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Abstract—Demand response programs have been considered
critical for power grid reliability and efficiency. Especially, the
demand response of datacenters has recently received encour-
aging efforts due to huge demands and flexible power control
knobs of datacenters. However, most current efforts focus on
owner-operated datacenters, omitting another critical segment of
datacenter business: multitenant colocation. In colocation dat-
acenters, while there exist multiple tenants who manage their
own servers, the colocation operator only provides facilities such
as cooling, reliable power, and network connectivity. Therefore,
colocation has a unique feature that challenges any attempts to
design a demand response program: uncoordinated power man-
agement among tenants. To tackle this challenge, two incentive
mechanisms are proposed to coordinate tenant power consump-
tion for demand response under two different scenarios. First, in
the case of economic demand response where the operator can
adjust an elastic energy reduction target, we show that there is
an interaction between the operator and tenant strategies, where
each side maximizes its own benefit. Hence, we apply a two-stage
Stackelberg game to analyze this scenario and derive this game’s
equilibria. However, computing these equilibria can be intractable
with exhaustive search; therefore, we propose an algorithm to find
the Stackelberg equilibria with linear complexity. Second, in the
case of emergency demand response where a fixed energy reduc-
tion target must be fulfilled, we devise two incentive schemes with
the distributed algorithms that can achieve the same optimal social
cost. While the first algorithm is based on the dual-decomposition
method that is suitable for nonstrategic tenants, the second one
is designed for strategic tenants to achieve a unique Nash equi-
librium of a bidding game. Finally, trace-based simulations are
also provided to illustrate the efficacy of our proposed incentive
schemes.

Index Terms—Colocation datacenters, demand response,
distributed algorithms, incentive mechanisms.

I. INTRODUCTION

D EMAND response programs have been adopted in many
countries in order to improve the reliability and efficiency
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of power grids and to incorporate renewable energy into
the power grid (see the survey [1] and references therein).
Emergency, standby and economic demand response make up
the majority of current demand response programs according to
megawatt usage, representing 87% of demand reduction capa-
bilities across all reliability regions [2]. In these programs,
participating customers reduce their load/energy consumption
upon requests from a load-serving entity (LSE) in order to
receive financial reimbursements. Among potential customers,
large-scale datacenters are considered vital participants due to
two essential properties: (i) their power demands are extremely
large, e.g., 91 billion kWh in 2013 in the U.S. [3], and (ii) their
energy usage is flexible with many IT computing knobs (e.g.,
workload shedding/migration) as well as non-IT knobs (e.g.,
cooling) [4]. The huge yet flexible energy demands of data-
centers are considered by grid operators as a valuable energy
buffer to help balance the grid’s power supply and demand [1].
From a practical viewpoint, a field study by Lawrence Berkeley
National Laboratory showed that datacenters can reduce their
power consumption by 10–25%, without affecting operations
[5]. Recently, the U.S. Environmental Protection Agency (EPA)
has identified datacenters as a crucial component of demand
response [6], evidenced by an event on July 22, 2011 in
which hundreds of datacenters worked to prevent an emergency
blackout by cutting their electricity usage [7].

However, most of the research efforts have focused mainly
on owner-operated datacenters (e.g., Google) [1], [5], [8], [9],
while paying less attention to colocation datacenters (e.g.,
Equinix), simply called colos, which represent a crucial seg-
ment in datacenter industry. There are many reasons to advocate
more research efforts on colos. First, with their critical role
in datacenter business, colos provide a universal solution to
all types of companies, especially for those who neither want
to build their own datacenters nor completely outsource their
entire computing demands to any public cloud providers. For
example, colos’ customers diversely include many popular
Internet websites such as Twitter and Wikipedia [10], [11] and
various cloud-computing services such as Salesforce and Box
[12]. Second, colos will play a critical role in network traffic
infrastructure, since they are increasingly becoming the major
physical homes for content delivery network providers that are
predicted to support half of the Internet traffic by 2018 [13].
Third, the growth of colos continues to increase sharply: cur-
rently there are more than 1200 colos in the U.S. alone [14],
and the colos market is expected to grow from $25 billion
to $43 billion in the next five years [13]. Finally, colos are
ideal contributors, at least on par with owner-operated data-
centers, to the demand response programs: (i) Colos also have
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extreme power demands, e.g., colos’ demands in New York
exceed 400 MW, which is comparable to Google’s global dat-
acenters demand [14], [15]. Moreover, while colos have been
shown to consume up to 40% of the datacenter energy in the
U.S, owner-operated datacenters like Google only consume
8% [3]; (ii) Colos are often located in urban areas, e.g., Los
Angeles [14], where demand responses are required more often
than in rural areas where owner-operated datacenters are typ-
ically situated, e.g., Google’s datacenters [14], and (iii) colos
often have heterogeneous workloads (i.e. different delay sen-
sitivities, peak load, etc.) due to the diversity of tenant’s
business models, which helps colos conduct smooth demand
response.

