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ABSTRACT
Due to the enormous energy consumption and associated
environmental concerns, data centers have been increasingly
pressured to reduce long-term net carbon footprint to
zero, i.e., carbon neutrality. In this paper, we propose
an online algorithm, called COCA (optimizing for COst
minimization and CArbon neutrality), for minimizing data
center operational cost while satisfying carbon neutrality
without long-term future information. Unlike the existing
research, COCA enables distributed server-level resource
management: each server autonomously adjusts its process-
ing speed and optimally decides the amount of workloads
to process. We prove that COCA achieves a close-to-
minimum operational cost (incorporating both electricity
and delay costs) compared to the optimal algorithm with
future information, while bounding the potential violation of
carbon neutrality. We also perform trace-based simulation
studies to complement the analysis, and the results show
that COCA reduces cost by more than 25% (compared to
state of the art) while resulting in a smaller carbon footprint.

Keywords
Carbon neutrality, Data center, Load distribution, Resource
management, Scheduling, Stochastic control.

1. INTRODUCTION
To satisfy the exploding demand of Internet and cloud

computing services, large-scale data centers consisting of
tens of thousands of servers require many megawatts of
electricity power, a significant portion of which comes
from coal or other carbon-intensive sources that produce
huge carbon footprints [2, 29]. In view of the growing
trend of data center energy consumption and the associated
environmental concerns, large IT companies have been
increasingly pressured to reduce their net carbon footprint
to zero (i.e., achieve carbon neutrality or net-zero) for
sustainable computing, either mandated by governments
in the form of Kyoto-style protocols, required by utility
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companies, voluntarily, or urged by non-profit environmen-
tal organizations [3, 14, 17, 25]. In addition to highly-
desired sustainability, carbon neutrality also enables other
remarkable benefits for data centers such as tax reduction,
favorable accreditation, lower-cost contracts with power
utility companies, and/or business promotion [3, 14, 25, 31].
Recently, several companies such as Google, Microsoft and
Facebook have set carbon neutrality as their long-term
strategic goals [3,14,25].

Using green energy directly from on-site projects or utility
companies might seem to be an intuitive way to achieve
carbon neutrality, but it is not yet widely practical. In
general, the best location for building a data center may not
be the most desired location for generating sufficient green
energies to satisfy the data center requirement. Moreover, as
recently pointed out by [15], directly drawing green-source
electricity energy from utility companies (at higher prices,
called “renewable energy tariffs”) to power data centers
is still under debates and subject to state-level approvals
as well as multiple practical challenges (e.g., large-scale
cost-effective renewable resources). Thus, to accomplish
carbon neutrality, data centers normally rely on a bundle
of approaches, such as generating on-/off-site green (or
renewable) energy and purchasing renewable energy credits
(RECs), to offset brown energy (or electricity) usage.

Achieving carbon neutrality is desirable yet challenging:
it needs to budget data centers’ electricity usage over
a long timescale such that the “unknown” future brown
energy consumption can be completely offset by limited
renewables. In other words, carefully “budgeting the
energy usage” (which we refer to as energy budgeting)
over a long term is crucial for being carbon neutral, and
meanwhile neither operational costs nor quality of service
can be considerably compromised. While the existing
power budgeting technique that allocates the peak power
to severs given the current workload (e.g., [18]) might
seem to be applicable for our purpose, energy budgeting
fundamentally differs from power budgeting and faces a
significant challenge: data center operator needs to decide
its energy usage in an online manner that cannot possibly
foresee the far future time-varying workloads or intermittent
renewable energy availability. Although some preliminary
efforts have been made for a related problem of energy
usage capping in data centers [8, 17], they require accurate
prediction of future information (e.g., workloads, green
energy availability) that is often unavailable in practice,
especially considering the unforeseeable traffic spikes [10,31]
and intermittent supply of solar and wind energies heavily



depending on weather conditions.
In this paper, we study energy budgeting for carbon

neutrality and propose a provably-efficient online algo-
rithm, called COCA (optimizing for COst minimization
and CArbon neutrality), for minimizing the data center
operational cost (incorporating both electricity and delay
costs) while satisfying carbon neutrality without requiring
long-term future information. In stark contrast with the
recent research [24] that coarsely studies data center-level
resource management (i.e., controlling the number of active
homogeneous servers) for long-term energy capping, COCA
explores finer-grained server-level resource management,
incorporates load distribution and enables distributed im-
plementation in a data center with heterogeneous servers.
Specifically, by using COCA, each server can autonomously
adjust its processing speed (and hence, power consumption,
too) and optimally decide the amount of workloads to
process. By extending the recently developed Lyapunov
optimization technique [26], we prove that COCA can
achieve a close-to-minimum operational cost, compared to
the optimal offline algorithm with lookahead information,
while bounding the maximum carbon deficit.

We also perform a trace-based simulation study to
validate the analysis. The results show that (a) COCA
achieves a close-to-minimum cost while still satisfying
carbon neutrality; (b) COCA reduces operational cost by
more than 25% compared to the state-of-the-art prediction-
based method while more accurately satisfying the desired
carbon neutrality; and (c) COCA is robust against various
factors, demonstrating a significant potential for practical
applicability.

In summary, this paper rigorously addresses carbon
neutrality in the absence of long-term future information.
Compared to the existing studies, our work significantly
differs in the following aspects.
• Objective: Our work minimizes the operational cost

while satisfying the increasingly important long-term carbon
neutrality, differing from most of the existing research
that directly minimizes the instantaneous operational cost
(e.g., [19, 21, 30]) but typically does not guarantee carbon
neutrality.
• Approach: COCA adopts an online approach to achieve

carbon neutrality, whereas the existing relevant studies on
energy capping (but not explicitly on carbon neutrality,
e.g., [17]) requires prediction of long-term future information
that may not be practically available. Moreover, unlike the
recent research [23,24] that only considers data center-level
resource management (i.e., number of on/off homogeneous
servers) in a centralized manner, COCA explores distributed
server-level resource management and load distribution to
achieve carbon neutrality.
• Performance: Unlike the existing prediction-based

heuristic approaches [17,21], COCA offers analytical bounds
on the operational cost and potential deviation from
carbon neutrality, compared to the optimal offline algorithm
with lookahead information. The effectiveness of COCA
in practical settings is also validated through simulation
studies.

The rest of this paper is organized as follows. Section 2
describes the model. In Section 3, we present the problem
formulation, and in Section 4, we develop our online
algorithm, COCA, as well as provide its performance
analysis. The analysis is further validated by a simulation

Table 1: List of key notations.
Notation Description
xi(t) Service rate of server i
λi(t) Workloads processed by server i
p(t) Server power consumption
r(t) On-site renewable energy
f(t) Off-site renewable energy
Z Total RECs
e(t) Electricity cost
d(t) Delay cost
g(t) Total cost
V Cost-carbon parameter
q(t) Carbon deficit queue length

study in Section 5. Related work is reviewed in Section 6
and finally, concluding remarks are offered in Section 7.

