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Abstract—Autoscaling has become an integral feature of cloud
computing services, allowing users to dynamically scale the cloud
resources on demand for both performance and cost. Moreover,
recent survey shows the importance of satisfying long-term budget
constraints (e.g., monthly or yearly) for cloud users. However,
meeting such constraints while optimizing delay performance
is challenging: it requires the knowledge of complete offline
information such as workload demand over the entire budgeting
period, which is difficult to predict accurately. This paper
proposes a new autoscaling system, BATS, which optimizes delay
performance while meeting long-term budget constraints using
only past and instantaneous workload information. Analytically,
we prove that, for arbitrary workload arrival, the autoscaling
algorithm of BATS achieves close-to-optimal performance even
compared to the optimal solution that has complete offline
information. Empirically, we build BATS autoscaler as a user-
friendly service for running applications on Windows Azure.
The experimental results show that BATS achieves both lower
cost and less delay compared with the state-of-art threshold-
based autoscaling solutions. We also run simulation studies
to complement the implementation results, demonstrating the
effectiveness, scalability and robustness of BATS for reducing
both average and tail latency under various workload scenarios.

L

Elasticity and scalability are important features of the emerging
cloud computing systems, where virtual machine (VM) in-
stances are dynamically purchased/released using autoscaling
techniques in an automated fashion. While autoscaling VM
instances, cloud users seek two major benefits, i.e., good
performance and low expenses. In particular, they often have
a cost budget in mind and desire the best performance within
their budget. Towards this end, we develop a novel autoscaling
algorithm and a full-fledged system to optimize delay while
satisfying user’s long-term budget constraint (e.g., monthly
or yearly budget). Our study focuses on delay-sensitive cloud
applications, e.g., web services, for which application perfor-
mance is measured by the delay of responses.

Introduction

Supporting budget constraint is essential for common busi-
ness practice: as shown in a recent survey [1] covering 1,000
data centers by Uptime Institute, over 80% data center oper-
ators/managers are given budgets by business departments or
higher-level executives at the beginning of a budgeting period
(e.g., typically, a month or a year). Such budget constraints
are also commonly applied to universities and governments,
which typically allocate annual IT operational budgets at the
beginning of each fiscal year [2].

Meeting budget constraints while optimizing delay perfor-
mance is challenging. Requesting more VMs at the current
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time will reduce the available budget for future uses, which
may significantly degrade performance and/or exceed budget
in the event of high future workloads. Hence, optimally scaling
VM acquisitions requires complete offline information (e.g.,
workload demand) over the entire budgeting period, which
is very difficult, if not impossible, to obtain in advance,
especially considering highly dynamic workloads and possible
traffic spikes due to breaking events [3]. Default autoscaling
mechanisms offered by major cloud service providers, such
as Amazon EC2 and Windows Azure, typically scale VM
instances based on resource utilization indicators such as CPU
and memory usage. For example, add a new VM instance
or switch to a bigger VM instance when the current CPU
utilization exceeds a certain user-specified threshold [4], [5].
Threshold based autoscaling cannot optimize the performance
while satisfying the budget constraint because of the following
limitations. A too low resource usage threshold may incur an
unnecessarily high cost, while a too high threshold reduces
the cost, but may result in an intolerable performance. It is
difficult to decide optimal resource usage thresholds a priori,
because their values depend on the user budget and the work-
loads, while the long-term future workload information is very
difficult to accurately predict. Recent efforts on autoscaling for
optimizing the performance under long-term budget constraints
have primarily focused on evenly dividing budgets across
time or predicting the long-term future workloads, neither of
which applies to highly-dynamic delay-sensitive workloads in
practice [6], [7], [8].

In this paper, in view of the practical difficulty in accu-
rately predicting long-term future workloads, we develop an
online autoscaling system, called BATS (Budget-constrained
AuToScaling), that dynamically scales VM instances to op-
timize the delay performance while satisfying user budget
constraint in the long run. The core of BATS is an online
autoscaling algorithm we propose, which only requires the
past and instantaneous workload to make effective scaling
decisions. The key idea of our algorithm is to keep track of
the budget deficit online and incorporate it into the online
autoscaling decision: if the actual VM expenses far exceed
the expected cost, BATS tries to reduce the budget deficit by
requesting fewer or smaller VM instances subject to the user-
specified delay requirements. Leveraging Lyapunov optimiza-
tion technique, we prove that the BATS produces a close-to-
optimal delay performance compared to the optimal algorithm
with offline information, while satisfying the budget constraint.

As a system, we build a fully-automated BATS autoscaler

service on Windows Azure. BATS autoscaler only requires user
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inputs on the desired delay performance and budget of their
applications. It manages the performance monitoring, resource
planning, and scaling of user applications automatically. We
also combine BATS algorithm with a reactive module that
monitors runtime performance and handles workload bursti-
ness. The modular design of BATS autoscaler makes it easily
adaptable to other cloud platforms such as Amazon EC2.

We evaluate the performance of BATS by running RUBiS
benchmark workloads [9] on Windows Azure. The exper-
imental results show that BATS achieves up to 34% less
delay compared to the algorithm that evenly divides users
budget over all time slots. Compared to the threshold-based
scaling rules that are widely used by major cloud service
providers, BATS reduces user cost by 10% while achieving
a better delay performance. Moreover, the performance of
BATS is very close to that of the optimal offline algorithm
that knows complete future information. We also conduct
extensive simulation study in terms of both average delay
and 95" percentile delay, showing the effectiveness of our
algorithms on different performance metrics and its scalability
on managing applications with hundreds of VMs. We show
that BATS is truly autonomous: it does not need users to select
appropriate algorithm parameters. BATS decides its parameters
through online learning and adaptation.

