

EE120A Logic Design
Department of Electrical Engineering
University of California – Riverside

Laboratory #4
EE 120 A

LABORATORY # 4
L A B M A N U A L

Sequential Logic Design

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

 Objectives

Lab 4 contains 3 parts: Part 1 – implementation of a sequential circuit discussed
in class; Part 2 – design and implementation of a state machine; Part 3 –
design of time multiplexing circuits for four-LED display. Its purposes are to get
familiar with:

1. Clock synchronous state machine design, synthesis and implementation.
2. Usage of function generator for external “clock” input for Basys FPGA

boards via PMOD input/output connectors.
3. Creating and using symbol libraries within Xilinx ISE.
4. Using buses in schematic capture.
5. Vector entries in configuration files, control of external clocks.

Equipment

● PC or compatible
● Function Generator (Agilent 33120A)
● Digilent’s Basys Spartan-3E FPGA Evaluation Board

Software

● Xilinx ISE Design Software Suite
● ModelSim XE III modeling software
● Digilent’s Adept ExPort Software

Parts

● Connecting wires

PART 1. Flight Attendant Call System

Part A: In this FPGA application development experiment, we will implement
and test the “flight attendant call system” discussed in class. Since in this lab we
have to implement registers we need a clock source. The board allows the
specification of both internal and external clock sources. In this lab, we use the
internal clock source. Here, the first step is to configure the board such that the
internal clock runs at 25 Mhz (JP 4 has to be close in the 25 Mhz position).

Specification

The Flight Attendant System functions according to the following rules:

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

Flight attendant call button

Press CALL: light turns on

● Stays on after button released

Press CANCEL: light turns off

And is shown diagrammatically in Figure 1.

Figure 1. Flight Attendant System State Machine Description

System Analysis and Implementation

As discussed in class from the problem description we can obtain the following
state output/transition table.

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

Table 1. Finite State Machine

Derive excitation equation which leads to the following implementation
schematic

Figure 2. Flight Attendant System Schematic

Conduct the Behavioral Simulation

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

Digilent Basys Board Implementation Prototype

Figure 3. Flight Attendant Basys Board Set-up

Synthesis, Mapping and Routing Procedure

Configure the Xilinx ISE project for XC3S100E-CP132 FPGA on the Digilent’s
Basys board.

Since we are using the internal board clock, the clock source has to be specified in
the project implementation constrain file. The following is a template that
describes the mapping of the main module signals to the board I/O ports.

// Inputs

NET "clk" LOC = "P54";

NET "call_button" LOC = "P69";

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

NET "cancel_button" LOC = "P48";

// Outputs
NET "light_state" LOC = "P15";

Once the schematics and the constrain file are ready, generate the programing
file (project_name*.bit) . Next, load the programing file to the board and make
sure the implementation works are required.

Part B: In this part of the lab your job is to implement the flight attendant call
system using Verilog. Although this system can be implemented using both
structural or behavioral modeling, in this lab our aim is to practice behavioral
modeling. The following is the module interface of the required system.

module fasystem_bh(
input wire clk,
input wire call_button ,
input wire cancel_button ,
output reg light_state);

reg c_state ;

// Combinatorial block
always @(*) begin

 case ({call_button,cancel_button})

 2'b00: Your code ;
 2'b01: Your code ;
 2'b10: Your code ;
 2'b11: Your code ;

 default : c_state = 'd0 ;

 endcase
end

// Sequential block
always @(posedge clk) begin
 light_state <= c_state ;

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

end

endmodule

According to this specification, the Verilog flight attendant systems has three
inputs signals (clock, call button and cancel button) as well as one output signal
(the light state signal). Notice that this system requires memory. This is,
somewhere in the module the proposed circuit has to have the capability of
storing the current state of the system. In addition, the new state of the system
can be implemented in a combinatorial block. Once the Verilog module has been
implemented, your can use the test bench form part A in the task of validating
your code. In order to synthesize your Verilog code your will require to map the
call and cancel button to the buttons in the board as described in part A.

Demonstration

Demonstrate that the application performs according to specs, both the
schematics and the verilog code.

Questions

1. What will happen if the “clock” signal is of very low frequency (1 Hz)?

2. Design a test bench and verify the logic performance.

PART 2. Rising-edge Detector

Objective

In this assignment, it is required to construct a Finite State Machine (FSM)
state/output diagram, derive excitation equations and implement it on the Basys
Board.

Specification

Part A: The rising edge detector is a circuit that generates a short, one-clock-
cycle pulse (called a tick) when the input signal changes from ‘0’ to ‘1’. It is
usually used to indicate the onset of a slow time-varying input signal.