2. MODEL
We consider a discrete-time model by dividing the entire

budgeting period (e.g., typically a year) into J time slots,
each of which has a duration that matches the timescale
of prediction window for which the data center operator
can accurately predict the future information (including
the workload arrival rate, renewable energy supply, and
electricity price). In the following analysis, we mainly focus
on hour-ahead prediction, which is sufficiently good in terms
of cost minimization as shown in Section 5. Throughout
the paper, we also use environment to collectively refer to
electricity price, on-site/off-site renewable energy supplies
and workloads. Next, we present the modeling details. Key
notations are summarized in Table 1.

2.1 Data center
We consider one data center that has N servers, and in

general, these servers may be heterogeneous in their power
consumption and processing speeds due to various reasons
such as different purchase dates. Moreover, each server may
trade performance for power consumption by varying its
performance and power states (e.g., P-states, C-states, or a
combination of them) or varying its processing speeds (e.g.,
via dynamic voltage and frequency scaling or DVFS [22]).
Note that the processing speed is quantified in terms of
the service rate, i.e., how many jobs can be processed in
a unit time on average. We interchangeably use “processing
speeds” and “service rates” wherever applicable. We also
use “capacity” to represent the service rate of a server. To
keep our model general, we consider that server i can choose
its speed xi out of a finite set Si = {si,0, si,1, · · · , si,Ki},
where si,0 = 0 represents zero speed (e.g., deep sleep or
shut down) and Ki is the total number of positive processing
speeds available to server i. Next, assuming that the servers
consume a negligible power under the zero-speed mode, we
express the average power consumption of server i as

pi(λi, xi) =

{

pi,s + pi,c(xi) · λi
xi
, ifxi > 0,

0, ifxi = 0,
(1)

where λi is the workload arrival rate distributed to server i,
pi,s is the static power regardless of the workloads as long
as server i is turned on, and pi,c(xi) is the computing power
incurred only when server i is processing workloads at a
speed of xi.



In our study, we focus on the server power consumption
for the considered workloads, while neglecting the power
consumption of other parts (e.g., power supply system,
cooling system) which can be conveniently absorbed by a
(time-varying) power usage effectiveness (PUE) factor1 that,
multiplied by the server power consumption, yields the total
data center power consumption [21]. Thus, the total power
consumption2 at time t is given by

p(~λ(t), ~x(t)) =

N
∑

i=1

pi(λi(t), xi(t)), (2)

where ~λ(t) = (λ1(t), · · · , λN(t)) and ~x(t) = (x1(t), · · · , xN (t))
are the load distribution and capacity provisioning decisions
for time t, respectively.

We denote the electricity price at time t by w(t), which is
known to the data center no later than the beginning of time
t and may change over time if the data center participates in
a real-time electricity market (e.g., hourly market [21, 30]).
Assuming that the amount of available on-site renewable
energy that can be used to process workloads is r(t) (as
specified in the next subsection), we can express the incurred
electricity cost as

e(~λ(t), ~x(t)) = w(t) ·
[

p(~λ(t), ~x(t))− r(t)
]+

, (3)

where [ · ]+ = max{·, 0} indicating that no electricity will
be drawn from the power grid if on-site renewable energy
is already sufficient. While we use (3) to represent the
electricity cost for the data center at time t (as considered by
[21, 30]), our analysis is not restricted to a linear electricity
cost function and can also model other electricity cost
functions such as nonlinear convex functions (e.g., the data
center is charged at a higher price if it consumes more
power).

2.2 Renewable energy
We consider three representative types of renewable

energy sources that have been increasingly adopted by large
data centers in many regions of the world [14,25].

On-site renewable energy: Renewable energy genera-
tors such as solar panels and wind turbines can be easily
installed on-site and directly provide green energy to power
data centers [14], but they are highly dependent on weather
conditions, exhibiting an intermittent nature. We denote
the available on-site renewable energy supply during time t
by r(t) ∈ [0, rmax].

Off-site renewable energy: Since the most desirable
locations for renewable energy generation and building data
centers are typically different, large data centers now resort
to off-site renewable energy to achieve carbon neutrality
[14, 25]. One important and widely-used type of off-site
renewable energy is through power purchasing agreement
(PPA). For example, Google has invested in and signed
PPAs with several renewable energy plants such that the
generated renewable energy will be directly fed into the
local electricity grid and then used to offset the brown
energy usage of Google’s data centers [14]. Nonetheless,
data centers still need to draw electricity from the grid and

1PUE is defined as the ratio of the total power consumption
to IT-equipment power consumption.
2This is equivalent to energy consumption, since the length
of each time slot is the same.

pay utility companies for accountability reasons, since off-
site renewable energy becomes undifferentiated with other
types of energies once it enters the grid [14,25]. We denote
the available off-site renewable energy generated via PPAs
for time t as f(t) ∈ [0, fmax].

REC: RECs are a tradable commodity in energy markets
that may be purchased to offset data centers’ brown energy
usage, whereas they are not tied to any physical delivery
of electricity [14]. While our model accommodates various
approaches to purchasing RECs (e.g., dynamic purchase
in real time), we assume that a (fixed) amount of RECs,
denoted by Z have been purchased prior to a budgeting
period.

Before proceeding to the workload model, we note that
our consideration of the above three renewable sources is
mostly based on the current industry practice that large
data centers do not have the option of directly getting green
energy from local utility companies [14,15,25]. Nonetheless,
even though directly purchasing renewable energy from
utility companies becomes a reality in the future, our
research is still useful in the sense that COCA can minimize
the operational cost while capping the long-term energy
usage: all the analysis still applies by removing the off-
site renewable energy from our model and taking the REC
parameter Z as the desired total energy cap.

2.3 Workloads
We denote by λ(t) ∈ [0, λmax] the total arrival rate of

workloads in the data center during time t, where λmax is
the maximum possible arrival rate. As assumed in prior
work [7, 17, 21], the value of λ(t) is accurately available
at the beginning of each time slot t, while our simulation
results further demonstrate the robustness of COCA against
inaccurate knowledge of workload arrival rates. As in
[19,21,30], we focus on delay-sensitive interactive workloads,
which can take over 50% of data center workloads [21], while
isolating delay-tolerant batch workloads that can be handled
by maintaining a separate batch job queue as considered by
several existing studies [36]. The workloads first arrive at
a load distributor before they are distributed to servers for
processing. We denote the workload arrival rate distributed
to server i at time t by λi(t) ≥ 0.

To quantify the overall data center delay performance,
we introduce the notion of delay cost capturing the delay-
induced revenue loss and/or user dis-satisfaction [21]:
we model the cost associated with the workload delay
at server i by a convex function di(λi, xi), which is
intuitively increasing in λi and decreasing in the service
rate xi [19]. As a concrete example, we can model
the service process at each server as an M/G/1/PS
(Memoryless/General/1/Processor-Sharing) queue and use
the average response time (multiplied by the arrival rate) to
represent the delay cost. Specifically, the total delay cost at
time t can be written as [28]

d(~λ(t), ~x(t)) =

N
∑

i=1

di(λi(t), xi(t)) =

N
∑

i=1

λi(t)

xi(t)− λi(t)
, (4)

in which we ignore the network delay cost between the load
distributor and servers. Note that the average network delay
between the users and the data center can be approximately
modeled as a certain (time-varying) variable [21] and added
into (4) without affecting our approach of analysis. While



the M/G/1/PS queueing model may not capture the exact
response time in practice, it has been widely used as an
analytic vehicle to provide a reasonable approximation for
the actual service process [9,21,30]. In addition, our analysis
is not restricted to the specific delay cost given by (4).

