EE120A Logic Design Laboratory #6
Department of Electrical Engineering EE/CS120 A
University of California — Riverside

LABORATORY # 6
LAB MANUAL

Timer Design - Laser Surgery System

Objectives

1. Design of counters, synthesis and implementation;
2, Usage of internal “clock” signal to drive CLK inputs of flip-flops;

3. Design of special purpose timers

Equipment

° PC or compatible
° Digilent’s Basys Spartan-3E FPGA Evaluation Board

Software

° Xilinx ISE Design Software Suite
° ModelSim XE IIT modeling software
° Digilent’s Adept ExPort Software

Parts
° N/A

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

Timer Design - Laser Surgery System

Part A: In this development, we will implement the schematics for a special
purpose 1 second timer.

Specification

8
——F—{ | CNT_INI
8
—F— | CNT_RST
RESET
> CLK TIMER

10000000 CNT_INI (initial byte)
10000001
10000010

Rising Edge (tick) (0 -> 1) 00 CNT_RST (restart byte)
00

Figure 1. Timer Structure and Function

The action of timers is based on system clock’s time division. It is built as a
counter whose MSB controls the output (a tick), for example. An 8-bit counter
will switch its MSB from O to 1 only once per 256 internal clock counts (from 0 to
255). But what if we need a timer that creates a tick every 250 counts (from 0 to
249) starting from MSB=1 ? From this description we can infer the required
timer block diagram as shown in Figure 1. In figure 1 notice that the number of
signals in the ports cnt_ini and cnt_rst has to be modified: the higher the
frequency of the clock in the board, the more signals in these ports.

The task is to create and implement a timer which uses 50 MHz internal clock
(CLK) and output a timer tick every second.

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

Part B: Now, we are going to use the timer developed in part A for the purpose of
implementing the schematics of a laser surgery system (as described in the text
book). In order to make the system easy to test, first, we have to change the timer
so as to make it to tick every 10 seconds. Figure 2 shows the controller (FSM) of
the proposed system.

reset = 1
1
light =0 4 | button

4mer

reset =0 reset =0
light =0 light =1

Figure 2. Timer - Laser Surgery System FSM

As shown in figure 2, the laser surgery system starts in the state OFF. In this
state, the laser light is low and the reset signal is high. When the user presses the
start button, the system advances to the state START. In this state the laser light
continues to be low and resets is set to low as well. Notice that by setting the
reset signal to low the timer is started. In the next clock cycle, the system
advances to the state ON. In this state, the laser light is high while the reset
signal is low. Moreover, the laser surgery system continues in this state until the
timer goes high.

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

cnt ini
7
button vl ont rst_ 5 32-pit 10 sec
reset LTt
A |
timer

Figure 3. Timer - Laser Surgery System - Controller and Timer
Figure 3 shows the diagram of the controller along with the timer. The controller
is the FSM shown in figure 2. The timer is the system developed in part A.

Part C: In this part of the lab, your task is to develop a structural verilog
implementation of the systems described in part A and B. The main module of
your solution should have the following parameters and ports.

“timescale 1ns / 1ps

Y i,

/111111

Y i,

/111111

module laser_surgery_sys #(

parameter NBITS = 32

)

(
input wire b,
input wire clk ,
output reg light

);

reg reset;
wire timer;

reg [1:0] current_ state ;
reg [1:0] next_state ;

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

wire [NBITS-1:0] cnt_ini ;
wire [NBITS-1:0] cnt_rst ;

/]
// Sequential logic

/1

always @(posedge clk) begin
current_ state = next_ state ;

end

/]
// Comb. Logic

/1

assign cnt_ini = 32'h0000 ;
assign cnt_rst = YOUR VALUE,; // 10 secs (25 MHZ internal clock)

/]
// Comb. Logic - FSM

/1

localparam OFF = 2'boo ;
localparam START = 2'bo1 ;
localparam ON = 2'b10;

always @(current_state) begin
case (current_state)

OFF : begin
// your code for state transition
end

START : begin
// your code for state transition
end

ON: begin
// your code for state transition
end

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

default: begin
light = 1'bo ;
reset = 1'bo ;
next_state = OFF ;

end

endcase

end

//

// Timer instantiation

//

timer_ st #(.NBITS(NBITS)) timerst (
timer(timer),
.clk(clk),
.reset(reset) ,
.cnt_ini(cnt_ini),
.cnt_rst(ent_rst)

);
endmodule

In addition, the following set of modules are given.