With those great potentials of demand response participa-
tion, colos, however, have their unique challenges that inval-
idate existing demand response methods proposed for owner-
operated datacenters [4], [5], [8], [16]–[18]. Instead of fully
controlling all IT and non-IT facilities like owner-operated
datacenters, a colo is a shared multi-tenant datacenter where
multiple tenants house and fully control their servers, while
the colo’s operator is mainly responsible for facility support
such as power, cooling, and network access. Thus, there exists
a split-incentive hindrance for colos’ demand response: the
operator may need to reduce energy usage upon the request
of an LSE in order to receive financial reimbursement, while
tenants have little intention to cut down their power demand
because their billings are based mainly on peak-power sub-
scription with fixed rates, which is independent of actual usage
[19]. Even if tenants have incentives to reduce demand (e.g.,
by the operator directly passing down the LSE’s incentives
to tenants), they lack coordination to systematically achieve
this. Therefore, operator incentives for tenants to coordinate in
demand response poses a significant challenge.

Incentive mechanisms have been widely employed for
demand-side management in smart grids [20], [21]. However,
datacenter demand response is different from that of smart
grids due to various control knobs such as cooling, IT load,
renewable and/or backup power, etc., requiring a holistic opti-
mization approach. Furthermore, very little effort is focused
on colos, which significantly limits the applicability of data-
center demand response because of the colos’ importance and
suitability for demand response. Therefore, in this study, we
attempt to break the uncoordinated tenants for colos’ demand
response based on incentive mechanism design. In the pro-
posed mechanisms, the operator actively and wisely chooses its
monetary reward rate and/or demand allocation rules to incen-
tivize tenants to coordinately reduce their energy consumption.
Based on reward information, tenants will decide to partici-
pate by bidding/announcing their reduced energy to maximize
their benefit-minus-cost problems. Specifically, we propose two
incentive mechanisms for different demand response scenarios
as follows.

• We first examine colos’ economic demand response,
where the operator has full control over an adjustable
(elastic) demand response target for its own benefit. In
this case, the operator will reward tenants with mone-
tary incentives to perform demand response up to a level
that can maximize the operator benefit, which can be

financial compensation from the LSE or receipt of green
certificates. Consequently, upon receiving the announced
reward from the operator, self-optimized tenants will
individually maximize their net utility. We model this
mechanism as a Stackelberg game and analyze its equi-
librium. We also propose an algorithm to obtain the opti-
mal solutions of the operator’s mixed-boolean nonlinear
problem.

• We next study colos’ emergency demand response. In
this scenario, there is a fixed (inelastic) demand target
requested by the LSE, and the operator has to solicit
the tenants’ demand response to exactly match that tar-
get. We first present a dual-based distributed algorithm
for price-taking (non-strategic) tenants. Then, we propose
an incentive mechanism to deal with price-anticipating
(strategic) tenants. Both proposals are designed to achieve
colo-wide social cost minimization.

• In the above scenarios, our key contributions are not
only reflected in the efficient performance guarantee, but
also validated by trace-based simulations. In the former
case, a wide range of numerical case studies demon-
strate that our linear-complexity scheme can achieve the
same performance as the exhaustive search method for
the mixed-boolean programming problem. In the latter
case, we show that our mechanisms designed for price-
taking and strategic tenants can achieve the optimal social
cost, which outperforms a random incentive scheme in a
12-hour emergency demand response case study.

