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Water-Constrained Geographic Load Balancing
in Data Centers

Mohammad A. Islam, Shaolei Ren, Gang Quan, Muhammad Z. Shakir, Athanasios V. Vasilakos

Abstract—Spreading across many parts of the world and presently hard striking California, extended droughts could even potentially
threaten reliable electricity production and local water supplies, both of which are critical for data center operation. While numerous
efforts have been dedicated to reducing data centers’ energy consumption, the enormity of data centers’ water footprints is largely
neglected and, if still left unchecked, may handicap service availability during droughts. In this paper, we propose a water-aware
workload management algorithm, called WATCH (WATer-constrained workload sCHeduling in data centers), which caps data centers’
long-term water consumption by exploiting spatio-temporal diversities of water efficiency and dynamically dispatching workloads
among distributed data centers. We demonstrate the effectiveness of WATCH both analytically and empirically using simulations:
based on only online information, WATCH can result in a provably-low operational cost while successfully capping water consumption
under a desired level. Our results also show that WATCH can cut water consumption by 20% while only incurring a negligible cost
increase even compared to state-of-the-art cost-minimizing but water-oblivious solution. Sensitivity studies are conducted to validate
WATCH under various settings.

Index Terms—Data center, Geographical load balancing, Resource management, Sustainable IT, Water footprint.
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1 INTRODUCTION

Extended droughts are becoming a norm worldwide. For
example, California has been experiencing its fourth year of
drought in a row, mandating water restrictions throughout
the state [3]. Meanwhile, drought is emerging as a hidden
threat to many industry sectors, including data centers.

Electricity production. Data centers have a gigantic ap-
petite for electricity. Nonetheless, extended droughts and
water shortage are threatening reliable electricity produc-
tion (e.g., in Texas and California [36] which are also major
markets of data centers), because electricity production,
especially thermoelectric and nuclear power, consumes an
astonishing amount of water in the power plant through
steam condensation (i.e., water evaporates from cooling
towers into the environment) [32]. For example, the U.S.
national average water consumption reaches 1.8 liters water
per kilowatt-hour electricity (L/kWh), excluding the even
more water-consuming hydropower [45].

Cooling system. While advanced cooling systems (e.g.,
air economizer [10]) are good at water saving, most data
centers are located in places where installation of such
cooling systems is not feasible or economical. Thus, it is
common that data centers, such as AT&T and eBay [5], [7],
rely on water-intensive methods for cooling (e.g., water-side
economizer and water-cooled chillers) [46]. It was estimated
that a 15MW data center could consume 360,000 gallons of
cooling water each day [8], while another report [26] said
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that the U.S. National Security Data center in Utah would
require up to 1.7 million gallons of water for cooling each
day (enough to satiate 10,000 households’ daily needs).

Even in regions with relatively abundant water, there
are strong motivations for data centers to conserve water.
For example, reducing water by 10-25% is a prerequisite for
green certifications (e.g. LEED program [48]) which provide
tax/zoning benefits and are being actively pursued by 77%
of large data centers as shown in a recent survey [46].
Water compliance codes are tightening in many regions [3],
and the U.S. government requires all federal facilities to
reduce water usage by 2% each year through 2020 [6]. Last
but not least, forward-looking companies have been taking
active steps to conserve water for mitigating business risks,
improving public image and fulfilling social responsibility
(e.g., AT&T’s recent efforts [7]).

Limitations of the existing research. Although water
footprint is surfacing as a critical concern, it has been
rarely studied for data centers. The recent progress to-
wards energy/cost/carbon reduction [20], [27], [29], [30],
[40] turns out to be inadequate for water conservation. As
specified in Section 2, this is because data center water usage
effectiveness (i.e., water consumption per unit IT energy
[45]) changes over location and also over time in its own
way: the same amount of energy but consumed at different
times/locations may result in different water footprints.

The latest efforts to reduce water consumption in data
centers have primarily focused on facility or infrastructure
upgrades (i.e., improved “engineering”), such as using re-
cycled water or seawater instead of potable water, using
chemicals to reduce water “blown down” in cooling tow-
ers, and directly using outside cold air [7], [10], [16], [22].
These techniques, however, often require high upfront costs
and/or suitable locations/climate conditions (which may
not be satisfied by drought areas). Moreover, the offsite
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water usage at power plants, which is attributed to data
centers [20], [45], is still left unaddressed.

Proposed approach. Recognizing the critical importance
of conserving water for data centers, we focus on a set of
geo-distributed data centers and study: how to minimize
data centers’ operational cost while surviving drought by
keeping the long-term overall water footprint under a cap?1

We choose to cap the long-term water footprint rather than
purely minimizing it, because survival of drought clearly
requires persistent efforts and water capping matches the
current practice to achieve water conservation (e.g., industry
goal [7], water rationing, government regulations [6], green
certifications [48]). Instead of tackling the problem using
improved “engineering”, we propose a software-based ap-
proach by optimizing workload management. Our approach
relies on the following two techniques.
• Geographic load balancing (GLB): dynamically dis-

patching workloads to geo-distributed data centers.
• Power proportionality: dynamically turning on/off

servers in accordance with workloads.
Both GLB and power proportionality have been exten-

sively studied in various contexts (e.g., electricity cost [23],
[29], [30], [40], carbon emission [20]). Nonetheless, what
makes our research unique is that we exploit the inherent
spatial and temporal diversities of data centers’ water efficiencies
and optimize GLB and power proportionality decisions for water
conservation.

It is a very challenging problem to minimize operational
cost while capping water consumption using GLB and
power proportionality. First, dispatching more workloads
to water-efficient data centers may result in high electricity
cost, and hence it is non-trivial to successfully cap water
footprint while keeping the operational cost low. Second,
when using power proportionality, incorrectly turning off
too many servers may result in intolerable performance
degradation, whereas turning off too few servers may un-
necessarily increase operational cost and waste water. Last
but not least, achieving water capping involves budgeting
water consumption over a long term and hence optimally
doing so requires the knowledge of far future information
(e.g., outside temperature, which affects water efficiency),
but such offline information is practically challenging to
obtain accurately.

