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Data centers

• Large IT companies have data centers all over the world

• Can exploit spatial diversity using Geographical Load Balancing (GLB)
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Avg. latency t’=mean(t1,t2,t3)
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Assuming data required is 

centrally managed, and  

replicated over all the sites 
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X
Centralized processing is not practical

• Tons of locally generated data
• Smart home, IoT, edge computing

• Limited BW for large data transfer

• Government restriction due to data 
sovereignty and privacy concerns



Geo-distributed processing is emerging
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Geo-distributed processing
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Geo-distributed processing
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Tail latency based SLO

• Service providers prefer tail latency (i.e., response time) based SLO 

• Two parameters
• Percentile value (e.g., 95% or p95)

• Latency threshold

• Example
• SLO of p95 and 100ms, means 95% of the response times should be less than 

100ms

• Existing research on GLB mostly focuses on average latency
• Zhenhua Liu [Sigmetrics’11], Darshan S. Palasamudram [SoCC’12], Kien Li [IGCC’10, 

SC’11], Yanwei Zhang [Middleware’11]…
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Challenges of geo-distributed processing

• How to characterize the tail latency?
• Response time depends on multiple paths for each request

• Includes large network latency

• Simple queueing models like M/M/1 for average latency cannot be used

• How to optimize load distribution among data centers?

McTail: a novel GLB algorithm with data 

driven profiling of tail latency
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Problem formulation

• General formulation with 𝑁 data centers and 𝑆 traffic sources

minimize𝑎 

𝑗=1

𝑁

𝑞𝑗 ⋅ 𝑒𝑗(𝑎𝑗)

subject to, 𝑝𝑖 Ԧ𝑎, Ԧ𝑟 ≥ 𝑃𝑖
𝑆𝐿𝑂 , ∀𝑖 = 1,2,⋯ , 𝑆

• Ԧ𝑎 = {𝑎1, 𝑎2, ⋯ 𝑎𝑁} is workload (request processed) at different data centers

• 𝑟𝑖 is the network paths from source 𝑖 to all the data centers

• 𝑝𝑖 is Pr(𝑑𝑖 ≤ 𝐷𝑖), where 𝑑𝑖 is end-to-end response time at traffic source 𝑖,
and 𝐷𝑖 is delay target (e.g., 100ms) for tail latency 

Total electricity cost

Tail latency constraint
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How to determine 𝒑𝒊(𝒂, 𝒓𝒊)?
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User
Route 𝒓𝒊,𝒋

Source 𝒊 Data Center 𝒋

𝒑𝒊,𝒋
𝒓𝒐𝒖𝒕𝒆(𝒂𝒋, 𝒓𝒊,𝒋) is the probability that response 

time of 𝒓𝒊,𝒋 is less than 𝑫𝒊

16



User
Route 𝒓𝒊,𝟐

Source 𝒊 Data Center 𝟐

Data Center 𝟏

Data Center 𝟑
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Same request is sent to all 

the data centers of a group

Because of differences in data sets, random performance interference etc., 

response time over different routes can be considered un-correlated

𝒑𝒊,𝒈
𝒈𝒓𝒐𝒖𝒑

𝒂, 𝒓 = 𝒑𝒊,𝟏
𝒓𝒐𝒖𝒕𝒆 𝒂𝟏, 𝒓𝒊,𝟏 × 𝒑𝒊,𝟐

𝒓𝒐𝒖𝒕𝒆 𝒂𝟏, 𝒓𝒊,𝟐 × 𝒑𝒊,𝟏
𝒓𝒐𝒖𝒕𝒆 𝒂𝟑, 𝒓𝒊,𝟑



User

𝒑𝒊,𝒈
𝒈𝒓𝒐𝒖𝒑

=

𝟎. 𝟗𝟗 × 𝟎. 𝟗𝟖 × 𝟎. 𝟗𝟕 ≈ 𝟎. 𝟗𝟒

Source 𝒊

Data Center 𝟐

Data Center 𝟏

Data Center 𝟑

Example

For requests sent to this group of data centers, 

94% of the response times are less than 𝑫𝒊

𝒑𝒊,𝟐
𝒓𝒐𝒖𝒕𝒆 = 𝟎. 𝟗𝟖
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Response time probability for a source

• 𝐺 = 𝑁1 × 𝑁2 ×⋯× 𝑁𝑀 possible destination groups
• Where 𝑁𝑚 is the number of data center in region 𝑚