The rest of this paper is organized as follows. In Section II,
we review the related work. Section III presents the system
model. We provide the proposed mechanisms for economic
and emergency demand response in Section IV and Section V,
respectively, and discuss their extensions in Section VI.
Section VII demonstrates the trace-based simulation results,
and Section VIII concludes our work.

II. RELATED WORK

In this section, we first concentrate on the demand response
of datacenters. We then discuss how our work contributes to the
recent trends in colo demand response.

Demand response is identified as a high-prioritized area, with
its potential to reduce up to 20% of the total peak electricity
demand of the U.S. [22]. Most initial demand response propos-
als targeted residential customers [20], [23]. However, demand
response of datacenters has recently received significant atten-
tion, with various approaches for different types of demand
response being considered, such as price response of data-
centers to grid operator [24] for economic demand response,
or controlling the IT (e.g., turning servers on/off) and non-IT
(e.g., cooling) knobs for ancillary and/or emergency demand
responses [1], [4], [5], [25]–[27].

While most of the mentioned results focus on owner-operated
datacenters, studies on colo demand response are very lim-
ited in number. The first study of colos’ economic demand
response is [12], though its mechanism is simple and relies on
the tenants’ best-effort, which cannot assure the truthfulness
of strategic tenants. In terms of emergency demand response,
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the work in [28] proposes a randomized auction mechanism
that can guarantee a 2-approximation of social welfare cost
and is approximately truthful. Both are based on a reverse auc-
tion where tenants must voluntarily submit bids first, and the
operator will decide winning bids as well as reward amount
later. However, tenants at first are not concerned with power
reduction, so treating their bids as voluntary tasks can lead
to pessimistic results on the number of participating tenants.
Hence, it is expected that an upfront incentive by the opera-
tor will effectively increase tenant participation. Furthermore,
in the reverse auction, tenants need to first calculate and dis-
close complex bids (e.g., cost functions), which might leak their
private information. In contrast, we take a forward-mechanism
approach, where the energy reduction and reward allocation
rules are announced in advance in order to align tenants’ inter-
ests to the socially optimal performance. A recent work [29]
also studies emergency demand response using supply function
bidding. However, while the supply function bidding approach
is restricted to a particular “parameterized” function that inher-
ently suffers from social welfare loss, our mechanism aims to
achieve the optimal social welfare.

III. SYSTEM MODEL

We consider a colo-datacenter in which a set of I =
{1, . . . , I } tenants house their servers. Tenant i has Mi homo-
geneous servers. A tenant with heterogeneous servers can be
viewed as multiple virtual tenants, each having homogeneous
servers. We consider a one-period demand response, as in [8],
[12], [17], [28], where its duration T is controlled by an LSE,
e.g., 15 minutes or 1 hour. During a period, the workload arrival
rate to tenant i is denoted by λi .

Even though tenants may use various control knobs (e.g.,
scaling down CPU frequencies, migrating loads to other places)
for energy saving, the simple yet widely-studied approach that
our study adopts as an example is turning off idle servers [12],
[28], [30]. If tenant i has no intention to participate in demand
response, all of its servers are active, and the workload will be
evenly distributed to all servers to optimize performance [30];
hence, the total power consumption (i.e., cooling and IT) of this
case is [12]

ei = Mi

(
pi,s + pi,a

λi

Miμi

)
· T · PU E, (1)

where pi,s and pi,a are the static and active powers of each
server, respectively, μi is a server’s service rate measured in
terms of the amount of workload processed per unit time, λi

Mi μi
is the server utilization with Mi active servers, and PU E is the
power usage effectiveness of a datacenter, which is measured
by total power consumption divided by IT power consumption.
In contrast, when performing demand response by turning off
mi servers, the total power consumption of tenant i is

e′
i = (Mi − mi )

(
pi,s + pi,a

λi

(Mi − mi )μi

)
· T · PU E . (2)

Therefore, the total energy reduction by tenant i is

�ei = ei − e′
i = mi · pi,s · T · PU E . (3)

In the sequel, we assume pi,s · T · PU E = 1 without loss of
generality (w.l.o.g.); hence, we will use �ei and mi inter-
changeably.