To address the above challenges, we propose a new
online workload management algorithm, called WATCH
(WATer-constrained workload sCHeduling in data centers),
which can achieve a low operational cost while successfully
capping the long-term water footprint without foreseeing
the far future. The general intuition of WATCH is that if the
actual water footprint has exceeded the expected level thus
far, WATCH will put more emphasis on reducing the water
consumption optimizing GLB and power proportionality
decisions, such that the water deficit can be decreased
and ultimately satisfy the desired water capping. We for-
mally prove that WATCH results in a close-to-minimum
operational cost compared to the optimal algorithm with
complete offline information, given arbitrary run-time sys-
tem dynamics. To evaluate WATCH under realistic settings,

1. Unless otherwise stated, “long-term” refers to one year and
matches the current water accounting period [6], [45].
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Fig. 1. (a) Direct WUE versus outside wet bulb temperature [44].
Lines/markers represent modeled/measured values. (b) 3-day outside
temperature starting from July 1, 2012 [11].
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Fig. 2. (a) 3-day fuel mix data of California ISO starting from Sep 1, 2013
[1]. (b) State-level EWIF versus CO2 emissions in the U.S. [45], [47].

we perform a trace-based simulation, demonstrating that
WATCH can significantly reduce the water footprint (e.g., by
20%) while incurring a small cost increase even compared
to state-of-the-art cost-minimizing but water-oblivious so-
lution. Finally, we extend WATCH in two different direc-
tions: (1) integrating WATCH with carbon footprint capping
(which is a key aspect of sustainability); and (2) capping
onsite cooling water consumption for each data center.

To sum up, our approach relies on yet optimizes the
widely-available GLB and power proportionality knobs for
long-term water capping. It has the following key features:
(1) it requires little modification to the current software
stacks and can be easily implemented, as there already
exist various mechanisms to enable GLB and power pro-
portionality [20], [23], [40]; (2) it is an online approach
and does not require any long-term offline information;
and (3) it only incurs a slight operational cost increase
while slashing water consumption (e.g., by 20%, which is
the water reduction percentage being urged in California
[38]). While we recognize the importance of the existing
water-saving techniques based on improved “engineering”
[7], [10], [22], we emphasize that our proposed approach
provides a complementary yet unique perspective to the
current research. To our best knowledge, this is the first
study to use workload management for long-term water
capping in geo-distributed data centers.

2 BACKGROUND

Following the metric developed by the Green Grid [45],
we measure data center water efficiency as Water Usage
Effectiveness (WUE), which is defined as the ratio of total
water consumption to the IT energy usage. Instead of water
withdrawal, we focus on water consumption (e.g., evapora-
tion into the air), because it is a more accurate indicator of
how much water does not return to source (i.e., “lost”) [32].
• Direct WUE. As shown in a recent survey [46], cooling

towers are commonly employed in large data centers as
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the heat rejection mechanism. In general, onsite (or direct)
water consumption in cooling towers consists of two major
parts: water evaporation and water “blown down”, where
the former is employed to transfer heat to the environment
and the latter is for keeping salt concentration of the con-
denser water from becoming too high [16]. “Blown down”
water consumption depends primarily on water quality:
the higher water quality, the more cycles of concentrations
(i.e., water recirculation times) and hence the less blown-
down water [16]. Quantitatively, blown-down water can be
expressed as one (S − 1)-th of the evaporated water, where
S is the cycle of concentrations (typically 3–10).

To highlight the impact of outside wet bulb temperature
on the direct WUE, we present an empirical measurement
model based on an industry cooling tower [44]. Specifically,
following recommended operational settings, we show the
direct WUE at different cycles of concentrations (i.e., water
recirculation times) in Fig. 1(a), which clearly demonstrates
that the direct WUE increases with outside wet bulb tem-
perature (because at a lower wet bulb temperature, water
cools down more by the outside air and less through evap-
oration). Using data fitting based on least square errors,
we obtain an empirical direct WUE model as WUEdirect =
S
S−1

(
6× 10−5 · T 3

w − 0.01 · T 2
w + 0.61 · Tw − 10.40

)
, where

S is the cycle of concentrations and Tw is the outside wet
bulb temperature (in Fahrenheit).

• Indirect WUE. We now present the indirect water
efficiency following [20], [25]. Indirect WUE depends on
the energy fuel mixes (e.g., coal, nuclear, hydro) as well
as cooling techniques used by power plants and hence
is also called Electricity Water Intensity Factor (EWIF)
[32], [45]. Since electricity produced by different energy
fuels becomes non-differentiated once entering the grid,
we consider the average EWIF which can be estimated as
EWIF =

∑
k bk×EWIFk∑

k bk
, where bk denotes the amount of

electricity generated from fuel type k in location serving
the data center, and EWIFk is the EWIF for fuel type k
[20], [25]. Note that variations in energy fuel mixes of elec-
tricity generation (to meet various demand levels, shown
in Fig. 2(a)) results in temporal diversity of EWIF. Further,
indirect EWIF also varies by location, because each fuel
type has its own distinct EWIF [45] and energy fuel mix
is typically different between states as some states may use
less water-efficient energy generation than others [45].

Finally, we show in Fig. 2(b) the state-level EWIF versus
average carbon emission rate in 50 U.S. states: “greener”
states may not necessarily be less “thirstier” [32], [45].2

This implies that the existing research (e.g., [20]) that favors
carbon reduction may result in more water footprint. Similar
statements also hold for water efficiency versus electricity
price, whose details are omitted for brevity. As a result, the
existing cost-/carbon-driven techniques do not necessarily
lead to water conservation, thereby necessitating the ex-
ploitation of spatio-temporal diversities of water efficiency
to survive drought.

2. Readers may refer to [45] for detailed EWIF data, and to [47] for
complete carbon efficiency data.

TABLE 1
List of key notations.

Notation Description
Mi Total no. of servers in data center i
mi No. of servers turned ON at data center i
ai Workload dispatched to data center i
λj Workload arriving at gateway j
µi Service rate of a server in data center i
γi PUE of data center i
li,j Network delay from gateway j to data center i
ei Electricity cost of data center i
wi Water footprint of data center i
Z Long-term water footprint constraint
g Total cost
q Water budget deficit queue

3 WATER-AWARE WORKLOAD MANAGEMENT

In this section, we present a water-aware online workload
management algorithm that can successfully cap the over-
all water footprint under a desired level for data centers’
survival of drought while incurring a negligible penalty in
other aspects such as operational cost. Towards this end, we
describe the general approach, present the model, formulate
the problem and then present the algorithm WATCH.