3. PROBLEM FORMULATION
In this section, we first specify the optimization objective

and constraints. Then, we present an offline formulation for
our problem on capacity provisioning and load distribution.
Finally, we introduce an offline algorithm, which serves as a
benchmark that we compare COCA with.

3.1 Objective and constraints
The data center considers workload arrival rate, on-

site renewable energy and electricity price as inputs, and
decides the server speeds and load distributions. It aims at
minimizing the long-term operational cost subject to a set
of constraints, as specified below.

Objective. We focus on operational costs rather than
capital costs (e.g., building data centers) or other non-IT
costs (e.g., human resource cost). Both electricity cost and
delay cost are important for data centers, as the former takes
up a dominant fraction of the operational cost while the later
affects user experiences and revenues [19, 21]. Our study
incorporates both costs by considering a parameterized cost
function as follows3

g(~λ(t), ~x(t)) = e(~λ(t), ~x(t)) + β · d(~λ(t), ~x(t)), (5)

where β ≥ 0 is the weighting parameter adjusting the
importance of delay cost relative to the electricity cost [21].
The optimization objective is to minimize the long-term
average cost expressed as

ḡ =
1

J

J−1
∑

t=0

g
(

~λ(t), ~x(t)
)

, (6)

where J is the total number of time slots over the entire
budgeting period.

Constraints. To avoid server overloading and workload
dropping, the load distribution decisions need to satisfy

0 ≤ λi(t) ≤ γ · xi(t), ∀i, t (7)

N
∑

i=1

λi(t) = λ(t), ∀t (8)

where γ ∈ (0, 1) is a predetermined parameter that controls
the maximum utilization of a server. Naturally, server i can
only select one of its supported service rates, i.e.,

xi(t) ∈ Si = {si,0, si,1, · · · , si,Ki}, ∀i, t. (9)

Note that additional constraints, such as peak power and
maximum delay cost, can also be incorporated with little
impact on our proposed online algorithm.

Next, we specify the long-term carbon neutrality con-
straint as follows. While carbon neutrality was originally
proposed for “net-zero” carbon emissions, we follow the
current market practice and say that a data center achieves
carbon neutrality as long as its electricity usage is completely

3Although off-site renewable energy supplies are not free, the
payment is often subject to PPAs and not fully controlled
by data centers [14,25].

offset by the off-site renewable energy plus RECs [14, 25],
under the implicit assumptions that: (1) electricity energy
is brown; and (2) renewable energy and RECs are green
with a negligible carbon footprint. Mathematically, the data
center desires to follow the long-term constraint specified by

1

J

J−1
∑

t=0

[

p
(

~λ(t), ~x(t)
)

− r(t)
]+

≤ α

J
·
[

J−1
∑

t=0

f(t) + Z

]

, (10)

where α > 0 indicates the desired capping of electricity usage
relative to the total off-site renewable energy plus RECs.
The less α, more aggressive the data center is in achieving
carbon neutrality. In particular, α ∈ (0, 1) means that the
data center uses less electricity than the allowed budget, and
may sell the leftover budget in carbon markets [17]. Rather
than deciding α, COCA works with a given value of α.

3.2 Offline problem formulation
This subsection presents an offline problem formulation

for capacity provisioning and load distribution as follows.

P1 : min
A

ḡ =
1

J

J−1
∑

t=0

g
(

~λ(t), ~x(t)
)

(11)

s.t., constraints (7), (8), (9), (10), (12)

where A represents a sequence of decisions, i.e., ~λ(t) and
~x(t), for t = 0, 1, · · · , J−1, which we need to optimize. The
first major practical challenge that impedes derivation of
the optimal solution to P1 is the lack of future information:
optimally solving P1 requires complete offline information
(e.g., workload arrivals, renewable energy supplies) over
the entire budgeting period that is very difficult, if not
impossible, to accurately predict in advance. Furthermore,
P1 belongs to mixed-integer nonlinear programming and is
difficult to solve, even if the long-term future information is
accurately known a priori. Thus, these challenges demand
an online approach that can efficiently make resource
management decisions without foreseeing the far future.

T -step lookahead algorithm. As in [26], we now intro-
duce an offline algorithm with T -step lookahead information
as a benchmark. Specifically, we divide the entire budgeting
period into R ≥ 1 frames, each having T ≥ 1 time slots
such that J = RT , and present the following problem
formulation:

P2 : min
~λ(t),~x(t)

1

T

(r+1)T−1
∑

t=rT

g
(

~λ(t), ~x(t)
)

(13)

s.t., constraints (7), (8), (9), (14)

1

T

(r+1)T−1
∑

t=rT

[p
(

~λ(t), ~x(t)
)

− r(t)]+ ≤ α · fr
T

,(15)

where fr =
∑(r+1)T−1

t=rT f(t) + Z
R

is the total amount of
available off-site renewable energy supplies during the r-th
frame plus the total RECs evenly distributed over the R
frames. Essentially, P2 defines a family of offline algorithms
parameterized by look-ahead window size T .

To ensure there exists at least one feasible solution to P2,
we make the following assumptions that are mild in practice.

Boundedness assumption: The workload arrival rate λ(t),
electricity price w(t), as well as renewable energy supplies
r(t) and f(t) are finite, for t = 0, 1, · · · , J − 1.



Algorithm 1 COCA

1: Input λ(t), r(t), w(t), at the beginning of each time
t = 0, 1, · · · , J − 1

2: if t = rT , ∀r = 0, 1, · · · , R− 1 then
3: q(t)← 0 and V ← Vr

4: end if
5: P3:

Choose ~λ(t) and ~x(t) subject to (7)(8)(9) to minimize

V · g
(

~λ(t), ~x(t)
)

+ q(t) ·
[

p
(

~λ(t), ~x(t)
)

− r(t)
]+

(16)

6: Update q(t) according to (17).

Feasibility assumption: For the r-th frame, where r =
0, 1, · · · , R−1, there exists at least one sequence of capacity
provisioning and load distribution decisions that satisfy the
constraints of P2.

We denote the minimum average cost for the r-th frame
by G∗

r , for r = 0, 1, · · · , R, considering all the decisions that
satisfy the the constraints (14)(15) and that have perfect
information over the frame. Thus, the minimum long-
term average cost achieved by the oracle’s optimal T -step
lookahead algorithm is given by 1

R

∑R−1
r=0 G∗

r .

4. ONLINE RESOURCE MANAGEMENT
In this section, we first develop our online algorithm,

COCA, and then show that it is efficient with respect to cost
minimization compared to the optimal offline algorithm with
T -step lookahead information. COCA enables each server to
autonomously decide its processing speed and the amount
of workloads to process.