Turning servers off can have negative effects on tenant per-
formance, inducing tenant costs. We rely on two typical costs
that are widely used for tenants: the wear-and-tear cost and
Service Level Agreement (SLA) cost [12], [30].

Wear-and-tear cost. This cost, which occurs when tenants
switch/toggle servers between active and idle states in every
period, is linear with the number of turned-off servers and so
can be modeled as ωi,1 · mi , where ωi,1 is a monetary weight
(i.e., $/server.)

SLA cost. Since many Internet services hosted in datacen-
ters are sensitive to response/delay time, the SLA cost can be
viewed proportionally to tenant average response time. Using
the M/M/1 queue, the average response time of each tenant i’s
workload is 1

μi − λi
Mi −mi

. We note that the queueing model has

been widely used as a reasonable approximation for the actual
service process [31], [32]. The total SLA cost of a tenant can be
modeled as ωi,2 · di (mi ), where di (mi ) = λi

μi − λi
Mi −mi

, and ωi,2 is

a monetary weight (i.e., $/delay). When mi increases, the work-
load distributed to the remaining active servers (i.e. λi

Mi −mi
)

increases due to the added migrating load, which leads to the
increase of di (mi ).

Therefore, tenant i’s total cost when turning off mi servers is

Ci (mi ) = ωi,1 · mi + ωi,2 · di (mi ). (4)

IV. INCENTIVE MECHANISM FOR COLOS’ ECONOMIC

DEMAND RESPONSES

In this section, we first present the motivation for study-
ing the economic demand response of colos using a two-stage
Stackelberg game between the operator (leaders) and tenants
(followers). We then analyze this game’s equilibria using back-
ward induction method, and propose an algorithm to achieve
equilibria. Finally, we discuss about the practical implementa-
tions of the proposed algorithm.

A. Economic Demand Response: A Two-stage Stackelberg
Game Approach

Economic demand response programs generally indicate
how customers can actively respond to price signals [33]. For
example, during peak times with high wholesale prices, the
customers (i.e., colos), who receive signals from the LSE, can
reduce their consumption to receive some economic benefits
corresponding to the amount of energy reduction. Since the
reduction volume is not necessarily fixed, many customers find
this program appealing due to its flexibility.

In this scenario, even though a colo can freely determine a
desired reduction volume, its operator cannot directly control
the tenants’ servers to proceed the demand response. Therefore,
the operator’s purpose is to incentivize tenants to reduce their
energy to a level that can maximize the operator’s benefit.
Consequently, upon receiving the announced reward from the
operator, rational tenants will individually maximize their own
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profits. Observing this hierarchical structure between the oper-
ator and tenants, we study this economic demand response for
colos by using a Stackelberg game approach. The strategies of
players in each stage of this game are presented sequentially.

Tenants (Stage II). Since the operator is the leader with a
first-move advantage, it will first announce a reward rate r (e.g.,
$/kWh) that it is willing to pay tenants for turning off their
servers. Given r , at Stage II, each rational tenant i’s strategy is
to choose a number of turned-off servers mi that will maximize
its net utility as follows

maximize
mi

ui (mi , r) = rmi − Ci (mi ) (5)

s.t. mi ≥ 0. (6)

Since the number of servers can be very large, e.g., thousands,
we can relax mi as a continuous variable [8]. We have

C ′′
i (mi ) = 2λ2

i μiωi,2

((Mi − mi )μi − λi )
3
, (7)

which means Ci (mi ) is a strictly convex function when tenant
i’s server workload is less than its service rate, i.e., C ′′

i (mi ) > 0
when λi

Mi −mi
< μi . We further relax the feasible constraint

0 ≤ mi ≤ Mi to (6), which has no effect on problem (5) since
its feasible solutions are always strictly less than Mi (i.e.,
Ci (m′

i ) = ∞, m′
i ≥ Mi ). Then, since ui (mi ) is strictly con-

cave, there exists a unique solution m∗
i (r), ∀i , for a given r in

Stage II.
Operator (Stage I). Knowing that each tenant i’s strategy

will be m∗
i (r), the operator’s strategy is to choose an optimal r�

of the following profit maximization problem

max.
r≥0

U(r, {m∗
i }) = U

(∑
i∈I m∗

i (r)
)