3.1 General approach

Our proposed research for data centers’ survival of drought
relies on the following two technical approaches.
• Geographic load balancing: Many large IT companies

are operating data centers in geographic locations for redun-
dancy/latency concerns. Incoming workloads, especially
“request-response” web services (e.g., search, e-commerce),
can be flexibly scheduled among multiple data centers using
HTTP redirection or persistent HTTP proxies to tunnel
requests [33].
• Power proportionality: The basic principal to enable

power proportionality (also referred to as “dynamic right-
sizing”) is to turn off unused servers, as static/idle servers
may consume even 60% of full power [29]. Hence, turning
off some servers when workload is low can effectively
reduce energy consumption as well as water footprint.

While both GLB and power proportionality have been
extensively studied [19], [23], [27], [29], [30], we focus on
optimizing GLB and power proportionality decisions for data
center’s water footprint capping: (1) how to dispatch work-
loads to geo-distributed data centers (i.e., the percentage of
incoming workloads scheduled to each data center); and (2)
how many servers to turn on in each data center.

3.2 Model

We consider a discrete-time decision model by dividing the
entire time period of interest (e.g., typically a year, as used
by LEED [48] and suggested by [45]) into K time slots. For
example, each time slot can be one hour [30].

Data center. We considerN geo-distributed data centers,
indexed by i = 1, 2, · · · , N . The service capacity of data
center i is represented by Mi homogeneous servers each
having a service rate of µi (i.e., the average number of jobs
that can be processed in a unit time). We denote by mi(t)
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the number of servers turned on in data center i. We model
data center power based on the utilization as follows

pi(ai(t),mi(t)) = γi(t) ·mi(t) ·
[
e0,i + ec,i

ai(t)

mi(t)µi

]
,

where γi(t) is the Power Usage Effectiveness (PUE) factor,
ai(t) =

∑J
j=1 λi,j(t) is the total amount of workloads

dispatched to data center i (with λi,j(t) being the amount
of workloads originating from the j-th gateway, as will be
specified later), e0,i is the static server power regardless of
the workloads (as long as a server is turned on) and ec,i
is the dynamic power when a server is busy. Essentially,
ai(t)

mi(t)µi
is the server utilization. This model can capture

server power with a reasonable accuracy, validated by real-
world measurements [17] and extensively used in prior
studies [29], [30], [41].

Electricity cost. As in [30], [40], [41], we consider real-
time pricing (due to electricity market deregulation) and
denote the electricity price in data center i at time t by ui(t).
Hence, the incurred electricity cost of data center i is

ei(ai(t),mi(t)) = ui(t) · pi(ai(t),mi(t)). (1)

Water consumption: The direct cooling water consump-
tion can be obtained by multiplying server power con-
sumption with the direct WUE, while the indirect water
consumption depends on the electricity usage as well as the
local EWIF. Thus, we can express the water consumption of
data center i at time t as

wi(t) =

[
εi,D(t)

γi(t)
+ εi,I(t)

]
· pi(ai(t),mi(t)), (2)

where εi,D(t) is the direct WUE (i.e., ratio of water to IT
energy) at time t and εi,I(t) is the EWIF (i.e., ratio of water
to electricity production) of the electricity powering data
center i.

Workload. As in many of the prior GLB studies [20],
[30], we focus on delay-sensitive interactive workloads
(also interchangeably referred to as jobs) that can be flex-
ibly scheduled among multiple data centers. There are
J gateways, each of which represents a geographically-
concentrated source of workloads (e.g., a state or province).
We denote the workload arrival rate at the j-th gateway by
λj(t) = [0, λj,max], and the workload is dispatched to data
center i at a rate of λi,j(t) that we shall optimize. Given a
certain number of servers, the delay performance intuitively
becomes worse with more dispatched workloads. Here, we
consider the overall delay performance by modeling the
service process at each server as an M/M/1 queue [29], [30].
Specifically, the total delay in data center i can be written as

di(ai,mi) =
J∑
j=1

λi,j ·
[

1

µi − ai
mi

+ li,j − dth

]+
, (3)

where the operator [ · ]+ = max{0, ·} indicates that the
revenue/profit loss is negligible when the average delay is
smaller than the threshold dth (i.e., little user experience im-
provement when the delay is already sufficiently small), and
li,j is average network delay approximated in proportion to
the distance between data center i and the j-th gateway [30].

3.3 Problem formulation

We focus on operational cost rather than capital cost (e.g.,
building data centers), which can be minimized using sepa-
rate techniques [42]. Two types of “costs” are considered:
electricity cost and delay “cost”, where the former takes
up a dominant fraction of the operational cost while the
later affects user experiences and revenues [28], [30]. We will
investigate the bandwidth cost in the next section. As water
bill has yet to catch up with electricity cost and indirect
water consumption is “paid” in energy bills, we do not
incorporate water cost in our work. As in the literature [20],
[28], [30], our study considers the following parameterized
cost

g(λ(t),m(t)) =
N∑
i=1

[ei(ai(t),mi(t)) + β · di(ai(t),mi(t))] ,

where λ(t) = (λ1,1(t), · · · , λ1,J(t), · · · , λN,1(t), · · · , λN,J(t))
and m(t) = (m1(t), · · · ,mN (t)) represent GLB and power
proportionality decisions, respectively, and β ≥ 0 is
the weight parameter converting delay performance to
monetary “cost” (adjusting tradeoff between electricity cost
and delay performance) [28], [30]. Throughout the paper,
we use “operational cost” to represent the parameterized
cost. Next, we formulate the problem as follows

P1 : min
A

ḡ =
1

K

K−1∑
t=0

g (λ(t),m(t)) (4)

s.t., 0 ≤
J∑
j=1

λi,j(t) ≤ η · µi ·mi(t), ∀i, t, (5)

mi(t) ≤Mi, ∀i, t, (6)
N∑
i=1

λi,j(t) = λj(t), ∀j, t, (7)

K−1∑
t=0

N∑
i=1

wi(t) ≤ Z, (8)

where A represents a sequence of GLB and power propor-
tionality decisions, i.e., λ(t) and m(t), for t = 0, 1, · · · ,K −
1. The constraints (5), (6) and (7) indicate no server over-
loading, over-provisioning or workload dropping, while
the constraint (8) specifies the long-term water consump-
tion constraint. In constraint (5), η ∈ (0, 1) specifies the
maximum server utilization (equivalently, the worst delay
performance). Note that additional constraints, such as that
some workloads may only be routed to certain data centers,
can also be incorporated into our study. Moreover, we will
also consider onsite water capping for each data center
(which is more related to regional drought) and carbon
footprint capping (another sustainability criterion [20]) in
Section 5.