In summary, the main contribution of our work is a full-
fledged autoscaling solution, combining a provably-efficient
algorithm and an implementation of the autoscaling service,
to optimize delay performance while meeting users’ long-term
budget constraints that widely exist in practice.

II.
A. Model

Model and Problem Formulation

We consider a discrete-time model by evenly dividing the
budgeting period (e.g., typically a month or a year) into K
time slots indexed by t =0,1,--- ;K — 1, each of which has
a duration that matches the pricing policy of cloud service
providers (CSPs). For example, each time slot can correspond
to one hour if we subscribe to Windows Azure or Amazon
EC2, both of which charge users for VM instances on an
hourly basis.

e Autoscaler: We consider J types of VM instances
(e.g., small, medium, large) where each VM instance is
specified by a set of N resource configuration parameters
i ={aj, -~ ,ajn}. Bach parameter represents the provi-
sioning of one resource type. For example, each small-type
VM instance has one CPU core and 1.75GB RAM, while
each medium one has two CPU cores and 3.5GB RAM on
Azure [10]. An autoscaler scales VM instances over time.
At time ¢, the autoscaler requests m;(t) type-j VM instances,
whose price is p;(r). For notational convenience, we use the
vectorial expression m(¢) = [m;(t),ma(t), -~ ,my(t)] wherever
appropriate. Given the autoscaling decision m(¢), the cost
incurred by the user at time ¢ is expressed as

J
c(t) = Zl[pj(t)~mj(t)}. (1)
=

e Workload: Our study focuses on web services and hence,
workloads are web requests. We denote by A(¢) € [0, Amax] the
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workload arrival rate at time ¢, where Apax is the maximum
possible arrival rate. Arrival rate can be measured by different
metrics, such as the number of clients, VM CPU/memory
utilization. To quantify the delay performance of web services,
our work supports a variety of well-known metrics, such as
average delay and tail delay (e.g., 95th-percentile latency).
Without restricting our model to any particular performance
metric, we use the general notion of g(A(¢), m(¢)) to represent
the delay performance of interest during time ¢, which is
jointly determined by the workload arrival rate A(z) and VM
acquisition decisions m(z).

B. Problem Formulation

As workload arrival rate varies over time, the delay per-
formance during high workloads should naturally be given
a higher weight than that during low workloads when we
evaluate autoscaling algorithms. Hence, our objective is to
minimize the long-term delay performance over the entire
budgeting period (i.e., K time slots), expressed as

g-:'H A(r)-g(A(t),m(1))
Lo A0)
where g (A(r),m(r)) is the delay performance at time ¢ given
the workload arrival rate A(¢) and the scaling decision m(z).
The term A(t)/ XX ' A(r) is a weight that scales the delay at

time ¢ in proportion to the workload arrival rate. At time ¢, we
set the maximum and minimum delay constraints denoted by

dmin Sg(l(f),m(l)) < dmax, Vt, 3

where the maximum delay constraint specifies the worst de-
lay that can be tolerated subject to service level agreement
(SLA), while the minimum delay threshold indicates that user
experience improvement is negligible by letting the delay go
below the threshold [11] and hence no need to over-request
VM instances.

(@)

t=0

There may be a limit on the purchased resources specified
by the CSP. For example, by default, a maximum of 20 virtual
CPUs may be purchased from Azure Cloud Service unless
approved for more [5]. We express such constraints as

J
Zaj’w[m_,‘(t)] <A,, VtandVn=1,---,N, 4)
=1

where a;, is the provisioned resource n associated with each
type-j VM instance and A, is the limit on resource n. Total
cost needs to satisfy a long-term budget constraint

&)

where ¢(t) is the incurred cost given by Equation (1). Note
that the budget does not include bandwidth charge, which only
depends on the workloads and cannot be autoscaled.

Note that we can rewrite the delay in Eqn. (2) as
g=x Lo Alt)-g(A(e),m(r)) K where, given work-

BRInN
loads and budgeting period, the term ZK+/1(I)
Hence, we can omit it in the following an%:lg/sis for notational

convenience, and present the (offline) problem formulation for

is constant.



delay minimization as follows:

] 1 K—1
PL minge A0 (A0)m(0) ©)
s.t., constraints (4),(5),(3), @)

where .# denotes a sequence of scaling decisions over the
budgeting period, which we need to optimize.

III. Algorithm Design and Analysis

This section presents our autoscaling algorithm, BATS, and
analyze its performance. We first describe the inputs of BATS
and then show how to make autoscaling decisions by using the
information readily available at the current time step without
requiring hardly-accurate long-term prediction. We formally
prove that, for any workload, the performance of BATS is close
to the offline optimal that has complete future information.