− r
∑

i∈I m∗
i (r),

(8)

where U (·) is the colo utility, which represents a financial
compensation from the LSE or a green certificate achieved
with respect to energy reduction, balanced with the cost spent
for incentivizing tenants r

∑
i∈I m∗

i (r). Even though we have
no assumption on a specific utility function, some typical
candidates are provided for case studies in Section VII.

Stackelberg Equilibrium. Denoting a solution to the oper-
ator’s profit maximization by r�, we have the following defini-
tion.

Definition 1: (r�, {m�
i }) is a Stackelberg equilibrium if it

satisfies the following conditions for any values of r and {mi }

U(r�, {m�
i }) ≥ U(r, {m�

i }), (9)

ui (m
�
i , r�) ≥ ui (mi , r�),∀i. (10)

Next, we use the backward-induction method to analyze the
Stackelberg equilibria: the Stage-II problem is first solved to
obtain {m∗

i }, which is then used to solve the Stage-I problem to
obtain r�.

B. Stackelberg Equilibrium: Analysis and Algorithm

By the first-order condition ∂ui
∂mi

= r − C ′
i (mi ) = 0, we have

the unique solution m∗
i of tenant i for a given r as follows

m∗
i (r) = [ fi (r)]+ :=

[
Mi − ρi

(
1 +

√
ωi,2

r − ωi,1

)]+
,∀i,

(11)

where [x]+ = max{x, 0}, and ρi := λi
μi

.
Then, by substituting (11) into (8), the operator’s problem is

formulated as follows

maximize
r

U
(∑

i∈I[ fi (r)] +)− r
∑

i∈I[ fi (r)] +

s.t. r ≥ 0. (12)

Due to the operator [.]+, problem (12) is non-convex.
Specifically, if we define a new variable

zi =
{

1, r > κi ;
0, otherwise,

(13)

where

κi := ωi,1 + ωi,2ρ
2
i

(Mi − ρi )2
, (14)

then m∗
i (r) > 0 when zi = 1, and m∗

i (r) = 0 when zi = 0.
Therefore, problem (12) is equivalent to

maximize
r,{zi }i∈I

U
(∑

i∈I zi · fi (r)
)

− r
∑

i∈I zi · fi (r)

s.t. r ≥ 0,

zi ∈ {0, 1},∀i.

(15)

We see that problem (15) is a mixed-boolean programming,
for which we may acquire an exponential-complexity effort
(i.e., 2I configurations of {zi }i∈I) to solve by the exhaustive
search. However, by unveiling its special structure, we propose
an algorithm, namely Algorithm 1, that can find the solutions
of problem (15) with linear complexity as follows.

Algorithm 1. Operator’s Revenue Maximizer

1: Sort tenants according to κ1 < κ2 < . . . < κI .
2: A = {}, B = I, j = I ;
3: while j > 0 do
4: Find the solutions r j to the following problem

max.
r≥κ1

U
(∑

i∈B fi (r)
)

− r
∑

i∈B fi (r) (16)

5: if r j > κ j , then A = A ∪ {r j };
6: end if
7: B = B \ j ;
8: j = j − 1;
9: end while

10: Return r j ∈ A with highest optimal values of (16).

Proposition 1: Algorithm 1 can solve the Stage-I equivalent
problem (15) with linear complexity.
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Denoting the Algorithm 1’ outputs as r� (which can be
multiple values) and m�

i = m∗
i (r

�), we have the following
result.

Theorem 1: The Stackelberg equilibria of colos’ economic
demand response are the set of pairs (r�, {m�

i }).
Based on this equilibria analysis, we next examine the imple-

mentation of the Stackelberg game-based incentive mechanism.

C. Implementation Operations

The main operations of colos’ economic demand response
can be implemented in the following order:

Step 1: Each self-optimized tenant submits its best response
(11) to the operator.