4.1 COCA
On top of a high computation complexity due to the

involved mixed-integer programming, a significant challenge
of directly solving P1 is that the long-term carbon neutrality
constraint couples the data center decisions across different
time slots: using more brown energy at the current
time will potentially reduce the energy budget available
for future uses, and yet the decisions have to be made
without foreseeing the future. To address this challenge,
we leverage Lyapunov optimization [26] and construct
a (virtual) carbon deficit queue to guide the resource
management decisions to follow the long-term carbon
neutrality constraint. Specifically, assuming q(0) = 0, we
construct a carbon deficit queue whose dynamics evolves as
follows

q(t+ 1)

=

{

q(t) +
[

p
(

~λ(t), ~x(t)
)

− r(t)
]+

− α · f(t)− z

}+

,
(17)

where q(t) is the queue length indicating how far the
current electricity usage deviates from the carbon neutrality
constraint, and z = α

J
· Z is the average RECs per time slot

scaled by α. Next, we present COCA in Algorithm 1.
COCA is purely online and requires only the currently

available information as the inputs (i.e., λ(t), r(t), w(t), but
excluding the off-site renewables f(t) because the carbon
deficit queue is updated at the end of each time slot after f(t)
is realized). We use V0, V1, · · · , VR−1 to denote a sequence of
positive control parameters (also referred to as cost-carbon

Algorithm 2 GSD: Distributed Optimization for P3

1: Initialization: servers choose feasible values and set
~x∗(t)← ~xe(t), ~λ∗(t)← ~λe(t), g̃∗ ←∞

2: if λ(t) ≤ γ ·∑N

i=1 x
e
i (t) then

3: Obtain ~λe(t) by minimizing over ~λ(t)

V g
(

~λ(t), ~xe(t)
)

+ q(t)
[

p
(

~λ(t), ~xe(t)
)

− r(t)
]+

, (18)

subject to (7)(8), and set g̃e to the minimum value of
(18)

4: u← exp
(

δ
g̃e

)

exp
(

δ
g̃∗

)

+exp
(

δ
g̃e

)

5: With a probability of u: servers set ~x∗(t) ← ~xe(t),
~λ∗(t) ← ~λe(t) and g̃∗ ← g̃e; with a probability of
1− u: servers set ~xe(t)← ~x∗(t)

6: end if
7: Randomly select a server i; server i randomly selects a

processing speed x′
i(t) ∈ Si and sets xi(t)

e ← x′
i(t)

8: Return ~x∗(t) and ~λ∗(t) if the stopping criterion is
satisfied; otherwise, go to Line 3

parameters) to dynamically adjust the tradeoff between
cost minimization and electricity usage over the R frames,
each having T time slots. The importance of cost-carbon
parameters V will be revisited in Section 4.3. Lines 2-4 reset
the carbon deficit queue at the beginning of each frame r,
such that the cost-carbon parameter V can be adjusted and
the carbon deficit in a new time frame will not be affected
by its value resulting from the previous time frame. Line 5
defines an online optimization problem P3 to decide the

capacity provisioning ~x(t) and load distribution ~λ(t). By

considering the additional term q(t)·
[

p
(

~λ(t), ~x(t)
)

− r(t)
]+

in P3, the data center operator places a higher weight on
the electricity usage: the weighting factor for the electricity
usage is scaled by V plus the carbon deficit queue length q(t),
whereas the weighting factor for delay cost is only scaled by
V . As a consequence, when q(t) increases (i.e., the current
electricity usage further exceeds the supplied renewable
energy and RECs), minimizing the electricity usage is more
critical for the data center operator due to the carbon
neutrality constraint. Thus, COCA works following the
philosophy of “if violate neutrality, then use less electricity”,
and the carbon deficit queue maintained without foreseeing
the future guides the data center decisions towards meeting
carbon neutrality, thereby enabling online decisions.

Now, to complete COCA, it remains to solve the
optimization problem P3, which will be discussed in the
next subsection.

4.2 Distributed optimization
As aforementioned, P3 is mixed-integer nonlinear pro-

gramming. While there exist various centralized techniques
(such as Generalized Benders Decomposition [12]) to solve
it, distributed solutions are desired such that each server
can make autonomous decisions. In this paper, we present a
distributed algorithm, called GSD (Gibbs Sampling-based
Distributed optimization), based on a variation of Gibbs
sampling presented in Algorithm 2.

GSD is a distributed algorithm working as follows: at
each iteration, a randomly selected server first autonomously



updates its speed, and then the servers decide their
optimal load distribution decisions (also distributedly),
after which the servers communicate decisions to each
other. Alternatively, a coordinating node may facilitate
message passing by collecting and distributing information
exchanges, while in this case GSD becomes semi-distributed.
Line 3 in GSD, i.e., minimizing (18), can be solved efficiently
using any distributed optimization techniques (see [5] for a
solution based on dual decomposition). Note that during the
iterations, servers do not need to actually adjust their speeds
or load distribution decisions, which is only needed after the
completion of the algorithm. In line 7, to randomly select
a server, we can assign each server with a random timer
to “compete” for the updating opportunity, like in random
channel access in wireless networks. In the event of server
failures, only functioning servers need to participate in GSD,
while those failed servers do not intervene the execution of
the algorithm.

It is known that always choosing a better decision (i.e.,
greedy approach) may lead to an arbitrarily bad outcome for
combinatorial optimization [33,34]. To avoid the inefficiency,
GSD explores new solutions by deliberately introducing
randomness to decision making (i.e., line 5), even though
they may be worse than the current solution. More
specifically, each server i, for i = 1, 2, · · · , N , maintains x∗

i (t)
as its current processing speed, while exploring (possibly)
new processing speed xe

i (t) to avoid being trapped in a

locally optimal solution. We use ~λ∗(t) and ~λe(t) to denote
the optimal load distribution decisions corresponding to
x∗
i (t) and xe

i (t), respectively. The parameter δ > 0,
referred to as temperature [33], is used to control exploration
versus exploitation (i.e., the degree of randomness). On
one hand, as δ becomes large, GSD is more greedy and
keeps a new solution with a greater probability if it is
better than the current solution (i.e., g̃e ≤ g̃∗). In this
case, however, it takes more iterations to identify the
globally optimal solution because GSD may be stuck in a
local optimal solution for a long time before successfully
exploring other less greedy solutions that lead more efficient
outcomes. On the other hand, as δ → 0, GSD tries to
explore all the possible solutions from time to time without
convergence, even though they are worse than the current
one. Note that the randomness introduced in line 5 is
a variation of Gibbs sampling [33]: in line 5, only the
old decision and the randomly selected new decision are
sampled probabilistically, unlike the original Gibbs sampling
technique that samples all the possible decisions and hence
requires the servers to know the costs for all the possible
decisions. Next, we formally prove the optimality of GSD.

Accuracy. Theorem 1 shows that GSD can solve
the optimization problem P3 with an arbitrarily high
probability as the temperature δ →∞.

Theorem 1. As δ > 0 increases, GSD converges with
a higher probability to the globally optimal solution that
minimizes (16) subject to (7)(8)(9). When δ → ∞,
Algorithm 2 converges to the globally optimal solution with
a probability of 1.