NOTE:

1. Use the signal generator’s SYNC output for external clocking.

2. Use one of the switches to emulate the input signal.

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

3. Set clock signal to a sufficiently low frequency to clearly see the LED one-

clock-cycle flash.

Part B: In this part your job is to implement the proposed FSM developed in
part A in verilog. To facilitate the process of testing the code, your FSM module
should have the following ports.

module edgedetector_bh(
 input wire clk,
 input wire signal,
 output reg outedge);

wire slow_clk ;

reg [1:0] c_state ;
reg [1:0] r_state ;

localparam ZERO = 'd0;
localparam CHANGE = 'd1;
localparam ONE = 'd2;

// http://www-inst.eecs.berkeley.edu/~cs150/sp12/agenda/lec/lec17-FSM.pdf

clkdiv c1(clk, slow_clk);

// Comb. logic.

always @(*) begin

 case (r_state)

 ZERO : Your code ;
 CHANGE : Your code ;
 ONE : Your code ;

 default : begin
 c_state = ZERO ;
 outedge = 'd0 ;
 end

 endcase

end

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

// ---------------------------------
// Seq. logic
// ---------------------------------
always @(posedge slow_clk) begin
 r_state <= c_state ;
end

endmodule

The edge detector module can be implemented using two blocks. One
combinatorial block to compute the FSM next state and another sequential block
to store the FSM state. In addition, if we use the clocks in the board, we will not
be able to see the rise edge event in the LEDs as the clocks in the board run at a
high frequency. To produce a clock that goes slower, the following code is
provided.

module clkdiv(clk,clk_out);

 input clk;
 output clk_out;

 reg [15:0] COUNT;

 assign clk_out=COUNT[15];

 always @(posedge clk)
 begin
 COUNT = COUNT + 1;
 end

endmodule

In this code, the signal clk is coming from the board while the signal clk_out is
the one that drives the implemented FSM. In addition, the following constrains
are given as well.

// Inputs
NET "clk" LOC = "P54";

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

NET "signal" LOC = "P38";
// Outputs
NET "outedge" LOC = "P15";

Demonstration

1. Derive a state diagram from the spec’s description.

2. Show the output/transition table.

3. Derive the excitation equations.

4. Design a sequential logic circuit that implements the excitation equation.

5. Verify the circuit performance by testbench simulation.

6. Implement the application using on-board component of your choice. For

clocking procedure use information from PART 1 of the lab above

PART 3 : LED Display Time Multiplexing Circuit

Part A: The Digilent Basys Board contains four seven segment LED displays with
decimal points. To reduce the number of used of FPGA’s I/O pins it is required to
use a time-multiplexing sharing scheme. That is, the four displays have their
enable signals but share eight common signals to light the segments. All signals
are active-low (i.e., enabled when a signal is ‘0’). The schematic of displaying ‘3’
on the right-most LED is shown in Figure 7.

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

Figure 7. Display ‘3’ on the LED display

Note that the enable signal (i.e., an) is ‘1110’. This configuration clearly can
enable only one display at a time. We can time-multiplex the four LED patterns
by enabling the four displays in turn, as shown in the simplified timing digram in
Figure 8 . If the refreshing rate of the enable signal is fast enough, the human eye
cannot distinguish the on and off intervals of the LEDs and perceives that all four
displays are lit simultaneously. This scheme reduces the number of I/O pins from
32 to 12 (i.e., eight LED segments plus four enable signals) but requires a time
multiplexing circuit.

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

Figure 8. Display ‘3’ on the LED display

One of possible realizations is shown in the block diagram of Figure 9 . Use it as a
guide to implement the circuit and verify (simulate ONLY) its performance

Figure 8. Symbol and Block diagram of the time-multiplexing circuit.

Schematic Utility

To expedite correct schematic capture ** copy-paste the following verilog code
into a ‘New Verilog Source Code’ and create a schematic symbol for it which can
be used to further manipulate the circuit logic.