Step 2: After collecting all of these best responses, the oper-
ator determines its profit maximization (8) using
Algorithm 1 to achieve r� and broadcasts this r� to
all tenants.

Step 3: Based on this r�, each tenant will correspondingly
turn off m�

i servers.
We have further remarks for the scheme’s operation as

follows
• The incentive mechanism with Algorithm 1 is one-round

and is centralized: the operator needs to know the values
ωi,1, ωi,2, Mi , and ρi of all tenants. In practice, the oper-
ator may have no such information, which inspires the
distributed approaches in the following sections.

• A uniform reward rate r is applied to all tenants, which is
meaningful in terms of fairness.

V. INCENTIVE MECHANISM FOR COLOS’ EMERGENCY

DEMAND RESPONSE

In this section, we first present the motivations for colos’
emergency demand response with social welfare maximiza-
tion. We then study this scenario for price-taking and price-
anticipating tenants.

A. Emergency Demand Response: A Social Welfare
Optimization

Emergency (or reliability) demand response indicates that
the response is mandatory (with penalty for non-compliance)
for the participants, who are not only compensated for their
reduction during emergency events, but are also paid for
their availability (i.e., even when no emergent signal is trig-
gered) [33]. Such programs are currently employed by many
Independent System Operators (ISO) such as New England
or PJM, where the customers’ contracts can be established
three years in advanced [34]. In detail, if there are some reli-
ability issues (e.g., forecast capacity shortages), the LSE will
trigger a signal to customers from at least 10 minutes to one
day in advance, and customers must comply with the notified
reduction volume. In current practice, colos often participate in
emergency demand response using onsite backup diesel gener-
ators. However, relying totally on diesel generators is not cost
effective. Furthermore, frequently using diesel can be environ-
mentally dirty, while datacenters are well motivated to reduce

dirty energy for green certificate pursuit (e.g., LEED pro-
gram [35]). Therefore, it is critical for colos to extract energy
reduction from tenants.

In this scenario, the main concern of the operator is how
to solicit the tenants to reduce their energy usage in order to
satisfy at least a fixed demand target requested by the LSE
[28]. Consequently, we consider a social welfare optimization
problem (SWO) in a colo system such that the sum of tenant
reductions is at least an amount D requested by the LSE as
follows

SWO : minimize
�ei ≥0,∀i

∑
i∈I Ci (�ei ) (17)

s.t.
∑

i∈I �ei ≥ D. (18)

In this problem, we implicitly assume that tenant’s power
reduction is sufficient to satisfy the target D. If not, we use
diesel generation to make up the shortfall in Section VI.

We see that the operator’s benefit (i.e., LSE payment for
colos) is not included in problem SWO since this benefit (as
well as penalty for non-compliance) is often pre-determined
via contracts and has no impact on how the operator achieves
reduction D. In other words, the operator benefit from the LSE
is independent of the reward that the operator grants to tenants
for emergency response. Clearly, it is different from the eco-
nomic demand response where the operator’s benefit, encoded
by a utility function, flexibly depends on the LSE conditions
(e.g., wholesale prices). Furthermore, the objective of SWO
is only to minimize the total tenant costs since the internal
reward transfer between the operator and tenants cancels and
has no effect on the social cost. We note that several works also
study the SWO of emergency demand response for non-colos
contexts [36] or for colos with different approaches [28].

Since SWO is a convex problem, its optimal primal and dual
variables (�e∗

i , ν∗) can be characterized by the Karush-Kuhn-
Tucker (KKT) condition as follows⎧⎪⎨

⎪⎩
ν∗ = C ′

i (�ei
∗), if �ei

∗ > 0;
ν∗ ≤ C ′

i (0), if �ei
∗ = 0,∀i;∑

i∈I �ei
∗ = D.

(19)

Because the objective of SWO is strictly convex, if (�ei
∗, ν∗)

exists, then it is unique. We note that, if D is too large, there
are no feasible solutions of SWO; therefore, we additionally
consider this case in Section VI.