Proof. The proof is available in Appendix A. �

Theorem 1 indicates that using Algorithm 2, the servers
can select the optimal processing speeds distributedly with
an arbitrarily high probability. To avoid being trapped in
a locally optimal solution for a long time and yet achieve a

good performance, an advisory approach used in practice is
selecting the smoothing parameter δ adaptively : a small δ
is initially chosen to explore all possible decisions, whereas
δ is increased over the iterations such that the servers
progressively concentrate on better solutions [34].

Complexity. It is worth pointing out that despite being
distributed, GSD still incurs a worst-case complexity that is
exponential in the number of servers (although in practice
a reasonably good solution is often quickly identified).
In practice, the computational complexity of GSD can
be effectively reduced by making capacity provisioning
decisions on a group basis: changing speed selections for
a whole group of (homogeneous) servers in batch. Our
numerical results show that with 200 groups of servers, GSD
converges to a reasonably good solution within 1 second.
Finally, notice that solving P3 is not restricted to using the
presented GSD. Instead, other alternative algorithms can
also be applied. Compared to solving the computationally
prohibitive offline problem P1 that involves a large number
of mixed-integer nonlinear problems coupled by the long-
term carbon neutrality constraint, COCA is much more
practically realizable because the resource management
decision is only made once every time slot and the total
complexity associated with making a long sequence of
decisions is amortized over each time slot.

4.3 Performance analysis
Building upon Lyapunov optimization [26], this subsection

presents the performance analysis of COCA in Theorem 2.

Theorem 2. Suppose that boundedness and feasibility
assumptions are satsified. Then, for any T ∈ Z

+ and
R ∈ Z

+ such that J = RT , the following statements hold.
a. The carbon neutrality constraint is approximately

satisfied with a bounded deviation:

1

J

J−1
∑

t=0

[

p
(

~λ(t), ~x(t)
)

− r(t)
]+

≤α

J
·
[

J−1
∑

t=0

f(t) + Z

]

+

∑R−1
r=0

√

C(T ) + Vr (G∗
r − gmin)

R
√
T

,

(19)

where C(T ) = B + D(T − 1) with B and D being finite
constants, G∗

r is the minimum average cost achieved over
the r-th frame by the optimal offline algorithm with T -slot
lookahead information, for r = 0, 1, · · · , R − 1, and gmin is
the minimum hourly cost that can be achieved by any feasible
decisions throughout the budgeting period.

b. The average cost ḡ∗ achieved by COCA satisfies:

ḡ∗ ≤ 1

R

R−1
∑

r=0

G∗
r +

C(T )

R
·
R−1
∑

r=0

1

Vr

. (20)

Proof. The proof is available Appendix B. �

Theorem 2 shows that, given a fixed value of T and
R, COCA is O(1/V )-optimal with respect to the av-
erage cost against the optimal T -step lookahead policy,
while the carbon neutrality constraint is guaranteed to
be approximately satisfied with a bounded “fudge factor”

of
∑R−1

r=0

√

C(T )+Vr(G∗

r−gmin)
R
√

T
. Approximate satisfaction of

carbon neutrality stems from the fact that Theorem 2
applies for an arbitrarily changing environment satisfying
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Figure 1: Workload trace.

boundness and feasibility assumptions: workloads cannot
be dropped and it cannot be ruled out that workloads are
constantly very high during the last few time slots of the
budgeting period, thereby deviating from carbon neutrality
even though neutrality is satisfied for the prior time slots. In
practice, data centers may purchase additional RECs at the
end of a budgeting period to offset the remaining electricity
usage.

Dynamic selection of cost-carbon parameters.
Supporting dynamic selection of cost-carbon parameters is
important because the appropriate value of V depends on
specific modeling parameters and is typically determined on
a trial-and-error basis. For example, if the current cost is too
high whereas the electricity usage is far below the allowed
budget, the data center operator can increase the value of
V to weaken the carbon neutrality constraint. Nonetheless,
the entire budgeting period is limited (e.g., 6 months or
a year) and consequently, analyzing the performance of an
algorithm under a constant value of V , which is difficult
to find appropriately in advance, limits its effectiveness to
meet the desired cost and energy budget within a finite
budgeting period. Therefore, it is important to derive
the performance bounds of COCA by explicitly considering
time-varying values of V0, V1, · · · , VR−1 that are used in
practical scenarios. COCA supports adaptation of V by
resetting the budget deficit queue at the beginning of each
frame consisting of T time slots, effectively decoupling the
online decisions across different frames.

5. SIMULATION
This section presents trace-based simulation studies of a

large data center to validate our analysis and evaluate the
performance of COCA. We first present our data sets and
then show the simulation results:
• The impact of V : We show how cost minimization and

satisfaction of carbon neutrality varies with different values
of V .
• Comparison with prediction-based method: We compare

COCA with the state-of-art prediction-based method and
show that COCA reduces the average cost by more than
25% while satisfying the desired carbon neutrality better.
• Sensitivity study: We demonstrate that COCA is robust

against several factors such as inaccurate knowledge of the
current workload arrival rates.

5.1 Data sets
We consider a data center with a peak server power of

50MW (approximately 216K servers in total, each with a
maximum power of 231W). As in the existing work [21,30],

we only model the server power consumption for delay-
sensitive workloads as our main focus; we do not model the
cooling power or server power for delay-tolerant batch jobs.
Due to the practical difficulty in implementing COCA in
a real system, we adopt event-based simulations with real-
world trace data to validate our analysis, which is a common
approach in the literature [21,30].
• Server: We use Powerpack [11] to measure the power

consumption of a server with a quad-core AMD Opteron
2380 processor that supports four different speeds via DVFS.
Specifically, if turned on, each server has an idle power of
140W and supports the following four different processing
speeds/powers: 0.8GHz (184W), 1.3GHz (194W), 1.8GHz
(208W), and 2.5GHz (231W). When running at the maxi-
mum speed, we assume each server can process 10 requests
per second on average.
• Workloads: We consider “mice-type” synthetic work-

loads (e.g., web requests), and use real-world trace to drive
our simulation. The service time of an individual request
follows an exponential distribution with a mean of 100ms
(when the server is running at its full speed), which may
not perfectly capture a real system but suffices for our
evaluation purpose. As the default workload trace, we
profile the server I/O usage log of Florida International
University (FIU, a large public university in the U.S. with
over 50,000 students) from January 1 to December 31, 2012.
We show in Fig. 1(a) the trace of July, 2012, normalized with
respect to the maximum arrival rate. The trace exhibits
a significant increase around late July, 2012, due to the
summer activities. We scale the FIU workload trace such
that the maximum service request arrival rate is 1.1million
req/sec (approximately 50% of the data center capacity
when all the servers are running at their full speeds). For
sensitivity studies, we also use workload trace for Microsoft
Research (MSR) first shown in [19] and repeat the trace
for one year by adding random noises of up to ±40%. The
I/O trace for MSR is taken from 6 RAID volumes at MSR
Cambridge, and the traced period is 1 week starting from
5PM (GMT) on February 22, 2007 [19]. Fig. 1(b) shows the
normalized MSR workload trace for one week.
• Renewable energy: We obtain from [1] the hourly

renewable energies (generated through solar panels and
wind turbines) for the city of Mountain View as well as
the state of California during the year of 2012, and scale
them proportionally such that on-site renewable accounts
for approximately 20% of the total energy consumption.
• Electricity price: As in [21, 29, 30, 35], we assume that

the data center participates in a real-time electricity market
and obtain from [1] the hourly electricity price for Mountain
View.
• Others: The budgeting period in our study is one year,

and the default total allowed electricity usage is 92% of
1.55×105MWh (i.e., 1.43×105MWh), where 1.55×105MWh
is the electricity usage of carbon-unaware algorithm (to
be specified later). Among the 1.43 × 105MWh renewable
budget, off-site renewable energy and RECs contribute 40%
and 60%, respectively. The weighting parameter converting
the delay to monetary cost is β = 10.