In P1, the power usage is an affine function of load
distribution λi,j(t) and the number of servers to turn on
mi(t), and so are electricity cost and water footprint. The
delay cost is a convex function of λi,j(t) and mi(t). Thus, P1
is convex optimization which can be solved in polynomial
time [12].
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3.4 WATCH
In this subsection, we develop our water-aware workload
management algorithm WATCH which can be implemented
online without foreseeing offline information.

Main Challenge. Addressing data centers’ water foot-
print in the face of extended droughts requires long-term
efforts, but the long-term nature also creates challenges
as the desired water capping constraint in (9) couples the
workload management decisions across different time slots:
while GLB and power proportionality decisions have to be
made without foreseeing the far future, the current decisions
will implicitly affect the future decisions (e.g., using more
water at this time slot will result in less water budget
available for future uses). Accurate prediction of such offline
information (e.g., volatile outside wet bulb temperature
which affects WUE, non-stationary workload arrival, etc.)
is quite challenging, if not impossible [19], necessitating an
online approach.

Solution. To address the lack of long-term future infor-
mation, we leverage the sample-path Lyapunov technique
[37] to develop an online algorithm that makes GLB and
power proportionality decisions only based on currently
available information. Originally proposed for establishing
control system stability, Lyapunov technique was later ex-
tended to achieve long-term queueing stability in networks
[37], with a salient feature that it does not require future
information when making control decisions. Here, we can
treat the data center water footprint in each time slot as
“job arrivals” to a virtual water queue, and view the desired
water usage as “job departures”. Thus, if the virtual queue
length can be pushed to zero at the end, then the desired
long-term water footprint capping is achieved in an online
manner.

At the core of our solution is the (virtual) water budget
deficit queue which replaces the long-term constraint (9) and,
with an initially empty queue q(0) = 0, evolves as follows

q(t+ 1) =

{
q(t) +

N∑
i=1

wi(t)− z(t)
}+

, (9)

where q(t) is queue length at beginning of time slot t,∑N
i=1 wi(t) is the combined water consumption of all the

data centers and z(t) is the reference water budget for time
slot t. The reference budget z(t) can be a constant (e.g.,
z(t) = Z/K for t = {0, 1, · · ·K − 1}) or estimated based
on projected workload (which does not need to be accurate)
such that

∑K−1
t=0 z(t) = Z . However, based on simulation

studies (not included in this paper for brevity), we note that
the choice of z(t) has a negligible impact on the outcome of
WATCH in terms of the cost efficiency, provided that the the
total water budget is the same. This is partly due to the fact
that z(t) is only a reference value that places no enforcement
on the execution of WATCH.

The queue length at any time indicates the deviation of
actual water usage from the total reference water usage, and
we integrate this information (i.e., q(t)) in our optimiza-
tion so that WATCH can act on the deviation to mitigate
it. Specifically, instead of optimizing the original objective
function, we construct in WATCH a new objective function,
V · g (λ(t),m(t)) + q(t) ·

∑N
i=1 wi(t), which is the original

objective function scaled by a parameter V plus the water

Algorithm 1 WATCH
1: Input λj(t), εi,D(t), εi,I(t), and ui(t) at the beginning of

each time t = 0, 1, · · · ,K − 1, for i = 1, 2, · · · , N
2: Choose λ(t) and m(t) subject to constraints (5),(6),(7) to

minimize

P2 : V · g (λ(t),m(t)) + q(t) ·
N∑
i=1

wi(t) (10)

3: Update q(t) according to (9).

usage multiplied by the water budget deficit queue q(t) in
(9). Thus, there is no decision coupling across different time
slots in the new problem, and hence it can be solved online
requiring only the information (e.g., workload, WUE etc.) of
current time slot.

The water budget deficit queue acts as a feedback from
past decisions to the current decision, so that deviation
from the long-term water footprint constraint can be miti-
gated. The new objective function V · g (λ(t),m(t)) + q(t) ·∑N
i=1 wi(t) is devised such a way that the mitigation takes

place gradually so that the feedback does not overshadow
the main objective of cost minimization. In particular, the
parameter V acts as a control parameter that determines
how much emphasis to put on cost minimization compared
to the long-term water footprint constraint. Larger V implies
that the data center cares more about cost minimization than
meeting the long-term water budget, and vice versa. Natu-
rally, when cost minimization is prioritized, long-term water
consumption constraint is more likely to be exceeded with
a larger gap, which is also substantiated in analytical study
of WATCH presented in Theorem 1 as well as demonstrated
through our simulation results.

Algorithm input/output. Algorithm 1 only requires on-
line information as specified in Line 1, which can be readily
obtained: e.g., outside wet bulb temperature can be mea-
sured online, whereas workload arrival rate can be well
estimated using various learning algorithms [30]. We will
also demonstrate in the next section that WATCH is robust
against inaccurate online information. At the beginning
of each time slot, Algorithm 1 outputs the GLB decision
λ(t) (i.e., the portion of workloads dispatched to each data
center) and power proportionality decision m(t) (i.e., how
many servers are turned on in each data center).

Analysis. The following theorem formally shows the
performance of WATCH.