The main purpose of the operator is to set a reward rate
that aligns the self-optimized tenants’ interests to the solution
of SWO characterized in (19). However, the operator’s incen-
tive mechanism should take into account whether tenants are
price-taking users who just accept the reward rate, or they are
price-anticipating on how their actions impact the rate. While
the price-taking assumption justifies the large number of users
where no one has a market power to alter the price, price-
anticipating is more likely in colo-datacenters, where there
are typically only a few large tenants, each having a large
power demand. In the next section, we will design two different
incentive schemes that can solve SWO for these two types of
tenants.
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B. SWO for Price-taking Tenants

We propose an incentive scheme for emergency demand
response that can align the price-taking tenants’ strategies to
the solutions of SWO in Algorithm 2, which is an iterative and
distributed algorithm based on dual-decomposition methods
[37], [38].

Algorithm 2. Distributed Algorithm for Price-taking Tenants

1: Operator initializes and broadcasts a random reward rate
ν(0) > 0 to all tenants, k = 0;

2: repeat
3: Tenant i submits its reduced energy level

�ei
(k) =

[
C ′−1

i

(
ν(k)

)]+ ; (20)

4: Operator updates its reward rate as follows

ν(k+1) =
[
ν(k) − γ (k)

(∑
i∈I �e(k)

i − D
)]+

, (21)

then broadcasts ν(k+1) to all tenants;
5: k = k + 1;
6: until |ν(k+1) − ν(k)| < ε.

The operations of Algorithm 2 can be explained as follows.
According to dual methods, the Lagrangian variable ν plays the
role of the reward rate (e.g., $/kWh) that the operator is will-
ing to pay tenants to reduce the energy usage. Therefore, given
this reward rate announced by the operator at each iteration k,
each tenant will submit to the operator a reduction volume that
maximizes the following tenant’s net utility

max
�ei ≥0

ν(k)�ei − Ci (�ei ),∀i, (22)

and the solution to this problem is given in line 3 of
Algorithm 2, where C ′−1

i (·) is the inverse of the derivative of
cost function Ci (·). Then, after collecting all tenants’ submit-
ted reduction levels, the operator will adjust the reward rate as
in line 4 of Algorithm 2 with an appropriate step side rule γ (k)

to balance the total reduced energy with target D: decrease the
reward rate if over-provision (

∑
i∈I �ei > D) and vice versa.

When the algorithm converges with a number of iterations, i.e.,
ν(k+1) ≈ ν(k), with a sufficiently small ε at line 6, we see that
(20) and (21) will satisfy the KKT condition (19) of SWO,
inducing the optimal solutions. We next provide the optimal
performance of Algorithm 2.

Proposition 2: Algorithm 2 converges to the unique solution
of SWO with an appropriate step-side rule.

The proof of Proposition 2 follows the lines of a similar
technique in [37] so that it is omitted due to limited space.

We have some further remarks for Algorithm 2 as follows:
• In contrast to Algorithm 1 of economic demand response,

tenants are not required to reveal their private information
to the operator.

• However, similar to Algorithm 1, the operator can use a
uniform reward rate ν for fairness.

C. SWO for Strategic Tenants

In this subsection, based on a formulated bidding game, we
will design an incentive mechanism for this game to handle
the operator’s concern of how to align the strategic tenants’
incentives to the social optimum point for emergency demand
response.

Bidding game. We consider I strategic tenants bidding for
a finite amount of D energy reduction to receive compensa-
tion rewards from the operator. Each tenant i is encouraged
to bid θi , representing its aggressiveness of energy reduction.
We denote the bid vector of all tenants by θ = (θ1, · · · , θI ).
We also denote θ−i = (θ1, · · · , θi−1, θi+1, · · · , θI ) the bid vec-
tor of all tenants excluding i . We further denote  = ∑

i∈I θi ,
−i = ∑

j �=iθ j . Based on the bids of tenants, the provider will
reward tenant i an amount Ri (θi , θ−i ) for reducing a quantity
�ei (θi , θ−i ). Hence, the payoff function of tenant i with bid θi

is given as the following

ui (θi , θ−i ) = Ri (θi , θ−i ) − Ci (�ei (θi , θ−i )). (23)

Since the tenants unilaterally maximize their own payoff by
adjusting their bids, we have a bidding game:

• Players: tenants in the set I;
• Strategy: θi ≥ 0, ∀i ∈ I;
• Payoff function: ui (θi , θ−i ), ∀i ∈ I.