5.2 Results
We drive the event-based simulation using the above

synthetic trace data. The power consumption and delay
are recorded as outputs of the simulation. Next, we present
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Figure 2: Impact of V .

the simulation results as follows.

5.2.1 Impact of V
Constant V. We first consider a constant V throughout

the budgeting period (i.e., the year of 2012). Fig. 2(a)
and Fig. 2(b) show the impact of V on the average
hourly cost (i.e., ḡ) and average hourly carbon deficit
(i.e., average hourly electricity usage minus the available
carbon budget consisting of both off-site renewable energy
and RECs), respectively. Note that carbon deficit may
be either positive or negative, depending on the amount
of offiste renewable energies plus RECs: negative deficit
means off-site renewable energies plus RECs exceed the
electricity usage. The result conforms with our analysis
that with a greater V , COCA is less concerned with the
carbon deficit while caring more about the cost. In the
extreme case in which V goes to infinity, COCA reduces to a
carbon-unaware algorithm that minimizes the cost without
considering carbon neutrality. Compared to the carbon-
unaware algorithm, COCA achieves a close-to-minimum cost
with V ≈ 240 while satisfying carbon neutrality, i.e., using
92% of the electricity consumption of the carbon-unaware
algorithm.

Varying V. We change V quarterly and present the
moving average hourly cost and carbon deficit (averaged
over the past 45 days) in Fig. 2(c) and Fig. 2(d), respectively.
We choose moving average over a period of 45 days, because
it is sufficiently long to show the general trend of cost/carbon
deficit. The fluctuation of moving average values is mainly
due to the large variation of workloads over the year. We
observe that compared to a constant V , by choosing a small
V initially, the average cost is quite big whereas it can be
significantly reduced later by increasing the value of V (at
the expense of increasing the carbon deficit). This indicates
the flexibility of dynamically tuning V to adjust the tradeoff
between cost minimization and potential violation of carbon
neutrality.
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Figure 3: Comparing COCA with PerfectHP.

5.2.2 Comparison with prediction-based method
This subsection compares COCA with the best known

relevant solution — prediction-based method studied in
[17, 31]. However, since none of the existing prediction-
based methods have considered both the nonlinear delay
cost and intermittent off-site renewable energy supplies, we
incorporate these factors by considering a heuristic variation
as follows.

Perfect hourly prediction heuristic (PerfectHP): The data
center operator leverages 48-hour-ahead prediction of hourly
workloads and allocates the carbon budget (RECs plus off-
site renewables, but not including the on-site renewables) in
proportion to the hourly workloads.The operator minimizes
the cost subject to the allocated hourly carbon budget;
if no feasible solution exists for a particular hour (e.g.,
workload bust), the operator will minimize the cost without
considering the hourly carbon budget. We consider 48-
hour-ahead prediction in the comparison, because prediction
beyond 48 hours will typically exhibit large errors [21],
especially for solar and wind energy supplies that are
commonly used for data centers but highly subject to
weather condition.

Fig. 3 shows the comparison between COCA and Per-
fectHP in terms of the average hourly cost and carbon
deficit.4 Fig. 3 demonstrates that COCA is more cost-
effective compared to the prediction-based method with a
cost saving of more than 25% over one year. COCA achieves
the benefits because it can still focus on cost minimization
even though the workload spikes and carbon neutrality is
temporarily violated, since the carbon deficit queue only
penalizes the data center for overusing electricity in later
time slots while guaranteeing a bounded deviation from the
carbon neutrality. By contrast, without foreseeing the long-
term future, short-term prediction-based PerfectHP may
over-allocate the carbon budget at inappropriate time slots
and thus have to set a stringent budget for certain time slots
when the workload is high, thereby significantly increasing
the delay cost. Note that if 48-hour-ahead prediction
information is available, COCA can also leverage it to
reduce the cost further, but the potential cost saving is
quite limited, because Fig. 2(a) already demonstrates that
COCA is fairly close to the lower bound on the cost while
satisfying carbon neutrality. This implies that only using
hour-ahead prediction in COCA is sufficiently good in terms
of cost minimization. In addition to cost saving, COCA also
satisfies the desired carbon neutrality constraint better, as

4The average at time t in Fig. 3 is obtained by summing up
all the values from time 0 to time t and then dividing the
sum by t+ 1.
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Figure 5: Sensitivity study.

shown in Fig. 3(b).

5.2.3 Execution of GSD
We present a snapshot of executing GSD during the 1500-

th time slot (but without considering the queue length)
in Fig. 4. Fig. 4(a) shows the total cost given different
smoothing parameters δ and matches our analysis: with a
larger δ, GSD achieves the minimum cost with a higher
probability (while potentially being trapped in a bad
solution for a long time). Fig. 4(b) shows the iteration
of total cost with different initial points given a fixed
δ = 10 × 105. It demonstrates that upon convergence,
the proposed distribution algorithm GSD leads to almost
the same cost regardless of initial points: GSD is quite
insensitive to the initial point. Finally, we note that, to
run GSD for 200 groups of servers, the execution time for
500 iterations in our simulator is less than 1 second on a
personal desktop computer.

5.2.4 Sensitivity study
We perform the following sensitivity studies. For all the

cases, we appropriately choose V such that carbon neutrality
is satisfied.
• Carbon budget: We now show in Fig. 5(a) the impact

of carbon budget (i.e., off-renewables plus RECs) on the
cost. Under our simulation settings, the carbon-unaware
algorithm consumes 1.55 × 105MWh electricity energy over
a year, which we normalize to 1. As a comparison, we also
show the optimal offline algorithm (OPT), which has the
complete offline information and minimizes the operational
cost under carbon neutrality. It can be seen that given a 85%
carbon budget — equivalent to using only 85% of electricity,
COCA only exceeds the capping-unaware algorithm by
approximately 5% in terms of the average cost, while still
being able to satisfy carbon neutrality (which is clearly
violated by the capping-unaware algorithm). Moreover,
COCA works remarkably well even compared to OPT.
This demonstrates that, with careful energy budgeting, the
long-term energy consumption can be significantly reduced
while still keeping the operational cost low (even compared
to the optimal offline algorithm and the carbon-unaware
algorithm). Note that if a higher carbon budget (e.g., 1.05)
is used, COCA will be almost the same as the capping-
unaware algorithm without using up the budget, because
our optimization objective incorporates both electricity and
delay costs and using excessive electricity will increase the
total cost (albeit decreasing the delay cost).
• Workload trace: We now consider the MSR workload

