

EE120A Logic Design
Department of Electrical Engineering
University of California – Riverside

Laboratory #3
EE 120 A

LABORATORY # 3
L A B M A N U A L

Programming Combinatorial Logic on the
Basys FPGA Board

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Objectives

Lab 3 contains 3 parts: Part 1 – guided design and Parts 2, 3 –in group design.
Its purposes are to get familiar with:

1. Xilinx ISE Design, Synthesis and Basys Board FPGA Programming.

2. Learning Basys Board components and FPGA pin routing.

3. Understanding of Configuration files.

4. Synthesis and Implementation of combinational logic applications on
FPGA.

5. Basys Board Programming

Equipment

● PC or compatible
● Digilent’s Basys Spartan-3E FPGA Evaluation Board

Software

● Xilinx ISE Design Software Suite 10.1
● ModelSim XE III modeling software
● Digilent’s Adept ExPort Software

Parts

 N/A

Introduction

In all the labs we will adhere to the following industry standard design flow in
applications development which utilizes FPGA devices.

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Figure 1. Design Flow in FPGA based applications

PART 1. Design, FPGA Synthesis and Testing of an AND
Gate

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

In this guided FPGA application development experiment, we will design and test
combinational AND gate and test it on the Digilent’s Basys Board:

Specification

 Figure 2. AND gate

 Figure 3. Digilent Basys AND Gate Application

AND gate and its associated truth table are shown in Figure 2. It is required to
realize this gate on the Digilent Basys board so that the action of switches SW0

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

and SW1 (ON/OFF) correspond to X, Y inputs in the truth table and Z output
corresponds to the LED0 (lit UP/turned OFF).

Procedure

Proceed with ISE as you would for a software behavioral simulation project
except that now you have to configure the project for a specific FPGA which is
XC3S100E-CP132 on the Digilent’s Basys board.

Figure 4. Device Properties Configuration

Add a new source file as shown:

Add to Project: Yes
Source Directory: C:\...\Laboratory\Lab_3\Part_1\ISE\ee120a_L3P1_basys_AND_gate
Source Type: Schematic
Source Name: and_gate.sch

 Table 1. and_gate top level source (code) schematic

CP132

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Figure 5. AND gate schematic entry

We need to verify our “design” by creating a testbench file and_gate_tb (click
New Source in the Processes panel) and using for example the following info:

Add to Project: Yes
Source Directory: C:\…\Laboratory\Lab_3\Part_1\ISE\ee120a_L3P1_basys_AND_gate
Source Type: Test Bench Waveform
Source Name: and_gate_tb.tb
Association: and_gate
 Table 2. Testbench entry

 Figure 6. Testbench example timings

Select the testbench and_gate_tb in the Sources for Behavioral Simulation then
go to Processes panel and click “ModelSim Simulator -> Simulate Behavioral
Model” to perform the software simulation/verification of the logic design:

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Figure 7. ModelSim Logic Verification of and_gate Performance

Observe, only when i1,i2 = 1,1 then d=1, otherwise d=0 as needed.

NOTE in passing, internally ISE creates a HDL source code for the schematic
entered graphically (and_gate.vf) which should not be modified. It is the code
(or a set of codes) that is submitted to ModelSim (or itself if so chosen) to
perform the behavioral simulation. To view it, select and_gate in sources panel,
go to the processes panel window “Design Utilities -> View HDL Functional
Model”:

// This verilog netlist is translated from an ECS schematic.It can be
// synthesized and simulated, but it should not be modified.

`timescale 1ns / 1ps
module and_gate(i1, i2, d);

 input i1;
 input i2;
 output d;

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 AND2 gate_and (.I0(i2),
 .I1(i1),
 .O(d));
endmodule

 Listing 1. Xilinx ISE Internal VHDL code for and_gate.sch

Synthesis and Routing

Right-click on and_gate in the Sources panel “New Source -> Implementation Constraints
-> and_gate”. This creates a constraint file add_gate.ucf. Select it and go to the
Processes panel than “User Constraints -> Edit Constraints” and enter information as
shown in Listing 2. We need to assign Spartan-3E FPGA pins to the
corresponding components on the Basys board.

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Figure 8. Digilent Basys Board Schematic related to FPGA signal routing

Pin assignment for LEDs
NET "d" LOC = "p15" ; # Bank = 3, Signal name = LD0

Pin assignment for SWs
NET "i1" LOC = "p36"; # Bank = 3, Signal name = SW1
NET "i2" LOC = "p38"; # Bank = 2, Signal name = SW0

 Listing 2. Configuration file and_gate.ucf

 We need to do it since ISE while synthesizing internal configuration doesn’t know which of its pins to route the inputs and outputs of the design to. Of course, we want to direct ISE to use FPGA pins that are
connected directly to components provided by the Basys board as shown in
Figure 8.

Save the constraint file. Go to Sources panel, select and_gate and in the Processes
panel click “Synthesize - XST”. At this point ISE synthesized its internal code with
its own internal logic that MAY BE DIFFERENT from what you think it is. This
depends very much on the FPGA architecture and how it creates its logic
functions.

Go to Sources panel, select and_gate and in the Processes panel click “Implement
Desig”. Now ISE did all the mapping and routing to FPGA pins

Generating FPGA Programming File

CRITICAL!!! In the Processes panel right-click on “Generate Programming
File”, choose Properties and in the pop-up window select “Startup Options”.
Make sure that FPGA startup clock is JTAG Clock (not the default CCLK).