A. Obtaining Inputs to BATS

BATS requires two types of inputs:

e Workload arrival rate A(t): In practice, the workload
predictor can estimate the instantaneous load, the arrival rate
A(t), prior to the beginning of time ¢ using some well-studied
learning techniques (e.g., auto-regression analysis) [12]. Note
that this prediction is short-term, only for the immediate next
time slot, which is different from the long-term prediction of
the entire budgeting period required by an offline algorithm.
Many prior studies show that such instantaneous workload can
often be predicated with a high accuracy [12]. Furthermore,
we discuss how to handle unpredictable workload spikes in
Section IV-B and quantify the impact of inaccurate prediction
in Section VI-D.

e Delay performance: In general, the delay increases with
increase on arrival rate, decrease on the number or size of
VM instances. Nonetheless, the delay is also affected by a
variety of other factors, such as queuing discipline and load
balancing decisions (which may not always be controllable
from users’ perspective). Thus, it is challenging, if not impos-
sible, to mathematically express the delay g(A(¢), m(r)) as an
explicit function of A(¢), and m(¢). In practice, we alternatively
resort to a delay lookup table to empirically measure the
delay g(A(¢),m(z)). Such lookup tables have been used in
reinforcement based learning and proven to be effective [13].
We create a table whose row and column indexes indicate
workload arrival rates and scaling decisions, respectively, and
whose entries are the corresponding delay performance. The
entries can be populated with some initial estimates (e.g., based
on queueing-theoretic models [14]) at the beginning and then
updated in runtime (e.g., using weighted linear regressions) to
reflect more accurate delay performance. We discuss how to
build such lookup table by offline calibration (Section V-A)
and online learning (Section VI-B). Moreover, BATS takes
delay lookup table as inputs, and it can be incorporated with
any other techniques of estimating delay performance.

B. BATS

Now, we present our online autoscaling algorithm, BATS. Note
first that in order to optimally autoscale VM instances (i.e.,
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P1 formulated in Section II-B), complete offline information
is required such that the long-term but limited budget can
be optimally split across the entire budgeting period, since
otherwise performance may be significantly degraded. For
example, if more VM instances are requested in the current
time slot, less budget is available for future workloads which
may increase dramatically. Accurate prediction of such long-
term future workload information is quite challenging and
sometimes even impossible, considering possible traffic spikes
[3], [15]. Hence, autoscaling decisions need to be made online
without a priori knowledge of long-term future workloads. To
circumvent this practical challenge, we leverage the sample-
path Lyapunov technique [16] to develop BATS.

The key idea is that we make autoscaling decisions using
a feedback mechanism to meet the desired long-term budget
constraint. Specifically, we use the budget deficit at runtime as
the feedback information: if there is a temporary budget deficit
(e.g., due to high workload), we consider both reducing the
expenses and managing the delay, so that the budget deficit
can be reduced/eliminated eventually. Otherwise, we focus
purely on performance optimization. Mathematically, to track
the runtime budget deficit, we construct a (virtual) budget
deficit queue which, starting with ¢(0) = 0, evolves as follows

q(t+1)={q(t) +c(t) —z(0)} ", (8)

where c(r) is the cost at time 7, ¢(r) is the budget deficit queue
length and z(¢) is the reference budget for time slot 7. The
reference budget z(r) is not enforced as a constraint for the
allowed budget over time #; instead, it merely indicates how
much money we plan to spend for time ¢. For example, we can
evenly divide the total budget by the total number of budgeting
days and obtain daily reference budget, which can be further
split to each hour based on the workloads during the prior day.
The selection of reference budget z(¢) has a negligible impact
on the delay performance under common choices, which we
verify by our empirical results in Section VI-D.

The budget deficit queue length indicates the deviation of
the current cost from the reference budget. Intuitively, with
a larger budget deficit at runtime, the autoscaler needs to
request fewer VM instances to mitigate the budget deficit
at later times for meeting the long-term budget constraint.
Thus, the queue length can be leveraged to indicate how much
weight we want to give to cost minimization compared to
performance optimization, when making autoscaling decisions.
To reflect this intuition in our autoscaling decisions, instead of
optimizing the delay performance objective in P1, we choose
to minimize V - A(t) - g(A(¢),m(z)) + q(t)):f:lpj(t) -mj(t),
where we make decisions in an online manner based only
on the current workload arrival rate, the budget deficit queue
length, and a delay-cost parameter V (which we discuss shortly
after). BATS follows the principle “if exceeding budget, then
reduce cost,” by tracking the budget deficit at runtime and
using it as the feedback information to indicate the relative
weight/importance of cost minimization versus performance
optimization when making autoscaling decisions. The com-
plete description of BATS is provided in Algorithm 1.

C. Analysis

The following theorem proves the performance of BATS.



Algorithm 1 BATS
1: Input A(#) (and p(¢) if applicable), at the beginning of
each time slot r =0,1,--- ,K—1
2: Choose m(¢) subject to Eqn. (4), (5), and (3) to minimize

J
P2: VA (1) g (A(1),m(1)) +q(t) Y. pi(t) -mj(t)  (9)
j=1

3: Update ¢(z) according to Equation (8).

Theorem 1. Suppose that the instantaneous workload arrival
rate and delay performance are perfectly known. Then, for
any T € Z' and H € Z" such that K = HT, the following
statements hold.

a. The budget constraint is approximately satisfied with a
bounded deviation:

lKfc(t) <5, \/C(T) it Eico (G )
K= K VK ’

where C(T) =U + D(T — 1) with U and D being finite
constants. Gj, is the minimum delay achieved over t = (h—
DT,--- ,hT — 1 by the optimal offline algorithm with T-
slot lookahead information over t = (h—1)T,--- ,hT — 1, for
h=0,1,--- /H—1, and dy, is the minimum delay given in
Equation (3).

b. The delay g* achieved by BATS satisfies:
1 H-1

§< -
i

(10)

Gz+@. (11)

Proof: Please see our tech-report [17] for the full proof.