Theorem 1. For any T ∈ Z+ and H ∈ Z+ such that K = HT ,
the following statements hold.

a. The water consumption constraint is approximately satis-
fied with a bounded deviation:

K−1∑
t=0

N∑
i=1

wi(t) ≤ Z +

√√√√KC(T ) +
KV

H

H−1∑
h=0

(G∗h − gmin),

(11)

where C(T ) = U +D(T − 1) with U and D being certain finite
constants satisfying U ≥ 1

2 maxt=0,1,··· ,K−1[
∑N
i=1 wi(t) −

z(t)]2 and D = 1
2

[
maxt=0,1,··· ,K−1{

∑N
i=1 wi(t), z(t)}

]2
, G∗h

is the minimum average operational cost by the optimal offline
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algorithm with T -slot lookahead information over t = (h −
1)T, · · · , hT − 1, for h = 0, 1, · · · , H − 1, and gmin is the
minimum possible operational cost.

b. The average operational cost ḡ∗ achieved by WATCH
satisfies:

ḡ∗ ≤ 1

H

H−1∑
h=0

G∗h +
C(T )

V
. (12)

Proof. As a sketch, we only outline the key steps of proving
Theorem 1, while the proof details can be established fol-
lowing Lyapunov-drift-plus-cost technique [37]. Note first
that G∗h is the minimum cost achieved by the offline al-
gorithm with T -step lookahead information by solving:
minAG

∗
h = 1

T

∑(h+1)T−1
t=hT g (λ(t),m(t)) subject to (5)(6)(7)

and “
∑(h+1)T−1
t=hT

∑N
i=1 wi(t) ≤

∑(h+1)T−1
t=hT z(t)”. We need

to define a quadratic Lyapunov function L(q(t)) , 1
2q

2(t),
and then derive a finite upper bound on the T -step Lya-
punov drift, i.e., difference between L(q(t+T )) and L(q(t)).
By adding operational cost into both Lyapunov drift and
upper bound, we will see that P2 in Algorithm 1 is essen-
tially minimizing the upper bound on Lyapunov drift plus
operational cost. Then, after mathematical manipulations,
Theorem 1 will follow. Unlike prior work [24], [52], we
use sample-path techniques without making specific prob-
ability, i.i.d./Markovian or even “slater” assumptions [37]
over system dynamics and hence, Theorem 1 holds under
arbitrary dynamics. �

Theorem 1 shows that, given a fixed value of T and
H , WATCH can approximately satisfy the long-term water
footprint constraint with a bounded deviation, whereas
the cost of WATCH is within an additive penalty com-
pared to the minimum cost achieved by the offline algo-
rithm with T -step lookahead information (which solves
minAG

∗
h = 1

T

∑(h+1)T−1
t=hT g (λ(t),m(t)) subject to (5)(6)(7)

and “
∑(h+1)T−1
t=hT

∑N
i=1 wi(t) ≤

∑(h+1)T−1
t=hT z(t)”). From (11)

and (12) we see that when V increases cost performance of
WATCH is closer to the offline algorithm with lookahead
information while the potential deviation from long-term
water consumption target becomes larger, and vice versa.
Hence, WATCH presents with an online treatment for P1
with an analytical bound on how far WATCH can be from
the optimal solution (with T -step lookahead information).
The analytical observation on WATCH’s performance is
corroborated by our real-life trace-based simulation studies.

4 PERFORMANCE EVALUATION

This section presents trace-based simulation studies to vali-
date our analysis. We first present our simulation setup and
then show that WATCH can significantly reduce the water
consumption compared to the existing cost-minimizing GLB
algorithm (by 20%) while only incurring a small increase
in the operational cost (even compared to state-of-the-art
cost minimizing algorithm). We also show the benefits and
robustness of WATCH under different settings.

4.1 Setup
Considering the practical difficulty in implementing
WATCH in real systems, we resort to simulations following
the common practice [20], [30], [40].
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Fig. 3. Simulation setup. (a) Wikipedia [49] and university workloads. (b)
Average electricity price [47]. (c) Average WUE.

We consider four geographically distributed data centers
located in: (#1) Mountain View, CA, (#2) Forest City, NC,
(#3) New York, NY, and (#4) Roswell, NM. The number
of servers in these data centers are: 60K, 50K, 40K, 25K,
respectively. To limit the number of free parameters, the
default PUEs for all data centers are chosen as 1.20, although
PUEs may vary over time [10]. While different data centers
typically have different server configurations, we focus on
homogeneous servers and each server has a normalized
service rate of 1.00 (i.e., one unit of workloads per second).
Each server has a maximum power of 400W, and static/idle
server power takes up 60% of the maximum power. As
in the existing work [20], [28], we consider delay-sensitive
workloads. The weight converting the delay performance to
cost is set to β = 12, although WATCH is applicable for any
settings. All the workloads are distributed to the four data
centers by one front-end gateway located in North Platte,
NE, which has comparable distances to all data centers. GLB
and power proportionality decisions are updated hourly.
Accordingly, all the operational cost and water consumption
are hourly values unless otherwise stated.

The time horizon is one year. The average water con-
sumption by state-of-the-art cost-minimizing GLB algo-
rithm (presented in [30], which disregards water footprint)
is chosen as our reference value, and in our setting using
default workload traces, it is 177 KL (kilo-liters) per hour.
We choose 142 KL per hour on average (or equivalently,
around 332 million gallons per year) as the default capping
constraint, which is 80% of the reference value. This 20%
water reduction also matches the target set by California
[2]. We also use Low (L), Medium (M), and High (H) water
capping to represent 75%, 80% and 85% of reference water
consumption.
• Electricity price: We obtain from [47] hourly wholesale

electricity prices from four trading nodes closest to our
considered data centers for the year of 2012. The average
electricity prices in our simulations are shown in Fig. 3(b).
• EWIF and direct WUE: Due to the lack of access to

EWIF data in our data center locations, we use the state-
level average EWIF values calculated based on the data in
[32], [45]. For direct WUE, we use the empirical values in
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[44] modeled as a function of outside wet bulb temperature
(see Fig. 1(a)). The temperature data for the year of 2012 is
obtained from [11]. Different data centers may use different
cooling techniques/towers [5], [10]. Nonetheless, only Face-
book is disclosing its real-time water efficiency information
[10]. Thus, to reflect geographic diversities of direct WUE
caused by non-weather factors, we choose to scale the direct
WUE (obtained from our empirical model) differently for
these four data centers. Average direct WUEs and EWIFs
are both shown in Fig. 3(c).
• Workloads: As our default workload, we scale the

Wikipedia workload trace [49] and extend it to one year
by adding up to 30% random noises. We also obtain the
workload trace by profiling the server usage log of a large
public university from January 1 to December 31, 2012,
and scale up the arrival rate. The workload trace contains
request-level records, such as arrival time, completion time,
size of data sent, service status for each request. The normal-
ized workload arrival rates are shown in Fig. 3(a), where
the values are normalized with respect to the maximum
capacity of all data centers.