// Source : www.referencedesigner.co
module hexto7segment(
 input [3:0] x, output wire [6:0] r);
wire [6:0] z ;
always @*
case (x)
4'b0000 : z = 7'b1111110;
4'b0001 : z = 7'b0110000 ;

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

4'b0010 : z = 7'b1101101 ;
4'b0011 : z = 7'b1111001 ;
4'b0100 : z = 7'b0110011 ;
4'b0101 : z = 7'b1011011 ;
4'b0110 : z = 7'b1011111 ;
4'b0111 : z = 7'b1110000;
4'b1000 : z = 7'b1111111;
4'b1001 : z = 7'b1111011 ;
4'b1010 : z = 7'b1110111 ;
4'b1011 : z = 7'b0011111;
4'b1100 : z = 7'b1001110 ;
4'b1101 : z = 7'b0111101 ;
4'b1110 : z = 7'b1001111 ;
4'b1111 : z = 7'b1000111 ;
endcase
 assign r = ~ z ;
endmodule

Figure 9. HEX-TO-LEDSEG VHDL Code that can also encode DP and Hex Symbols

Part B: In this part your goal is to implement in verilog the circuit described in
figure 8. The input and output signals of the main module in your behavioral
implementation should be as follows:

module dispmux_main_bh(
 input clk , // Clock signal
 input sw0, // Switch input
 input sw1, // Switch input
 input sw2, // Switch input
 input sw3, // Switch input
 output [3:0] an , // LED selector
 output [7:0] sseg // Segment signals
);

wire [7:0] in0; wire [7:0] in1; wire [7:0] in2; wire [7:0] in3;

// ---------------------------------
// Module instantiation bcdto7led
// ---------------------------------

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

bcdto7led_bh c1(sw0, sw1, sw2, sw3,
 in0[0],in0[1],in0[2],in0[3], in0[4],in0[5],in0[6],in0[7]);
// Your code

// ---------------------------------
// Module instantiation Mux
// ---------------------------------

disp_mux_bh c5(
 .clk (clk) ,
 .in0 (in0) ,
 .in1 (in1) ,
 .in2 (in2) ,
 .in3 (in3) ,
 .an (an) ,
 .sseg (sseg)) ;

endmodule

In addition, you should use the verilog code in figure 9. Notice that the decoder
and the multiplexor shown in figure 8 can be implemented using case statements.
Moreover, the counter can be implemented using a sequential block. Finally, to
synthetize your code in the given board, you can use the following source files.

module disp_mux_bh(
 input clk ,
 input wire [7:0] in0 ,
 input wire [7:0] in1 ,
 input wire [7:0] in2 ,
 input wire [7:0] in3 ,

 output reg [3:0] an ,
 output reg [7:0] sseg

);

reg [16:0] r_qreg ;
reg [16:0] c_next ;

// Mux **************************************

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

always @(*) begin

 case (r_qreg[1:0])
 2'b00 : sseg = in0 ;
 2'b01 : sseg = in1 ;
 2'b10 : sseg = in2 ;
 2'b11 : sseg = in3 ;
endcase

end

// Decoder ***********************************

always @(*) begin

 case (r_qreg[1:0])
 2'b00 : an = ~(4'b0001) ;
 2'b01 : an = ~(4'b0010) ;
 2'b10 : an = ~(4'b0100) ;
 2'b11 : an = ~(4'b1000) ;
 endcase

end

// Counter ***********************************
always @(*) begin
 c_next = r_qreg + 'd1;
end

// Register
always @(posedge clk) begin
 r_qreg <= c_next ;
end

endmodule

// Inputs

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

NET "clk" LOC = "P54";
NET "sw0" LOC = "P38";
NET "sw1" LOC = "P36";
NET "sw2" LOC = "P29";
NET "sw3" LOC = "P24";

// Outputs

NET "an[0]" LOC = "P34";
NET "an[1]" LOC = "P33";
NET "an[2]" LOC = "P32";
NET "an[3]" LOC = "P26";

NET "sseg[0]" LOC = "P25";
NET "sseg[1]" LOC = "P16";
NET "sseg[2]" LOC = "P23";
NET "sseg[3]" LOC = "P21";
NET "sseg[4]" LOC = "P20";
NET "sseg[5]" LOC = "P17";
NET "sseg[6]" LOC = "P83";

Demonstration

Demonstrate testbench simulation results, for the schematics and the verilog
implementation, and all the supporting material used in designing the system.

Procedures

1. Xilinx ISE Design and Synthesis environment;
2. Creation of Configuration files;

3. Usage of Adept ExPort download software;

Presentation and Report

Must be presented according to the general EE120A lab guidelines posted in
iLearn.

Prelab

1. Familiarize yourself with ISE and ModelSim tutorials posted in iLearn.

P
A
G
E

6

Lab4 “Squential Logic ”
EE120A Logic Design

University of California - Riverside

2. Review Lectures 7-10.
3. Try to answer all the questions, prepare logic truth tables, do all necessary

computations.

