many frequency domain
characteristics. A number of nonlinear analog circuits are simulated using the
new method, and the results are compared with that of SPICE3 to demonstrate
the effectiveness of the proposed method.
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