Remark. As our research takes an early step to address
data center operation in drought conditions and due to lack
of publicly available data (especially real-time WUE), we ob-
tain traces and infer data from various sources. Admittedly,
if all the data is available to us from production systems, the
specific experimental results may differ, but we expect that
the general trend still holds, as the advantage and intuition
of WATCH have been demonstrated both conceptually and
analytically in previous sections. Thus, we do not intend to
emphasize our quantitative results in simulations, but rather
we would like to leverage simulations to provide additional
justification to WATCH under reasonably realistic settings.

4.2 Results

In this subsection, we present simulation results using the
above trace data.

4.2.1 Performance comparison
We first present two widely-studied benchmark algorithms
and then subsequently compare WATCH against them.
• COST: While it is not possible to compare WATCH

against all existing techniques, we choose cost-driven but
water-oblivious algorithm that minimizes the operational
cost [30], referred to as COST, as our benchmark, since it
is one of the most widely-considered benchmarks and our
objective is also minimizing cost.
• PERFORMANCE (abbreviated as “PERF” to save

space): The current practice is still performance-driven:
turning on all the servers and scheduling requests to the
nearest data center if applicable. Hence, we consider this
approach as the second benchmark and refer it to as PERF.

Comparable operational cost. Fig. 4(a) shows the av-
erage hourly operational costs (incorporating both electric-
ity cost and delay performance) achieved by PERF, COST
and WATCH (with cost-water parameter V = 45). While
WATCH aims at minimizing operational cost, it also consid-
ers water consumption as its additional constraint. Thus, as
can be seen from Fig. 4(a), WATCH incurs a slightly higher
operational cost (by approximately 3%) compared to COST
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which explicitly minimizes the operational cost: WATCH
and COST are comparable in both electricity cost and delay
performance. As water-efficient data centers are typically
different from cost-effective ones (as discussed in Section 2
and can be seen from Fig. 3(b) and Fig. 3(c)), it may not
be possible to optimize workload management decisions
for both metrics simultaneously: an inherent tradeoff exists
between water consumption and operational cost. While
PERF incurs higher energy consumption, it provides the
best performance. Hence, after we convert the delay into
cost, the total operational cost of PERF is almost the same
as WATCH, but it is most water-consuming and hence
vulnerable to drought conditions. Note also that, although
not shown for brevity, WATCH can reduce electricity usage
compared to COST by about 10% in our case study .

Reduced water consumption. WATCH explicitly in-
corporates spatio-temporal diversities of water efficiency
into its workload management decisions, and uses water
deficit queue as a guidance towards water capping. Fig. 4(b)
demonstrates that WATCH can successfully meet the water
consumption constraint which, by default, is only 80% of the
water consumption by COST. Combined with Fig. 4(a), we
see that WATCH can lead to 20% saving of water footprints
while incurring nearly no operational cost. Expectedly, if
we set a less aggressive water conservation target (e.g., 15%
saving), WATCH will result in a lower cost.

Water-driven scheduling. Next, we show in Fig. 5 the
average workload distributions across different data centers.
The performance-driven PERF distributes workloads in pro-
portion to data center server capacity, offering the same
delay performance across data centers. As COST focuses on
minimizing the operational cost, it favors the data center
in NM with the lowest average electricity price: COST
distributes more workloads to the cost-effective NM data
center than to NY, even though the former has a less capacity
than the latter. Now, we turn to Fig. 5(b) to show average
workload distributions for WATCH under different water
caps (i.e., Low, Medium, and High). By looking at Fig. 3(c),
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Fig. 6. Cost-water tradeoff under different water caps. (a) Operational
cost. (b) Water consumption.

we see that the NM data center has the highest average
WUE, whereas the CA data center has the lowest one. Thus,
WATCH will schedule more workloads to CA when water
consumption constraint is more stringent (i.e., Low water
budget), while more workloads will be diverted to NM for
cost efficiency when water consumption constraint is less
stringent (i.e., High water budget), although NM has the
highest average WUE.

4.2.2 Cost versus water consumption tradeoff
As we have formally proved in Theorem 1, the cost-water
parameter V governs the flexible tradeoff between cost min-
imization and water consumption: the larger V , the more
emphasis on reducing the cost while potentially deviating
more from the desired water footprint constraint, and vice
versa. To illustrate this point, we show in Fig. 6(a) and
Fig. 6(b) the impact of V on the average hourly cost and wa-
ter consumption, respectively, under different water caps.
The result conforms with our analysis that with a greater V ,
WATCH is less concerned with water consumption while
caring more about the cost. In the extreme case in which
V goes to infinity, WATCH reduces to a water-oblivious
algorithm (i.e., COST) which minimizes the operational cost
without considering water consumption. Clearly, water-
oblivious COST algorithm achieves a cost that is a lower
bound on the cost that can be possibly achieved by any
algorithm satisfying the water cap, but it is not desirable
in water-stressed areas.

4.2.3 Bandwidth cost comparison
While bandwidth cost has been shrinking in recent years
relative to electricity cost [40], it may still be a non-negligible
portion of data center operational cost. As WATCH may
change the traffic patterns among data centers, the band-
width cost may change as well. In this paper, we focus
on the prevailing 95/5 bandwidth charging model: the
95th percentile of data center traffic, measured in 5-minute
intervals, is used for billing [20], [40]. In our study, we
consider the link traffic between the gateway and the data
center is proportional to the assigned workload (because
the average data size of a job request is relatively constant).
We then measure the workloads assigned to each data
center for every 5 minutes and take the 95-percentile traffic
during each month. Finally, we average the results to get
the yearly average bandwidth cost for different algorithms
under the default 20% water reduction target. Fig. 7(a)
shows the normalized 95/5 traffic assignment (normalized
with respect to the maximum capacity of all data centers).
We see that the 95/5 traffic assignments by WATCH, PERF
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and COST are almost the same. Although the data centers
in CA and NC have slightly higher 95/5 traffic by using
WATCH than using PERF or COST, the difference in the
resulting bandwidth cost is almost negligible (within 5%).
Considering the decreasing trend of bandwidth cost but
surge in energy cost, we see that WATCH is still attractive in
terms of slashing water while potentially incurring a small
bandwidth cost increase.