• Response time probability at source 𝑖 is

𝑝𝑖 𝜆 = 𝑝𝑖 Ԧ𝑎, Ԧ𝑟 =
1

Λ𝑖


𝑔=1

𝐺

𝜆𝑖,𝑔 ⋅ 𝑝𝑖,𝑔
𝑔𝑟𝑜𝑢𝑝

( Ԧ𝑎, Ԧ𝑟)

• 𝜆𝑖,𝑔 is the workload sent to destination group 𝑔

• Λ𝑖 = σ𝑔=1
𝐺 𝜆𝑖,𝑔 is the total workload from source 𝑖 Weighted average over all 

the groups
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Updated problem formulation

minimize𝑎

𝑗=1

𝑁

𝑞𝑗 ⋅ 𝑒𝑗(𝑎𝑗)

subject to,
1

Λ𝑖


𝑔=1

𝐺

𝜆𝑖,𝑔 ⋅ 𝑝𝑖,𝑔
𝑔𝑟𝑜𝑢𝑝

( Ԧ𝑎, Ԧ𝑟) ≥ 𝑃𝑖
𝑆𝐿𝐴, ∀𝑖 = 1,2,⋯ , 𝑆



𝑔=1

𝐺

𝜆𝑖,𝑔 = Λ𝑖 , ∀𝑖 = 1,2,⋯ , 𝑆

Need to determine 𝒑𝒊,𝒋
𝒓𝒐𝒖𝒕𝒆(𝒂𝒋, 𝒓𝒊,𝒋) for all routes

Objective same as before,

minimizing electricity cost

Tail latency decomposed

into route-wise latencies
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Profiling response time probability of a route

• We need tail latency
• Hard to model for arbitrary workload distributions

• Data driven approach - profile the response time statistics (find the 
probability distribution) from observed data

• Example
• Response profile for 100K request

23



Challenges of data driven approach

• Response time profile of a route depends on amount of data center workload
• We set 𝑊 discrete levels of workload for each data center

• 𝑆 × 𝑁 network paths between 𝑆 sources and 𝑁 data centers

• Total 𝑺 ×𝑾×𝑵 number of profiles

• Need to update if network latency distribution, data center configuration, or 
workload composition changes

Slow and repeated profiling
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Profiling response statistics for one route

• 𝐹𝑖,𝑗
𝑁 is network latency distribution

• 𝐹𝑗
𝐷(𝑥) is data center latency distribution with load 𝑥

• End-to-end latency distribution of route 𝑟𝑖,𝑗 is

𝑭𝒊,𝒋
𝐑 = 𝑭𝒊,𝒋

𝑵 ∗ 𝑭𝒋
𝑫(𝒙)

• where " ∗ “ is the convolution operator

Key idea: profile 𝑭𝒊,𝒋
𝑵 and 𝑭𝒋

𝑫 𝒙 seperately
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Convolution

Latency of data center 𝒋 with load 𝒙

End-to-end response 

profile of a route,𝑭𝒊,𝒋
𝐑

Example
Network latency of route 𝒓𝒊,𝒋
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Profiling response time statistics in McTail

• 𝑆 × 𝑁 network routes profiles

• 𝑁 ×𝑊 data centers profiles

• Total 𝑺 +𝑾 ×𝑵 profiles versus 𝑺 ×𝑾×𝑵 profiles before

• Profiling overhead
• Only data center profiles need updating when workload composition and/or data center 

configuration is changed 
• Infrequent event

• Network latency distribution may change more frequently
• Already monitored by service providers

• Data overhead comparable to existing GLB studies
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McTail system diagram
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Evaluation
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Evaluation setup
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Evaluation setup
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3 regions, 9 data centers

5 traffic sources

Based on Google and Facebook 

data center locations



Evaluation setup

• Discrete event simulation using SimEvents from Mathworks

• Half-normal network latency distribution based on route length

• Real world traces from Google and Microsoft

• Location wise electricity prices

• SLO set to p95 response time of 1.5 seconds

• 24 hour simulation with load distribution updated every 15 minutes

• Homogenous data center setting to ease the simulation
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Cost saving

7% Cost saving using McTail
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Performance

Always ≥ 𝟎. 𝟗𝟓
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Impact of SLO change
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Saving goes up as response 

time threshold is relaxed



Impact of SLO change
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More saving when percentile 

requirement is less stringent



McTail

• A novel GLB algorithm for geo-distributed interactive services
• Data-driven approach to characterize the tail latency

• Negligible extra profiling overhead

Practical and efficient
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