Theorem 1 provides the worst-case performance bound
compared to a family of offline algorithms parameterized
by their lookahead capabilities characterized by 7T (i.e., a
larger T means the lookahead algorithm looks further into
the future). The theorem shows that BATS achieves delay
close to offline optimal while approximately satisfying the
budget constraint given arbitrary workload arrivals. The
approximate satisfaction of budget constraint in (10) stems
from the fact that workloads may be persistently high: budget
may be violated in order to satisfy high workloads, even though
budget constraint is satisfied in prior time slots.

Delay-cost parameter V. As formalized in Theorem 1, the
delay-cost parameter V of BATS presents the tradeoff between
delay performance optimization and budget satisfaction. When
V becomes larger, BATS tends to minimize the delay, while
giving less attention to the incurred cost, because delay carries
more weight on the optimization objective (at Eqn. (9)). Thus,
an appropriate selection of V is crucial, but such a value is
hard to decide without knowing complete offline information
[16]. To address this practical issue, we propose to dynamically
update V as follows:

View = max{V,;; + B x [Z(_t) — C(_t)} ,Vanin }

where Vi, is a sufficiently small positive number to ensure
positive V., B is a positive factor indicating learning

rate, and c(t) =1 i_1cj(t) and 2(1) = }Z’j:] zj(t) are the

12)
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cumulative average cost and reference budget per slot up to
time ¢, respectively. The intuition for using Eqn. 12 to update
V is as follows: if there is a budget deficit over quite a few time
slots (i.e., cumulative average cost exceeds average reference
budget up to time 7), then we have high confidence that V needs
to be reduced to place more emphasis on cost minimization
such that the long-term budget constraint can be satisfied; and
vice versa. In Section VI-C, we show that the desired V can
be dynamically found using Equation 12.

Complexity. While P2 in Algorithm 1 involves integer
programming (i.e., autoscaling decision m(¢) can only take
integer values), we note that BATS is practically realizable
because there are only a reasonably small number of VM types
and autoscaling decisions are made only once every time slot.
Specifically, given a limit of M on the number of purchased
VM instances and J types of VM instances, the worst-case
complexity is M7, which is practically affordable (e.g., M = 20
and there are four basic types of VM instances in Azure).
Moreover, for many applications, there is usually only one type
of VM instances that are the most cost-effective (i.e., provides
the best performance given the same cost) [18], reducing the
complexity from exponential to linear. In our experiments in
Section V, the computation time BATS spent on calculating
the decision is just in the order of milliseconds, while scaling
decisions are often made in the order of minutes or hours.

IV. System Implementation

This section presents the system implementation of fully-
automated BATS autoscaler service on Windows Azure. Our
service autoscales VMs running Azure applications, conve-
niently, effectively and reliably. It provides a graphical user
interface (GUI) for users to provide the cost and performance
requirements of their applications. Users specify the budgeting
period and the total budget as their cost requirement; they
also specify their performance requirement: the maximum
tolerable application delay d,,, and the desired delay d,;iy,
as illustrated at Equation 3.! Once BATS is configured, it au-
tonomously monitors user application and dynamically scales
VM resources.

A. Scaler and Monitor

Fig. 1 presents the software architecture of BATS, consisting of
three main modules — Monitor, Scheduler and Scaler. Monitor
gathers different performance metrics of the hosted cloud ap-
plication and provides the data to Scheduler. In Azure, a cloud
application writes its performance metric values to a specified
Azure table storage periodically, which Monitor accesses to
collect performance information of the application. To model
performance of different applications, Monitor supports using
different performance metrics, such as CPU usage, memory
usage, and network traffic. For example, for a CPU-intensive
application, monitoring CPU usage could be more appropriate
than monitoring network traffic.

Note that if inappropriately set (e.g., budget is too small), the budget and
dpax may not be achievable at the same time. One approach to avoid such
inappropriate settings is that BATS provides guidance to cloud users based on
history data. For example, the minimum required budget can be calculated at
the beginning of a budgeting period based on the previous workloads and the
tolerable delay performance given by the user. A warning will be prompted
if the user provides a budget below the required budget.
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Fig. 1.

Scaler executes the scheduler’s decision and submits the
scaling request to the cloud. It handles the underlying details
of connecting to the cloud, certificate management and service
status information retrieval. For example, Azure provides a
service management API to control the cloud resource con-
figuration. In order to use this API, the users need to create
a management certificate in the cloud portal and import it
through the GUI of BATS. Whenever Scheduler issues a
scaling decision, Scaler creates and uploads the new VM
configuration using the management certificate. Then, Azure
scales the VM instances for the hosted application accordingly.

B. Scheduler

Scheduler is the core of our autoscaler service, which consists
of three sub modules — performance watcher, workload pre-
dictor and BATS algorithm. Scheduler operates in both proac-
tive and reactive manner. Its proactive behavior is implemented
at BATS algorithm, which determines the VM scaling decision
at the beginning of each time slot by considering the estimated
workload given by workload predictor. The reactive behavior
takes runtime performance feedback into consideration that
is implemented by performance watcher, handling workload
prediction inaccuracy and burstiness.

Workload predictor predicts the upcoming workload by
analyzing the past values. As a key advantage, BATS does
not require long-term workload prediction, which has poor
accuracy in practice. Instead, BATS only needs workload
prediction for the next time slot. Since the prediction model is
not a contribution of this paper and many other prediction
models exist [19], [20], [21], we choose to implement the
auto-regressive model of [12]. This model predicts f(d,?), the
value of a chosen metric at time ¢ of day d, by taking the
moving average of the previous N days at the same time f.
Mathematically, the predicted value of a metric f at time ¢ is
given by f(d,t) = %):?’:] a; % f(d —1i,t) + c. The parameters a;
and c are calibrated online using history data. We discuss the
sensitivity of BATS to prediction inaccuracy in Section VI-D.