4.2.4 Sensitivity study
We now perform various sensitivity studies, with V chosen
such that water capping constraint is satisfied.
•Water capping constraint: We now show in Fig. 7(b) the

impact of water capping constraint (i.e., water budget) on
the operational cost. We normalize the water budget with
respect to the water consumption by COST (i.e., average
177KL per hour). It is seen that given a 80% water budget
— equivalent to using only 80% of the water consumed
by COST, WATCH exceeds the water-oblivious COST al-
gorithm by approximately 3% in terms of the average
operational cost, while still being able to satisfy water con-
sumption constraint (which is clearly violated by COST).
More interestingly, when the normalized water budget in-
creases to 95%, WATCH achieves almost the same cost as
COST (within 1%). Hence, by exploiting spatio-temporal
diversities of water efficiency, WATCH can conserve water
by 5% almost for “free” compared to COST. As a further
comparison, we also show the cost of the optimal offline
algorithm, referred to as OPT, in Fig. 7(b), and it can be
seen that WATCH is quite close to OPT in terms of the cost,
demonstrating that WATCH performs remarkably well by
only using online information.
• Workload overestimation: In practice, it may not be

possible to perfectly estimate the current workload arrival
rate. To handle possible traffic spikes, data centers may leave
a capacity margin by turning on more servers than needed
as a backup or deliberately overestimate the workload ar-
rival rate by a certain overestimation factor φ ≥ 1: the higher
φ, the more overestimates. We choose the later approach,
and scale up workload by φ during optimization to decide
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the optimum number of servers to be turned on in each
data center and the load distribution. However, when we
determine the cost, power, delay and water consumption,
we still use the actual workload. We keep all the other
parameters (such as β, z(t), the electricity price, etc.) as
unchanged. Fig. 8(a) shows that the total operation cost
only increases by around 4%, even when we overestimate
the workloads by 20% (which is already sufficiently high
in practice, as shown in [19]). This is because although
workload overestimation may turn on more servers than
needed and incur a higher electricity cost, it has a lower
delay cost as the delay performance is improved because of
increased number of servers.
• Switching cost: Switching servers on/off induces vari-

ous costs, such as energy/time waste as well as “wear and
tear”. As in [28], we incorporate all these factors and use
switching cost as the combined cost quantified in terms
of energy consumption. We normalize the switching cost
(incurred by turning on/off one server) with respect to the
maximum hourly energy consumption of a single server.
Fig. 8(b) shows that even when the switching cost of one
server takes 20% of its maximum hourly energy consump-
tion, the average operational cost only increases by less than
3% while satisfying water capping.
•Different workloads: Now, we use the university work-

load trace to drive our simulations for demonstrating the ap-
plicability of WATCH under various workloads. The results
are shown in Fig. 9. As in Fig. 4, it can be seen that the same
message can be delivered in Fig. 9: WATCH achieves a cost
fairly close to that of water-oblivious COST, and meanwhile
significantly slashes the water consumption.
• Impact of β: The parameter β determines the relative

weight of delay performance as compared to electricity
cost. To show the impact of β parameter on data center’s
electricity cost and resulting delay performance, we vary
the value of β and show the corresponding results in
Fig. 10. The water budget for each β is set to 80% of the
corresponding water usage by COST. Thus, when COST
increases its own water usage, the water budget for WATCH
also increases. We see that the average delay decreases and
average electricity cost increases as we increase β. In our
study, we set β = 12 to have an average delay cost that
is comparable to the average power cost. Moreover, with
our choice of β = 12, the delay performance of WATCH
is fairly close to COST. As shown in Fig. 10(b), setting a
larger β in our simulation settings will significantly increase
the electricity cost but only yield a very small decrease in
delay (in tens of millisecond range), which is insignificant
for human perception. Note that specific value of β also
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Fig. 11. Performance comparison for many data centers.

depends on the unit used for measurement as well. For
example, we set β = 12 as we use “second” as the unit
for delay, whereas if we use “millisecond” we would get the
same results for β = 0.012.
•Number of data centers: In our study, we consider four

data center locations by default, which is reasonable consid-
ering that even leading IT companies, like Facebook, only
have a few self-managed megascale data centers (e.g., four
data centers throughout the world, including two in the U.S.
[9]). Nonetheless, we have extended our study to more data
centers. We select additional locations for data centers and
follow the same evaluation methodology as we have used
for the default setting. Fig. 11(a) shows that WATCH still
achieves an average cost that is very close to COST (cost-
minimizing water-oblivious geographic load balancing). We
also see in Fig.11(b) that regardless of the number of data
centers, WATCH can meet the water footprint constraint,
thereby translating water footprint reduction.

We also study WATCH’s robustness against power, delay
and water consumption modeling error/uncertainties, and
see that at even at ±20% random modeling error, average
cost only increases by 5% while the budget deficit still
remains under 0.08% (given the same V ). The supporting
figures for this study are omitted for space limitation.

To sum up, it is not absolutely “free” to achieve water
conservation due to the inherent tradeoff between water effi-
ciency and cost efficiency. Nonetheless, WATCH exploits the
spatio-temporal diversities of water efficiency and can cut
water consumption by 20% while only incurring a small cost
increase, even compared to the cost-minimizing algorithm
COST. While we do not imply that WATCH outperforms
the existing GLB techniques in all aspect, we emphasize
that WATCH is complementary to the existing research and
that it is particularly appealing for data center operation in
water-stressed areas.

5 EXTENSION

In this section, we extend WATCH in two directions: (1)
capping carbon footprint; and (2) capping onsite cooling
water for each data center.
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Fig. 13. Comparison among PERF, COST, and WATCH. (a) Operational
cost. (b) Total onsite water consumption.