trace as illustrated in Fig. 1(b). Fig. 5(b) shows the normal-
ized cost achieved by COCA, OPT and the carbon-unaware
algorithm under different normalized carbon budgets. It
delivers the same message as Fig. 5(a) and demonstrates
that COCA works well with different workload traces.
• Workload overestimation: In practice, it may not be

possible to perfectly predict hour-ahead workload arrivals.
To cope with possible traffic spikes, we can either turn
on more servers as a backup or directly overestimate the
workload arrival rate by a certain overestimation factor
φ ≥ 1: the higher φ, the more overestimates. We choose the
later approach, and note that workload overestimation also
captures the imperfect modeling of service rates. Fig. 5(c)
shows that the total cost only increases by less than 2.5%
even when we overestimate the workloads by 20%. This
is because although workload overestimation may turn on
more servers and incur a higher electricity cost at some time
slots, the delay cost will be decreased. Note that we only
show the cost with a workload overestimation by up to 20%,
because prior research verifies that 20% overestimation is
typically sufficient for hour-ahead prediction [20].
• Switching cost: Switching servers on/off induces various

costs, such as energy/time waste as well as “wear and
tear”. As in [19], we incorporate all these factors and use
switching cost as the combined cost quantified in terms
of energy consumption. We normalize the switching cost
(incurred by turning on/off one server) with respect to the
maximum hourly energy consumption of a single server
(i.e., 0.231KWh). Fig. 5(d) shows that even when the
switching cost of one server takes 10% of its maximum
hourly energy consumption (i.e., 0.0231KWh), the total
average operational cost only increases by less than 5%.

We further note that with different combinations of off-
site renewables and RECs (but with the same total amount),
COCA achieves almost the same cost (less than 1% change),
indicating that COCA is not sensitive to renewable energy
portfolios, but rather mainly depends on the total budget
(as shown in Fig. 5(a)). Other sensitivity studies such as
different server settings are also performed, demonstrating



that COCA provides a satisfactory performance in various
scenarios and pointing to its applicability in real systems.
These results are omitted due to space limitations.

6. RELATED WORK
We now provide a snapshot of the related work.
Data center optimization. There has been a growing

interest in optimizing data center operation from various
perspectives such as cutting electricity bills [6, 16, 21,
28, 30, 32] and minimizing response times [9, 19]. For
example, “power proportionality” via dynamically turning
on/off servers based on the workloads has been extensively
studied and advocated as a promising approach to reduce
the energy cost of data centers [16, 19]. By exploring
spatial diversities, [29,32] study geographical load balancing
among multiple data centers to minimize energy cost, and
[21] proposes to reduce brown energy usage by scheduling
workloads to data centers with more green energies. [4, 13,
20] utilize prediction of renewable energy availability for
scheduling deferrable batch workloads, thereby minimizing
electricity consumption. However, none of these studies have
considered carbon neutrality, which is becoming increasingly
important for large data center operators [14,25].

Carbon neutrality and energy capping. The existing
studies, e.g., [8,17,31], focus on a related problem of energy
capping by using long-term prediction of future information,
which may not be feasible in practice. While several
heuristic algorithms (e.g., keep a schedule margin to offset
the uncertainty in workload prediction) have been proposed
in view of the unpredictable future information [8,17], their
evaluation is empirical only, without providing performance
guarantees analytically. In comparison, COCA offers
provable guarantees on the average cost while bounding the
deviation from carbon neutrality; our simulation results also
demonstrate the benefits of COCA over the existing methods
empirically. Our recent research [23, 24] studies efficient
dynamic server provisioning algorithms for energy capping
and carbon neutrality, but load distribution is neglected
and only data center-level resource management knob (i.e.,
controlling the number of active homogeneous servers, or
right-sizing the data center) is considered. By contrast,
COCA focuses on a practical data center with heterogeneous
servers and incorporates server-level resource management
(i.e., DVFS) as well as load distribution decisions, enabling
a fine-grained management of computing resources in data
centers for carbon neutrality. Moreover, COCA features
distributed implementation that can be easily scaled to a
large system.

7. CONCLUSION
In this paper, we focused on the data center carbon

footprint and proposed a provably-efficient online algorithm,
called COCA, to control the electricity usage for minimizing
the data center operational cost while satisfying carbon
neutrality without requiring long-term future information.
Unlike prior work, COCA enables a fine-grained and
distributed resource management in data center by incorpo-
rating server-level CPU speed control and load distribution
decisions. Leveraging the recently-developed Lyapunov
optimization, we proved that COCA achieves a close-to-
minimum operational cost compared to the optimal offline
algorithm with lookahead information, while bounding

the potential violation of carbon neutrality, in an almost
arbitrarily random environment. We also performed a trace-
based simulation study to complement the analysis. The
simulation results showed that COCA reduces the cost by
more than 25% (compared to the state-of-the-art prediction-
based method) while resulting in a smaller carbon footprint.
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APPENDIX

A. PROOF OF THEOREM 1

We note first that once the optimal processing speeds
are obtained, the optimal load distribution can be easily
derived in a distributed manner (e.g., by using dual
decomposition [27]). As a result, to establish Theorem 1,
it is equivalent to prove that the servers’ processing speeds
selected distributedly will converge to the global optimum
following the iterations specified by Algorithm 2.

For notational convenience, we drop the time index
t wherever applicable and denote the servers’ processing
speeds by ~x. Following the iterations in Algorithm 2, ~x
evolves as a N-dimension Markov chain in which the i-
th dimension corresponds to server i’s processing speed
decision and has ki + 1 possible values. For the ease of
presentation, we begin with a 2-server case and denote the
state of the Markov chain as Sx1,x2 , where xi ∈ Si =
{si,0, si,1, · · · , si,Ki} for i = 1, 2. As shown in line 7 of
Algorithm 2, only one server is selected to explore a new
processing speed at each iteration with equal probability
among all servers. Thus, we have

Pr(Sx′

1,x
′

2
|Sx1,x2 , server 1 updates)

=























exp
(

δ
g̃(~x′)

)

(k1+1)
[

exp
(

δ
g̃(~x)

)

+exp
(

δ
g̃(~x′)

)] , if x′
1 6= x1, x

′
2 = x2,

0, if x′
2 6= x2,

1−∑

x′

1 6=x1,x
′

2=x2

exp
(

δ
g̃(~x′)

)

(k1+1)
[

exp
(

δ
g̃(~x)

)

+exp
(

δ
g̃(~x′)

)] , otherwise,

(21)

where g̃(~x) = V ·g
(

~λ, ~x
)

+ q(t)
[

p
(

~λ, ~x
)

− r(t)
]+

, in which

q(t) is the carbon deficit queue length at time t and ~λ is
the optimal load distribution decision given ~x. Thus, the
(unconditioned) transition probability can be derived as

Pr(Sx′

1,x
′

2
|Sx1,x2)

=
1

2

2
∑

i

Pr(Sx′

1,x
′

2
|Sx1,x2 , server i updates),

(22)

which specifies the probability that the state Sx1,x2 transits
to state Sx′

1,x
′

2
. Furthermore, the Markov chain driven by

(22) is irreducible and aperiodic, implying the convergence
to a stationary distribution denoted by Ω. Now, we fix the
processing speed of one state Sx1,x2 in the Markov chain and
derive the following balance equation

∑

x′

2 6=x2

ΩSx1,x2
· Pr(Sx1,x

′

2
|Sx1,x2)

=
∑

x′

2 6=x2

ΩS
x1,x′

2
· Pr(Sx1,x2 |Sx1,x

′

2
).