module flopr #(parameter NBITS = 16)(
input clk,
input reset,
input [NBITS-1:0] cnt_ini,
input [NBITS-1:0] nextq,
output[NBITS-1:0] q
);

reg [NBITS-1:0] iq ;

always @(posedge clk) begin

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

if (reset) begin
iq <=cnt_ini;
end
else begin
iq <= nextq;
end
end

assign q =iq ;

endmodule

module comparatorgen_ st #(parameter NBITS = 16)(
output wirer ,

input wire[NBITS-1:0] a,

input wire[NBITS-1:0] b);

wire [NBITS-1:0] iresult ;

genvar k ;
generate
for (k=0; k < NBITS; k = k+1)
begin : blk

xor c1 (iresult[k], a[k], b[k]) ;
end
endgenerate

// Reduction plus negation
assign r = ~(|iresult);

endmodule

module fulladder_ st(
output wirer,

output wire cout,
input wire a,

input wire b,

input wire cin

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

);

assignr = (a”* b) * (cin) ;

assign cout=(a&b) | (a&cin) | (b&cin);

endmodule

module addergen_ st #(parameter NBITS = 16)(

output wire[NBITS-1:0] r,
output wire cout ,

input wire[NBITS-1:0] a,
input wire[NBITS-1:0] b,
input wire cin) ;

wire [NBITS:0] carry;
assign carry[0]= cin ;

genvar k ;

generate

for (k=0; k < NBITS; k = k+1)

begin : blk

fulladder_st FA (

x(r[k]),
.cout(carry[k+1]),
.a(a[k]),
.b(b[k]),
.cin(carry[k])) ;

end

endgenerate

assign cout = carry[NBITS] ;
endmodule

module adder #(parameter NBITS = 16)(

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

10

input [NBITS-1:0] q,
input [NBITS-1:0] cnt_ini,
input [NBITS-1:0] cnt_rst,
output[NBITS-1:0] nextq,

output tick

);

wire same ;

wire[NBITS-1:0] inextq;

//

//inextq=q+1;

//

addergen_st #(.NBITS(NBITS))

nextval (.r(inextq), // Next value
.cout(), // Carry out - Don't use
.a(qg), // Current value
.b(16'boooo_o0001), // Plus One
.cin(16'bo000_0000)) ; // No carry in

//

// Are inextq and cnt_rst equal ?

//

comparatorgen_st #(.NBITS(NBITS))
comparator (

.r(same) ,

.a(inextq),

.b(ent_rst));

/1

// If they are the same produce a tick and set the value for nextq

/1

assign tick = (same) ? 'd1: 'do ;
assign nextq = (same) ? cnt_ini : inextq ;

endmodule

Lab 6 “Timer Design”

EE/CS 120A Logic Design
University of California - Riverside

11

module timer_ st #(
parameter NBITS = 32
)

(
output wire timer ,
input wire clk,
input wire reset,
input [NBITS-1:0] cnt_ini ,
input [NBITS-1:0] cnt_rst

);

wire [NBITS-1:0] q ;
wire [NBITS-1:0] qnext ;

// Compute the next value

adder #(.NBITS(NBITS))
c1 (.q(q),
.cnt_ini(cnt_ini),
.cnt_rst(cnt_rst),
.nextq(qnext),
tick(timer));

// Save the next state
flopr #(.NBITS(NBITS))
c2 (.clk(clk),
.reset(reset),
.cnt_ini(cnt_ini),
.nextq(qnext),
q(Q));

endmodule

Implementation Utilities and Hints

1. Make sure that the jumper is set to 25 MHz clock on the Basys Board (default
is 50 MHz).

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

12

2, The following CLK configuration must be used in the constraints file:

clock pin for Basys Board
// Inputs
NET "clk" LOC = "P54" ;
NET "b" LOC ="P69" ;

// Outputs
NET "light" LOC = "P15" ;

3. Recall the method for creating a schematic symbol from a schematic:

expand “Design Utilities”

open

Choose “Create Schematic Symbol”
The object will now be available in the “Symbols” tab while a schematic is

When the schematic file is selected in Sources, go to the Processes tab and

4. Make use of the “Add Bus Tap” feature in Xilinx. Brief tutorial:

!_Y—\

S

W)

-

........

7

J

eight_out(0)

7

~

single_in >

BUF

eight_out(1) |

BUF

eight_out(2)]

BUF

[eight_out(3) |

BUF

BUF

eight_out(4)

[eight_outs) |

(A R

BUF

eight_out(6) |
P ——

BUF

(A

P J VNN J Nmm—" L S

J%

[eight_out(7) |
e ——

BUF

\.

.I eight out(7:0) »

Step #1

Step #2

Step #3

Figure L5-2. Add Bus Tap One-to-Eight Wire Split Tutorial

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

13

e Step #1. Create a wire that splits 8-ways and attach an input buffer to the
end of each split wire. Create another, disconnected wire and give this a
bit-width of eight by renaming from “Name” to “Name(7:0)”.

e Step #2. Add a bus tap to each part along the 8-bit wire where there will
be a corresponding input from an input buffer.

e Step #3. Connect the bus tap to the BUF output. Rename the wire
between every BUF and bus tap to be an appropriate and unique value
from least significant bit (0) to most significant bit (7), (e.g. “Name(0)”).

5. Consider creating/using the following circuit elements: comparator, N-bit
adder, full adder, register.

Demonstration

Demonstrate that the application performs according to specs: both simulation
and synthesis.

Procedures

1. Xilinx ISE Design and Synthesis environment;
2. Creation of Configuration files;

3. Usage of Adept ExPort download software;

Presentation and Report

Must be presented according to the general EE/CS 120A lab guidelines posted in
iLearn.

Prelab

1. Review the Chapter 3 Lecture

2. Try to answer all the questions, prepare logic truth tables, do all necessary
computations

Lab 6 “Timer Design”
EE/CS 120A Logic Design
University of California - Riverside