Performance watcher monitors two types of events con-
tinuously: (1) the current workload arrival and (2) the delay
status. If there is a significant difference between the predicted
workload and observed workload or if the maximum delay cap
dmay 1s violated, performance watcher triggers BATS algorithm
module to recalculate the scaling decision for current time slot.
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BATS implements the algorithm presented in Section III,
which determines the VM scaling decision based on the
predicted workload arrival before each time slot begins. As it
takes about 10 minutes to acquire new VMs in Azure, BATS
submits the proactive scaling decision 10 minutes before each
time slot begins. In addition, it takes runtime feedback from
performance watcher and recalculates the desired VM scaling
decision in the event of mis-predicted and/or bursty workloads.

V. Experiment

This section presents experimental results of using BATS to
autoscale VM instances hosting a RUBiS web application on
Windows Azure. Our results show that BATS achieves up to
34% less average delay compared to the algorithm that evenly
divides users budget over all time slots. BATS also reduces
users cost by 10% while achieving less delay compared to
widely-used reactive scaling rules. Moreover, the performance
of BATS is very close to that of the optimal offline algorithm
that knows complete future information.

A. Experimental Setup

We deploy RUBiS web application, which implements the
core functionality of an auction site: selling, browsing, and
bidding. RUBIS is widely used to evaluate the performance and
scalability of application servers and virtualized environments
[9]. It follows a three-tier web architecture: a front-end web
server tier, business logic tier and back-end database tier. We
run RUBiS on Windows Azure Cloud Services, which provides
a Platform-as-a-Service (PaaS) environment for hosting multi-
tier scalable web applications [10].

System configurations. We deploy RUBiS PHP web and
business logic tier as scalable PHP web-role on Azure Cloud
Services. We deploy the back-end database tier on Azure SQL
server which is not scalable. Our experiments scale the VM
instances of PHP web-role in the range of 1 to 20, where 20
is the default limit set by Azure [5]. We choose to use extra-
small VMs only because they offer the most cost-effective way
to execute RUBiS workload. For example, the price of a small
VM is 4 times of the extra-small VM, but its throughput is only
3 times, while the larger VMs are even worse in terms of the
cost effectiveness. To avoid excessively long experimentation
time, the budgeting period in our study consists of 48 time slots
and the duration of each time slot is 1 hour. In our experiment,
the budget is $8.5, cost for one VM instance per hour is
$0.02, and the value of delay-cost parameter V is 0.4. We set
the desired average delay d,;;; = 520 ms, and the maximum
tolerable average delay d,x = 1500 ms.

Workload. We use RUBiS workload generator to send
client requests to the cloud-end servers. The workload gen-
erator creates user sessions (a.k.a clients) which simulates the
browsing of an auction site like eBay. The number of clients
indicates the amount of workload being generated for the target
web site. The average execution time for each web page varies
based on the underlying computation. We generate workload
arrivals (Fig. 2(a)) based on a workload trace extensively used
in prior work [3], representing the activity trace of a few
thousand users on enterprise file servers at Microsoft Research.

Autoscaler inputs. To enable autoscaling for RUBiS, our
autoscaler uses the number of web connections to monitor
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Fig. 3. RUBIS load response time correlation. m and ¢/ denote the number
of VM instances and clients respectively.

incoming workload. We model the load delay correlation of
RUBIS workload using a delay lookup table, which is built
at calibration phase by varying the number of clients from
the workload generator and obtaining delay for each different
scaling configuration (i.e., number of VM instances). Lookup
table has been used by prior studies in reinforcement based
learning and yields satisfactory performance [13]. We discuss
how to build the delay lookup table online in Section VI-B.
Fig. 3(a) shows the average delay under different numbers of
clients: average delay increases slowly up to certain load, and
then it increases exponentially at heavy load (i.e., saturated).
Fig. 3(b) shows that if we increase the number of VM
instances, average delay decreases down to around 400 ms,
after which it becomes almost constant as the average delay
is dominated by the request execution time and there is no
further delay reduction even if we add more VMs.

B. Experimental Results

We conduct three sets of experiments: (1) compare BATS with
three well-known autoscaling algorithms and offline optimal;
(2) show the impact of user budget on the performance of
BATS; and (3) show the delay-cost tradeoff.

1) Comparison with other autoscaling algorithms

As BATS is the first autoscaling system that incorporates long
term budget constraints for interactive web services, there
are no directly comparable algorithms. However, to show the
effectiveness of BATS, we compare its performance with the
following three online autoscaling algorithms and the optimal
offline algorithm.

o EqualSC: The algorithm evenly divides the available
budget across all the time slots and obtains the number of VM
instances that can be reserved for the entire budgeting period
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based on discounted pricing (for reserved instances). We use
20% discount as offered by Windows Azure [5].

o ReactSC: Reactive scaling rules are widely adopted by
both developers and third-party solution providers [5], [4],
[23], [24], [25]. Most reactive scaling rules are defined by
comparing a performance metric to a specific threshold. For
example, add a new VM instance when the average CPU
utilization exceeds 85% , or terminate a VM instance when
the average CPU utilization falls below 45%. We implement a
reactive autoscaler that can use more complex rules rather than
simple threshold-based comparisons. The autoscaler constantly
monitors the average workload arrival rates measured over
the last 5 minutes. Then, based on the monitored workload,
ReactSC uses the delay lookup table to determine the minimum
number of VMs so the resulting delay is equal to the desired
delay d,,;, for the upcoming time slot.