(23)

By plugging (22) into (23) and dividing both sides by
1
2
( 1
k1+1

+ 1
k2+1

) , we obtain
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x′

2 6=x2

ΩSx1,x2

exp
(

δ
g̃(x1,x

′
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)

exp
(

δ
g̃(x1,x2)

)

+ exp
(

δ
g̃(x1,x

′

2)

)

=
∑
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2 6=x2

ΩS
x1,x′

2

exp
(

δ
g̃(x1,x2)

)

exp
(

δ
g̃(x1,x

′

2)

)

+ exp
(

δ
g̃(x1,x2)

) .

(24)

Then, by observing the symmetry of equation (24) and
applying the probability conservation law, we obtain the



stationary probability distribution for the Markov chain as

Ω~x =
exp

(

δ
g̃(~x)

)

∑

~x′ exp
(

δ
g̃(~x′)

) , (25)

Denote ~x∗ as the optimal processing speed decision that
minimizes g̃(~x) over all the possible values of ~x, and suppose
temporarily that the optimal decision is unique. By taking
the first-order derivative of (25) with respect to δ, it can be
seen that the probability of converging to ~x∗ increases with
δ. In particular, by letting the temperature δ → ∞ and
noting that g̃(~x) is strictly positive for all feasible values of
~x, we obtain

lim
δ→∞

Ω~x =

{

1, if ~x = ~x∗,
0, otherwise.

(26)

Note that if there exist M ≥ 1 processing speed decisions,
all of which minimize g̃(~x), then Algorithm 2 will converge
to each of the optimal decisions with a probability of 1

M
, as

the temperature δ →∞.
Finally, we note that the same analysis can be extended

to the N-dimensional Markov chain, thereby completing the
proof of Theorem 1. �

B. PROOF OF THEOREM 2
The proof builds upon yet extends the recently-developed

Lyapunov optimization technique [26]. Due to space
limitations, we only show the key steps. First, we show
the following inequality that relates carbon queue length to
approximate constraint satisfaction:

1

T

(r+1)T−1
∑

t=rT

[p
(

~λ(t), ~x(t)
)

− r(t)]+

≤α

T





(r+1)T−1
∑

t=rT

f(t) +
Z

R



+
q(rT + T )− q(rT )

T
.

(27)

Next, we define for notational convenience: y(t) =
[

p
(

~λ(t), ~x(t)
)

− r(t)
]+

, z(t) = α · f(t) + z, and g(t) =

g(~λ(t), ~x(t)). We also define the quadratic Lyapunov

function L(q(t)) , 1
2
q2(t). Let △T (t) be the T−slot

Lyapunov drift yielded by some control decisions over the
interval t, t+1, · · · , t+T −1: △T (t) , L(q(t+T ))−L(q(t)).

Similarly, the 1-slot drift is △1(t) , L(q(t + 1)) − L(q(t)).
Based on q(t + 1) = [q(t) + y(t)− z(t)]+, it can be shown
that L(q(t + T )) = 1

2
q2(t + 1) ≤ 1

2
[q(t) + y(t)− z(t)]2.

Then, it can be shown that the 1-slot drift satisfies △1(t) ≤
B + q(t) · [y(t)− z(t)], where B is a constant satisfying, for
all t = 0, 1, · · · , J − 1, B ≥ 1

2
[y(t)− z(t)]2, which is finite

due to the boundedness assumption. Next, it can be easily
shown

△1(t) + V · g(t) ≤B + V · g(t) + q(t) · [y(t)− z(t)]. (28)

The online algorithm described in line 5 of Algorithm 1
actually minimizes the upper bound on the 1-slot Lyapunov
drift plus a weighted cost shown on the right hand side of
(28). Following (28), we can show that, for r = 0, 1, · · · , R−

1, the T -slot drift plus weighted cost satisfies

△T (rT ) + Vr

rT+T−1
∑

t=rT

g(t)

≤BT + Vr

rT+T−1
∑

t=rT

g(t) +

rT+T−1
∑

t=rT

(t− rT )qdiff · |y(t)− z(t)|

+ q(rT )
rT+T−1
∑

t=rT

[y(t)− z(t)]

≤T · C(T ) + Vr

rT+T−1
∑

t=rT

g(t) + q(rT )
rT+T−1
∑

t=rT

[y(t)− z(t)],

(29)

where C(T ) = B+D(T−1), qdiff = maxt=0,1,··· ,J−1{y(t), z(t)}
and D is a finite constant satisfying D ≥ 1

2
qdiff ·

max{y(t), r(t)}. Note that the right hand side of (28), which
is explicitly minimized by COCA, is smaller than or equal to
that of (29). Thus, by applying COCA on the left-hand side
and considering the optimal T -step lookahead policy on the
right-hand side of (29), we obtain the following inequality

△T (rT ) + Vr

rT+T−1
∑

t=rT

g∗(t) ≤ T · C(T ) + VrTG
∗
r , (30)

where g∗(t) is the cost achieved by COCA at time t. Note
that q(rT ) is reset to zero, for r = 0, 1, · · · , R−1, as enforced
by Algorithm 1, whereas △T (rT ) = q2(rT + T )− q2(rT ) =
q2(rT + T ) in (30) is the T -step Lyapunov drift calculated
after the r-th reset but before the (r + 1)-th reset of the
carbon deficit queue. Thus, before the (r+1)-th reset of the
carbon deficit queue, we obtain from (30)

q(rT + T ) ≤
√

BT +DT (T − 1) + VrT (G∗
r − gmin)

=
√
T ·

√

B +D(T − 1) + Vr (G∗
r − gmin),

(31)

where gmin is the minimum cost that can be achieved by any
feasible decisions throughout the budgeting period. Then,
by the inequality (27), we derive

1

T

(r+1)T−1
∑

t=rT

y(t) ≤ 1

T

(r+1)T−1
∑

t=rT

z(t) +

√

C(T ) + Vr (G∗
r − gmin)√

T
,

(32)

where we define C(T ) = B + D(T − 1). Therefore, by
summing (32) over r = 0, · · · , R− 1 and dividing both sides
by R, we prove part (a) of Theorem 2.

Next, by dividing both sides of (30) by Vr and considering
q(rT ) = 0 as enforced by Algorithm 1, it follows that

rT+T−1
∑

t=rT

g∗(t) ≤ BT

Vr

+ TG∗
r +

DT (T − 1)

Vr

− △T (rT )

Vr

≤ BT +DT (T − 1)

Vr

+ TG∗
r .

(33)

Thus, by summing (33) over r = 0, · · · , R − 1 and dividing
both sides by RT , we prove part (b) of Theorem 2. �


