Ohm’s Law in Data Centers:
A Voltage Side Channel for Timing Power Attacks

Mohammad A. Islam and Shaolei Ren
UC Riverside

Acknowledgement: This work was supported in part by the U.S. NSF under grants CNS-1551661 and ECCS-1610471.



Cloud data centers
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This talk is not about cloud data centers

User/Tenant = Virtual machines



Multi-tenant data centers (a.k.a. “colo”)
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Multi-tenant data centers (a.k.a. “colo”)
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A shared data center facility that houses multiple
tenants, each managing its own servers...




Multi-tenant data centers are everywhere...
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Apple houses 25% of its servers in multi-tenant data centers...



Multi-tenant data centers are everywhere...

Google, Amazon, MS,
Fb... :7.8%

| Multi-tenant:
37% Enterprise:

93%

Percentage of electricity usage by data center type (source: NRDC 2015)



Data center security

Mission-critical infrastructure

e
‘

Backbone of digital economy
50% growth by 2020
loT and edge computing

Securing the cyberspace is well studied
DDoS attack, network intrusion, privacy protection, etc.
[Mirkovic Sigcomm’04][Zhang CCS’12][Moon CCS’15][Dong CCS17]...



Data center security
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Are the physical infrastructures secure?



How to attack physical infrastructures?

Multimillion-dollar investment
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How to attack physical infrastructures?

Multimillion-dollar investment

Overload using
server power

Human intrusion

Hacking control systems



Threat model
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Threat model

Power attack:
Well-timed power injection to overload the shared data
center capacity, subject to all applicable constraints set
by the operator
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Threat model

Power attacks make outages more likely
(~280x more likely for a Tier-IV data center )



Cost analysis of power attacks

Estimated impact of overloads (5% of the time, size: 1MW-10,00sqft)
Million $/MW/year
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20 {56 ‘/7“ Million dollar impact!
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Increased redundancy



How to precisely time power attacks?
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« Random attacks are unlikely to be successful, while constant
full power is prohibited
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How to precisely time power attacks?
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« Random attacks are unlikely to be successful, while constant
full power is prohibited

« Coarse timing (e.g., based on “peak” hours) is ineffective

How to estimate the power load without power meters?




“Wireless” side channels

a Thermal: Higher power produces more heat
 Requires heat recirculation model
« Slow responses
 Only applicable to raised-floor designs
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“Wireless” side channels

a Thermal: Higher power produces more heat
 Requires heat recirculation model
« Slow responses
 Only applicable to raised-floor designs

Acoustic: More heat requires more cold air

* Inaccurate timing due to near-far effects
 Limited distance

 Easy to degrade by injecting additional noise

References

M. A. Islam, S. Ren, and A. Wierman, “Exploiting a Thermal Side Channel for Power Attacks in Multi-Tenant Data Centers,” ACM Conference on
Computer and Communications Security (CCS), 2017.
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A voltage side channel due to Ohm’s Law
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Ohm’s Law

I
Vi—AM—V, Y2=V;-IR
R

4 Y4
The voltage at the other end € ,___——

depends on the current



Ohm’s Law In
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Ohm’s Law in data centers

.Line resistance |

PDU

\\
!Server

—Mf»-
=

—

Attacker

13



Ohm’s Law in data centers
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Ohm’s Law in data centers
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Ohm’s Law in data centers
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A voltage side channel

Attacker’s voltage V,, = Vyps — —I,R,



A voltage side channel

AV based attack:

(v Low voltage - High current/load—> Attack opportunity?

Attacker’s voltage V,, = Vyps — —I,R,
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A voltage side channel

AV based attack:

(v Low voltage - High current/load—> Attack opportunity?
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A voltage side channel

AV based attack:

---------
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A voltage side channel

How to extract power load information from
voltage signals?




A closer look at server's power supply
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A closer look at server's power supply
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A closer look at server's power supply
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Current follows a sinewave
with high-frequency ripples




The ripples come from the PFC control
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The ripples come from the PFC control
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The ripples come from the PFC control
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The ripples come from the PFC control
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The ripples come from the PFC control
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Voltage measurement of a Dell server




Voltage measurement of a Dell server

High-freqency

ripples caused by PFC
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VoItage measurement of a DeII server
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VoItage measurement of a Dell server
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Can we estimate the power load
based on frequency spikes?



Can we estimate the power load
based on frequency spikes?

Our intuition says “yes”!
Given a higher current, the ripples need to rise up more during each cycle.



Experiment

13 Dell PowerEdge
servers

3 different server
configurations

3 different types of
power supply units

Q) Oscilloscope
@ Network Switch

® PowerEdge Servers

@ ups

(® APC PDU

® Voltage Measurement
From Power Outlet
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Power supplies

(1) 350W, PFC Switching ~63kHz
| Model: D35E-S1
ol i 4 Manufacturer: Delta Electronics Inc.

| @) 495W, PFC Switching ~66kHz
Model: F495E-S0
Manufacturer: Astec Intl. Ltd.

(3) 495W, PFC Switching ~70kHz
Model: E495E-S1
Manufacturer: Flextronics Intl. Ltd.

20



PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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PSD vs. server power
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Accuracy of the voltage side channel
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Accuracy of the voltage side channel
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Estimating power loads with a high accuracy!
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Attack only when the estimated power load
s sufficiently high



Power attack
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Power attack
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Timing accuracy
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Timing accuracy
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Timing accuracy
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Timing accuracy
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Timing accuracy
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Also works with UPS and three-phase power systems
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Physical infrastructure sharing means
everything but power security

Google, Amazon, MS,

Fb...:7.8% S -
U
Multi-tenant: .
37% Enterprise: .
53%
P
D
Percentage of electricity usage by data center type (source: NRDC 2015) U

Thanks!
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