o PerfOpt: This algorithm knows (using perfect short-term
prediction) the workload arrival rate at the beginning of each
time slot and uses the delay lookup table to determine the
minimum number of VM instances such that the resulting
delay is equal to the desired delay d,;,. It always optimizes
performance while disregarding the desired budget constraint.
Compared with ReactSC and BATS, PerfOpt assumes perfect
short-term prediction information.

o OptOffline: The optimal offline algorithm has the perfect
workload arrival information for the entire budgeting period at
the very beginning. Based on complete offline information, the
whole budget is optimally divided among time slots by solving
P1 based on Lagrangian technique and choosing (through
bisection search) the optimal Lagrangian multiplier to ensure
equality for budget constraint [26]. Essentially, the optimal
Lagrangian multiplier corresponds to the budget deficit queue,
but it is a fixed value, which can only be obtained based
on complete offline workload information. OptOffline is not
possible to implement in practice. It only serves as a reference
of theoretical optimal.

Firstly, we compare BATS to EqualSC. Figs. 4(a) and 4(b)
compare the cumulative average delay and cumulative cost of
BATS, respectively. The cumulative average for a time slot
t is the corresponding average value of time slot O to ¢. As
shown in Fig. 4(a), BATS reduces delay by 34% compared
to EqualSC while achieving the same budget constraint, even
though EqualSC receives discounted pricing. This is mainly
because EqualSC evenly divides the budget across each time
slot and reserves 11 VM instances without considering the
workload variation. As a result, when there is a workload spike
(e.g., in the 4 time slot), the delay becomes very large.

Secondly, we compare BATS with the widely-adopted
ReactSC autoscaling mechanism. Fig. 4(a) shows that the
average delay reduction of BATS is 10% compared to ReactSC.
The degrading performance of ReactSC comes from the long
lagging time: it takes up to 5 minutes to detect the system sta-
tus change (e.g., workload variation) and even after detection,
it takes up to 10 minutes to acquire a new VM instance. During
the lagging time, all the incoming workloads experience longer
average delays. For example, ReactSC experiences higher
delay in the 25" and 42" time slots because of its inability
to cope instantaneous traffic spikes, as shown in Fig. 4(e).
This demonstrates the importance of proactively predicting the
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Fig. 4. Comparing BATS with other algorithms.

near-future (e.g., hour-ahead) workloads as used by BATS,
thereby highlighting the limitations of reactive autoscaling
rules. When using ReactSC, keeping an additional resource
margin/headroom (i.e., requesting more VM instances than
needed) may mitigate temporal excessive delays, but will result
in an even higher cost and more likely violate the budget
constraint. Moreover, Fig. 4(b) shows that the cost saving of
BATS is 10% compared to ReactSC. It is mainly because
ReactSC ignores the budget constraint and always makes
scaling decisions such that resulting average delay equals dy;p.
This shows that BATS outperforms ReactSC in terms of both
delay reduction and cost savings.

Finally, we compare BATS with PerfOpt and OptOffline.
Fig. 4(a) shows that although PerfOpt takes 4.4% lower
average delay, its resulting cost is 16.8% higher than the user
specified budget. This is mainly because PerfOpt only focuses
on minimizing the delay without considering budget constraint.
The achieved delays of BATS and PerfOpt are 543ms and
520ms, respectively. The additional 23 ms delay does not
change the human perception of the web performance, as
shown in prior study [27]. In summary, BATS satisfies the
budget constraint while achieving a similar delay performance
compared to PerfOpt. Furthermore, Fig. 4(a) shows that the
average delay of BATS is very close to OptOffline (with a
difference less than 4%), while Fig. 4(b) shows that the cost
is almost the same. The results demonstrate the effectiveness
of BATS: it performs almost as well as the optimal offline
autoscaler that requires the complete future prediction.

2) Impact of user budget

We study how user budget affects the behavior of BATS and
other benchmarks described earlier. Results show that the delay
produced by BATS is never more than 10% compared to that of
OptOffline for different users budget, and it is always smaller
than EqualSC. We do not show the results of ReactSC and
PerfOpt since they are budget-unaware and their performance
is independent of the user budget. We first describe the choice
of our budget amount that will be used to benchmark the
comparison between BATS and other algorithms. The highest
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budget value is chosen based on the incurred cost of PerfOpt
(i.e., always selecting the minimum number of VMs such
that resulting delay for each time slot is no greater than the
predetermined delay threshold d,,;,). We normalize the actual
budget by dividing it by the highest budget.

We discuss the impact of user budget with three obser-
vations from Fig. 5. (1) The less budget, the higher delay,
which matches our expectation. (2) The delay is reduced more
rapidly as the budget increases from 55% to 75%, and the delay
reduction slows down with further increase of user budget.
Under a low budget, few VM instances are used in most of
the time slots, resulting in long request waiting time. The long
waiting time can be effectively reduced by adding more VM
instances with additional budget. However, when the budget
increases further, the waiting time becomes smaller and the
request execution time dominates the total delay — the delay
reduction by adding more VMs becomes smaller. (3) The delay
of BATS is not more than 10% compared to the offline optimal,
and it is always less than that of EqualSC, showing robust
performance of BATS for all budget levels.

