Why Some Like It Loud:

Timing Power Attacks in Multi-tenant Data Centers Using an Acoustic Side Channel

Mohammad A. Islam, Luting Yang, Kiran Ranganath, and Shaolei Ren

This talk is **NOT** about multi-tenant clouds; it's about multi-tenant data centers!

This talk is NOT about multi-tenant clouds; it's about multi-tenant data centers!

VS

Tenant = virtual machines

Tenant = physical servers

Multi-tenant data centers are everywhere...

Apple houses 25% of its servers in multi-tenant data centers...

Multi-tenant data centers are everywhere...

Apple houses 25% of its servers in multi-tenant data centers...

An overview of multi-tenant data center

Managed by operator

An overview of multi-tenant data center

An overview of multi-tenant data center

How to attack the physical infrastructure?

How to attack the physical infrastructure?

How to attack the physical infrastructure?

Power attack:

Well-timed power injection to overload the shared data center capacity, subject to all applicable usage constraints set by the operator

Frequent capacity overloads...

Cost analysis

More likely to have an outage during overloads (e.g., risk increases by ~280 times for a Tier-IV data center)

Estimated cost based on 5% overloads and a data center of 1MW-10,00sqft

Cost analysis

More likely to have an outage during overloads (e.g., risk increases by ~280 times for a Tier-IV data center)

Estimated cost based on 5% overloads and a data center of 1MW-10,00sqft

How to precisely time power attacks?

How to precisely time power attacks?

• Random attacks are unlikely to be successful, while constant full power is prohibited

How to precisely time power attacks?

- Random attacks are unlikely to be successful, while constant full power is prohibited
- Coarse timing (e.g., based on "peak" hours) is ineffective

Server power → Heat → Cold Airflow → Fan Speed → Noise

Dell PowerEdge servers

Server power → Heat → Cold Airflow → Fan Speed → Noise

Dell PowerEdge servers

Server power -> Heat -> Cold Airflow -> Fan Speed -> Noise

An acoustic side channel...

Dell PowerEdge servers

There are challenges...!

Suppressing the loud AC noise

Suppressing the loud AC noise

Solution: Blind source separation using non-negative matrix factorization (NMF)

Experimental evaluation

- Experimental settings
 - Run real workload traces in a university data center
- True positive: % of attack opportunities detected
- Precision: % of an attack being successful

Experimental evaluation

- Experimental settings
 - Run real workload traces in a university data center
- True positive: % of attack opportunities detected
- Precision: % of an attack being successful

Physical co-residence and space sharing result in physical side channels

Can be exploited to compromise data center physical security!

Thanks!