Now, by clicking “Generate Programming File” in the Processes panel we create a
file and_gate.bit which we will download to the FPGA in the Digilent
Basys board.

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Table 3. Project and_gate Design Summary

If all goes well we end up with a bit file (and_gate.bit) in the project directory with
a final FPGA configuration that can be downloaded to the FPGA on the Basys
board and which hopefully does what we need it to do.

Digilent Basys Board Setup and Programming

Make sure that

1. The board is set to be powered by USB port;

2. ROM/JTAG jumper is located at JTAG

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Figure 9. Digital Basys Board set-up for programming

Start the Digilent Adept ExPort program , “Add ” the bit file and_gate.bit created
by ISE in the project’s directory and follow the procedure reproduced in the
Figure 10 below and click “ProgramChain” to do the actual download of the bit code
into FPGA.

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 Figure 10. Digital Basys Board Programming with Adept tool ExPort

At this point the on-board FPGA is programmed with the application. By playing
with switches SW0 and SW1 observe the reaction of LED0.

Demostration

 Figure 11. and_gate: SW1=1 (i1), SW0=1 (i2): LED0 is ON (d) as needed

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

Figure 12. and_gate: SW1=0 (i1), SW0=1 (i2): LED0 is OFF (d) as needed

Questions

1. Can there be a difference in logical behavior between the intended logic entered
and simulated and, the logic actually synthesized for FPGA? Why?

2. Why do we need a configuration file?

3. Is there a functional difference in circuitry between Lab 1, Part 3 and
Basys board for this particular application?

4. What must be done in order to use switches SW3 and SW7 instead of SW0
and SW1? How about using LED5 instead of LED0?

Conclusion for Part 1

We have gone through the whole cycle of system design, analysis, synthesis and
FPGA based hardware implementation of a combinational logic application.

PART 2. Implementation of Sprinkler Controller
Specification

In this assignment it is required to actually implement the Sprinkler Controller
system on Digilent’s Basys Board so that

1. Use the Specs from Lab 2 regarding the system function;
2. Assume that on-board LEDs act as sprinkler valves;
3. Control the sprinkler valves using Basys switches SW2 = A, SW1 = B, SW0 = C
and SW7 = E

Demonstration

For completeness provide in the report the logic circuits used.

PART 3. BCD to 7 Segment LED Display

Specification

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

Part A: In this this assignment it is required to implement the schematics of a
BCD-to-7seg decoder so that switches SW[3:0] control the decimal number
displayed on the rigt-most LED Diplay AN3 on the Basys Board.

Part B: In this part of the lab you are required to implement the structural (slow
to code) or behavioral (faster to code) description of the BCD-to-7seg decoder
described above. The module you are about to implement should have the set of
input and output ports given in listing 3. In here, we have provided a basic
template that can be used in the task at hand.

module bcd_to_7led_bh (
 input wire sw0 , // Switches
 input wire sw1 ,
 input wire sw2 ,
 input wire sw3 ,
 output reg a , // LED segments
 output reg b ,
 output reg c ,
 output reg d ,
 output reg e ,
 output reg f ,
 output reg g ,
 output reg an0, // LED display control
 output reg an1,
 output reg an2,
 output reg an3
);

// Internal wire
wire [3:0] bundle ;
assign bundle = {sw3,sw2,sw1,sw0 } ;

always @(*) begin

 // Setting the ANs signals
 an0 = 1'b1;
 an1 = 1'b1;
 an2 = 1'b1;
 an3 = 1'b0; // Display in the module AN3

 // Setting the segments signals
 a = 1'b1 ;
 b = 1'b1 ;

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

 c = 1'b1 ;
 d = 1'b1 ;
 e = 1'b1 ;
 f = 1'b1 ;
 g = 1'b1 ;

 case (bundle)

 4'b0000 : begin // 0
 a = 1'b0 ;
 b = 1'b0 ;
 c = 1'b0 ;
 d = 1'b0 ;
 e = 1'b0 ;
 f = 1'b0 ;
 end

// Your code goes here

 endcase
end

endmodule

Listing 3. BCD-to-7seg decoder behavioral model

Recall from previous lab notes that the AN signals are required to be low for the
7-segments units to work. In addition, to facilitate the implementation of the
BCD to 7-Seg module, the following set of constraints are given.

Inputs
NET "sw0" LOC = "p38";
NET "sw1" LOC = "p36";
NET "sw2" LOC = "p29";
NET "sw3" LOC = "p24";

Outputs
NET "a" LOC = "p25";
NET "b" LOC = "p16";
NET "c" LOC = "p23";
NET "d" LOC = "p21";
NET "e" LOC = "p20";
NET "f" LOC = "p17";
NET "g" LOC = "p83";

P
A
G
E

6

Lab3 “ Combinatorial Logic ”
EE120A Logic Design

University of California - Riverside

// ANx
NET "an0" LOC = "p26";
NET "an1" LOC = "p32";
NET "an2" LOC = "p33";
NET "an3" LOC = "p34";

Demonstration

Provide the truth tables, circuit schematic and functionality of the design.

Procedures

1. Xilinx ISE Design and Synthesis environment;
2. Creation of Configuration files;

3. Usage of Adept ExPort download software;

Presentation and Report

Must be presented according to the general EE120A lab guidelines posted in
iLearn.

Prelab

1. Familiarize yourself with ISE and ModelSim tutorials posted in iLearn.
2. Review Lectures 1-8.
3. Try to answer all the questions, prepare logic truth tables, do all necessary

computations.