3) Delay-cost tradeoff

This experiment discusses how the value of delay-cost pa-
rameter V affects BATS in terms of the delay-cost tradeoff
under various normalized budget constraints (indicated in the
parenthesis to right of “BATS” in Fig. 6). The budget is
normalized with respect to the cost of PerfOpt. The result in
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Fig. 6 is consistent with our analysis: with a greater V, BATS
tends to minimize the delay and becomes less concerned about
the total cost. The weight of the budget deficit queue becomes
less effective. If V goes to infinity, BATS becomes purely
performance-driven to minimize the average delay while ig-
noring budget constraint, and hence reduces to budget-unaware
PerfOpt. As a result, the average delay becomes d,;,. With a
smaller V, the budget deficit queue plays a more important
role and BATS cares more about the cost. Fig. 6 shows that
for very small V, the delay becomes very large (close to dyy)
and the cost is even less than the specified budget. Note that the
delay of PerfOpt represents the minimum delay d;, specified
by the user. As shown in Fig. 6, when V > 0.4, the average
delay achieved by BATS is fairly close to d,, while still
satisfying the budget constraint. At this point, BATS perfectly
balances between performance and budget constraint. Section
VI-C shows how BATS adapts V autonomously.

VI. Simulation Results

This section presents simulation results of BATS, which
complement the implementation results and evaluate other
important aspects of an autoscaling algorithm. We first show
the effectiveness and efficiency of BATS by scaling a workload
requiring a few hundred VMs. Next, we demonstrate that
BATS builds and adapts the delay lookup table and chooses
V autonomously in an online manner, without requiring user
inputs and with negligible impact on performance and cost.

Simulation setup: We develop a discrete-event based
simulator using CloudSim [28] that supports modeling and
simulation of virtualized environments. We create a virtualized
data center, where each server has 6 CPU cores and 16GB of
RAM. Each VM has one core and 1024MB of RAM. Our
simulator has a workload generator that mimics the RUBiS
workload generator. We evaluate BATS using the workload
trace from Florida International University, shown in Fig. 2(b).
We obtain this trace by profiling the web server usage logs
from January 1 to January 31, 2012. We set the desired average
delay dp, =400 ms, and the maximum tolerable average delay
dpmax = 1500 ms. The cost per VM is $0.02. We simulate a
budget period of 1 month, and a total budget of $764.

A. Optimizing Average and Tail Delay

We compare BATS to the benchmark algorithms defined
in Section V-Bl. The results are rather consistent with the
implementation results in Fig. 4, and thus we skip the detailed
discussion. We omit the average delay results and compare
the performance of BATS in terms of 95"-percentile delay.
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Fig. 7. Tail delay comparison with other algorithms.
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Here we set d,;j, = 600 ms and d,,,c = 1500 ms, both in terms
of 95"-percentile delay. Fig 7 shows that BATS consistently
outperforms the 3 online algorithms and achieves close-to-
optimal performance while satisfying budget constraint. The
95" percentile delay of BATS is 96% and 5% lower than
EqualSC and ReactSC, respectively. ReactSC and PerfOpt
violate the budget constraint and incur 24% more cost than
the specified budget. These results show that beyond average
delay, BATS also effectively reduces tail delay. Furthermore,
we use BATS to solve problems with a few thousand VMs,
and it takes < 50ms to compute the allocation at each time
slot, demonstrating its scalability on solving large problems.

B. Learning Delay Lookup Table Online

To populate initial values in the delay lookup table, we use
queueing-theoretic models as a good approximation for char-
acterizing delay [3], [14]. For example, we can approximate
the VM service process as an M/M/1 queue, for which average
delay only depends on two inputs: (1) service rate, i.e., the
number of requests that can be processed by a VM in a unit
time; and (2) request arrival rate. In our study, we obtain the
service rate by pre-running the cloud service on a VM for a
short period of time and measuring the saturated throughput
under heavy loads. Then, the delay lookup table is fulfilled
where each element corresponds to a different combination of
arrival rate and number of VM instances. At runtime, the table
is updated continuously using the observed delay, and thus it
captures the dynamic delay behavior of the web application
may change based on the workload mix (e.g., read, or write
intensive). Fig. 8(a) shows that the average delay of starting
from a delay lookup table initially populated with an M/M/1
queueing model (BATS-Queue) is only 1.5% higher than that
of BATS, while satisfying the budget constraint. By using this
simple approach to update lookup table online, BATS learns
the delay values autonomously and adapts to workload mix
during the budget period. There are alternative approaches
to building delay lookup tables, e.g., [29] exploits various
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techniques offline and online to estimate performance models
that relate load and resources with application performance,
which are complementary to our work.

C. Choosing Delay-Cost Parameter V Autonomously

To evaluate the effectiveness of autonomously updating the
delay-cost parameter V as proposed in Eqn. 12 for , we
introduce a variant of BATS algorithm called BATS-x which
starts with an initial V value of x. The adaptation rate 8 in
Eqgn. 12 is set to 15, and V is adjusted after every 6 time
slot. Fig. 9(a) shows that even if BATS starts with a very
large or small value of V, it gradually converges and satisfies
budget constraint. For example, the desired value of V for this
workload is around 5, which can be measured empirically.
Fig. 9(b) shows that when BATS-100 starts with an initial
V of 100, it self-adapts and eventually becomes close the
desired V value. As shown in Fig. 9(a), the corresponding
delay till 360 time slot is less than that of BATS because of
higher V' values. During these time slots, the cost of BATS-
100 is higher than the reference budget. However, the V of
BATS-100 decreases until average cost per slot becomes higher
than average allocated budget per slot. Thus BATS-100 can
dynamically adjust V without requiring any user input. While
adapting V, the delay of BATS-100 for the whole budgeting
period is only 3.6% higher than that of BATS. We also study
the behavior of adaptive BATS in case a user starts with a
very small value of V. Fig 9(a) shows the average delay of
BATS-0.001 for the whole budgeting period is 12% higher than
BATS. These results show that because BATS dynamically
adapts V, it is robust to its initial parameter settings.