5.1 Capping carbon footprint

It is widely accepted that carbon footprint is an important
aspect of sustainability. Following [20], we express the car-
bon emission of data center i as

ci(t) = hi(t) · pi(ai(t),mi(t)), (13)

where pi(ai(t),mi(t)) is the electricity usage and hi(t) is the
carbon emission rate calculated based on [20], with a unit of
g/kWh, for power plant serving data center i. Compared
to water footprints that are both onsite and offsite for
data centers, carbon emission does not include the “onsite”
component.

Like in Section 3.4, we incorporate another queue —
carbon deficit queue — which evolves as qc(t + 1) =
[qc(t) +

∑N
i=1 ci(t) − zc(t)]

+, where zc(t) is the reference
carbon budget for time t guiding GLB and power propor-
tionality decisions towards carbon footprint capping. Then,
we put an additional term qc(t) ·

∑N
i=1 ci(t) into Line 2 of

Algorithm 1. The results, including performance analysis,
are similar. Fig. 12 demonstrates that, compared to cost-
driven COST, WATCH can still successfully slash both water
and carbon footprints while just incurring a small cost
increase.

5.2 Capping onsite water consumption

As onsite cooling water is more directly related to data
centers’ water accounting [6] and drought condition is often
region-specific [4], we extend WATCH to cap onsite water
consumption for each data center. Specifically, instead of
keeping track of only one water budget queue, we con-
struct N water budget deficit queues, each representing the
current onsite water deficit for one data center. Specifically,
the water budget queue qi(t) for data center i evolves as
qi(t + 1) = [qi(t) + wi(t) − zi(t)]+ and will be added into
Line 2 of Algorithm 1. Fig. 13 demonstrates that WATCH
can still reduce the onsite water consumption of each data
center by 20% while keeping operational cost low.

6 RELATED WORK

There has been a significant amount of research in op-
timizing data center operation from various perspectives
[34], ranging from energy-aware task scheduling and re-
source allocation [51], [53], cutting electricity bills (using
GLB and/or power proportionality) [23], [40], [41], mini-
mizing response times [18], brown energy reduction [13],
[30], carbon footprint minimization [15], [20], to addressing
the thermal/reliability issues [35], [39]. Complimentary to
our work, [14], [21] study energy efficiency of the net-
work infrastructure for implementing GLB in data centers.
Nonetheless, none of these studies have considered water
consumption which is emerging as a critical concern for data
centers’ survival of drought.

Long-term optimization has been increasingly consid-
ered in the literature. For example, [42] explores the optimal
energy portfolio for reducing carbon emissions, and [27]
considers GLB with yearly energy capping. These studies,
however, utilize prediction of offline information, which
may not always be available. Recently, [24], [31], [50], [52]
leverage Lyapunov technique for data centers, but they do
not consider water footprints. Furthermore, [24], [52] do not
address service latency costs and their analysis primarily
builds upon i.i.d./Markovian system dynamics (e.g., work-
load arrivals) which may not hold in practice.

More recently, [43] explores resource management ap-
proaches for optimizing real-time WUE by greedily explor-
ing the spatio-temporal diversity of water efficiency, and
hence the operational cost may be significantly increased
(by 30%). For a single data center, [25] focuses on delay-
tolerant batch jobs for reducing water consumption without
considering spatial diversity of water efficiency, and hence
it is not applicable for our study.

To sum up, our work takes an early step to address data
centers’ long-term water conservation, which is emerging
as a critical concern amid extended droughts. WATCH can
slash water footprints while only slightly increasing the
operational cost, even compared to cost-driven COST.

7 CONCLUSION

In this paper, we took an early step towards long-term
water conservation in data centers and proposed WATCH,
a new water-aware workload management algorithm that
can dynamically dispatch workloads to distributed data
centers for capping water footprint. It was proved that
using only online information, WATCH achieves a close-
to-minimum operational cost compared to the optimal of-
fline algorithm with future information, while bounding the
potential violation of water capping. We also performed a
trace-based simulation study to complement the analysis.
The result was consistent with our analysis: it showed that
WATCH significantly reduces the water consumption while
only incurring a small operational cost increase. We also
extended WATCH to cap carbon footprint as well as onsite
water consumption for each data center.
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8 APPENDIX: TERMS IN WATER MANAGEMENT

Wet-bulb temperature: It is the temperature of air with
100% water saturation. It indicates the lowest temperature
achievable by water evaporation. For cooling towers, it is
the theoretical lowest temperature to which the water can
be cooled down.

Waterside economizer: For the cooling systems that
use chilled water to transfer heat from server room to the
outside, water entering the server room is called “chilled
water” (e.g., cooled down by the mechanical chiller) and
water leaving the server room becomes “warm”. Waterside
economizer refers to using cooling tower, instead of me-
chanical chillers, to cool down the warm water returned
from the data center server room. Naturally, waterside econ-
omizer is only applicable when the outside temperature is
cold enough, and thus it is mostly used in winter.

Water blown-down: The cooling tower losses water
through evaporation to dissipate heat to the environment. In
the process, the mineral concentration increases as more and
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more water is evaporated. To avoid mineral’s accumulation
in the water circulation system, concentrated cooling tower
water is drained at regular intervals, which is called water
blown-down. This is one of the two major components
of data center direct water consumption (the other one is
evaporation).

Cycle of concentration: To avoid mineral’s building up,
the water cycle in a cooling tower required to be blown
down at regular intervals. Naturally, if the original water
source has more minerals, we can circulate the water fewer
times before the mineral concentration becomes harmful for
the plant. Cycle of concentration refers to the maximum
number of cycles the water can be used before it is blown
down. As blown-down is one of the principal components
of water consumption, more cycles of concentration can lead
to lower water consumption.

Water withdrawal v.s. water consumption: Water with-
drawal refers to the water that is withdrawn but later may
return to the same source. For example, in once-through
cooling systems (used for thermal power plants), water is
usually withdrawn from a nearby lake or river, but the water
simply flows through the cooling system and then most of
the water still returns to the source (with a small fraction
of water evaporated to dissipate heat). Water consumption,
on the other hand, refers to the water that is actually “lost”
and not returned to the source. For example, water evapo-
ration and water blown-down (to, e.g., sewage systems) are
considered “consumption”, since the water is not returned
directly to its source.
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