D. Sensitivity Study

Prediction errors: As BATS leverages the hour-ahead work-
load prediction, we evaluate how BATS performs in the
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presence of prediction errors. We consider four cases where the
workload predictor introduces prediction errors of 0%,£10%,
4+20% and £30%. Fig.10(a) shows that, compared to 0%
prediction error, the resulting delay increases by 0.9%, 2.8%
and 12.3% for £10%, £20% and +30% prediction errors,
respectively. Even with high prediction errors, the performance
of BATS is still quite robust. Moreover, in practice, the reactive
part of BATS also compensates for the prediction error and
ensure that the delay does not violate user requirements. Thus,
BATS can be successfully applied even when the workload
prediction is not perfect.

Reference budget z(¢): We explore the impact of different
choices of reference budget z(r) in Eqn. 8. In our above
studies, the reference budget z(¢) at time slot ¢ in BATS is
obtained by dividing the whole budget evenly to each time
slot. For comparison purposes, we consider two variants of
BATS, where we set reference budget z(¢) by: (1)BATS-Rem:
evenly dividing the remaining budget at time slot ¢; (2) BATS-
Hourly: dividing the budget to each time slot according to
the average workload arrival rate obtained from past data.
Fig. 10(b) shows that while choosing z(¢) differently, the delay
performance remains relatively the same with less than 2%
difference. Intuitively, the reference budget z(¢) in Eqn. 8 only
directly impacts the runtime budget deficit queue dynamics,
thereby not being enforced as runtime budget constraint or
directly impacting the autoscaling decision. In the long term,
as long as the total budget is the same, z(¢) has a negligible
impact on the delay performance, demonstrating the robustness
of BATS against different choices of z(r).

VIIL

Autoscaling. In recent years, autoscaling has become an
integral feature of cloud computing, and various autoscaling
mechanisms have been proposed to enable elastic resource
acquisitions for performance and cost effectiveness. In general,
autoscaling techniques can be classified as “proactive” and
“reactive”. In “proactive” autoscaling, decisions are actively
triggered by users via, e.g., predictive modeling [30], [31],
[32], [33], whereas in “reactive” autoscaling, decisions are
made in passive response to system statuses (e.g., CPU utiliza-
tion) [34]. For example, [30], [31], [32] use prediction/learning
techniques to estimate workload demand/arrival rates for au-
toscaling, while [33] builds a performance model to make
autoscaling decisions. Many cloud service providers offer
both schedule-based and rule-based “reactive” autoscaling [5],
[4], [23], [24], [25]: cloud users can specify customized
schedules to initiate/release VM instances at particular times
using schedule-based autoscaling, while rule-based autoscaling
scales VM instances based on resource usage thresholds (e.g.,
CPU, memory usage). BATS exploits benefits of both proactive
and reactive scaling. Primarily, we scale resources proactively
based on deficit queue length and short-term workload pre-
diction, while we also incorporate reactive autoscaling as a
backup during exceptions (e.g., workload spikes).

Related Work

There have been some prior studies on satisfying short-
term budget constraint. For example, [6] uses a constant
hourly budget to decide optimal number of VM instances
for jobs that have larger deadline (e.g., 1 hour), while [18]
also scales and schedules cloud workflows considering the
hourly budget constraint for each individual job. Similarly, [7],



[8] optimizes workflow scheduling by exploiting flow-specific
properties (e.g., user-specified priorities) while considering an
instantaneous budget constraint. These studies only impose
a short-term (e.g., hourly) budget constraint, which bounds
resource availability at each step independently. Our work
considers an even harder problem: the resource availability
over different time steps is dependent as we bound the total
resources across the entire budgeting period.

Resource management and long-term constraint: Our
work broadly lies in the category of dynamic resource manage-
ment and hence is also related to a number of other domains,
such as server management in data centers [15], [35]. While
many efforts have been dedicated to enable autonomic and
self-managing systems using control theoretic and learning
approaches [35], [16], [36], only a few address long-term
performance/constraints. For example, the existing research
that deals with long-term constraints (e.g., brown energy [37],
monthly cost [38]) in data centers often relies on accurate
predictions of future information that may not be available
in practice. To the best of our knowledge, we develop the first
provably-efficient online autoscaling solution to optimize delay
performance for real-world cloud applications while satisfying
long-term budget constraint.

VIII. Conclusions

This paper provides a full-fledged autoscaling solution, BATS,
to optimize delay performance while meeting users’ long-term
budget constraints using only past and instantaneous work-
load information. Analytically, we proved that the autoscaling
algorithm of BATS achieves a close-to-optimal performance
even compared to the optimal solution that has complete
offline information. We implemented BATS autoscaler as an
automated service for cloud applications on Windows Azure.
We conducted extensive experimental and simulation studies
showing the effectiveness, autonomicity, and robustness of
BATS on a wide range of scenarios with various workloads.
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