For this game, a bidding profile θne is called a Nash
Equilibrium (NE) if and only if

θne
i = arg max

θi ≥0
ui (θi , θ

ne
−i ), ∀i. (24)

Efficient Mechanism Design. The existence of a NE of the
bidding game is not obvious, and if it exists, it may not be
unique. Therefore, the challenge boils down to how the oper-
ator designs its reward and energy reduction rules such that the
result of the tenants’ bidding game is the existence and unique-
ness of an efficient NE (i.e., the same as SWO solutions). To
do that, we design an Efficient and Proportional Mechanism
(EPM) as follows.

EPM: Operator
Energy reduction rule:

�ei (θi ,−i ) =
{

θi
θi +−i

D, θi �= 0;
0, θi = 0.

(25)

Reward rule:

Ri (θi ,−i ) = −i D

α + 1

(
−α−1

−i − (θi + −i )
−α−1

)
. (26)

Tenants
Bidding Strategy:

θi = arg max
x≥0

[
Ri (x,−i ) − Ci (�ei (x,−i ))

]
,∀i. (27)

The basic operation of EPM in a demand response period can
be described as follows.

Step 1: First, after receiving an emergency signal from LSE
with a specific reduction amount D, the operator
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will announce the parameters, i.e, D, α, and −i , of
energy reduction and reward rules as in (25) and (26),
respectively, to tenant i , ∀i .

Step 2: Then, each rational tenant will strategically choose a
bid to maximize its net utility according to (27).

Step 3: When an equilibrium θne is reached, the emergency
demand response proceeds: tenant i reduces energy
usage by an amount �ei (θ

ne
i , θne

−i ) and receives its
reward Ri (θ

ne
i , θne

−i ).
We notice that EPM is different from recent related incentive

mechanisms proposed for colos [12], [28] based on the com-
binatorial reverse auction method where tenants first submit
their bids and costs, and the operator then decides which bids
to accept and how much money to reward tenants. The design
of EPM is based on the principle of g-mechanism [39]. In these
rules, while tenants are allocated their reduction proportional to
their bids, the reward rule is designed to align tenant’s inter-
ests with the social welfare. This mechanism can be briefly
described with a proportional allocation rule similar to (25),
where the payment of buyers to sellers is as follows

Ri (θi ,−i ) =
{

−i
∫ θi

0
g(t+−i )

(t+−i )
2 dt, θi > 0;

0, θi = 0.
(28)

The simple g-mechanism is proposed in the context of allocat-
ing a divisible network resource to finite users. This mechanism
is flexible in that we can choose a function g(·) that is suitable to
a specific context. The authors in [39] also provide some typical
functions g(·) intended to the users’ costs; however, they cannot
be applied in our context where we design a reward mechanism.
In EPM, we choose g() = −α , characterized by the parame-
ter α > 0, for the reward rule (26) to align the NE of the bidding
game with the solution of SWO. We have the following result
of the proposed EPM.

Theorem 2: With EPM, the bidding game either has a trivial
NE θne = 0 or a unique non-trivial NE θne (with at least two
tenants have positive bids) such that �ei (θ

ne
i , θne−i ), i ∈ I, is the

unique solution of the SWO.
From this proposition, we see that the existence of a non-

trivial unique efficient NE is what the operator aims to.
However, there is no guideline on how to achieve this desired
equilibrium at step 3 of the EPM operation (i.e., the operator
clearly wants to avoid the trivial equilibria).

If the operator can calculate the non-trivial NE in advance,
then all steps of EPM can proceed in only one round. But this
capability only exists when the operator can solve a set of fixed-
point equations (24), which requires accessing each tenant i’s
private cost information Ci (·), ∀i . In this case, the well-known
VCG mechanism is favored. In contrast, we prefer a distributed
algorithm that can help tenants protect their privacy and use
their bids as the only means to communicate with the operator.

Distributed algorithm for EPM. Inspired by Algorithm 2,
we propose a distributed implementation for EPM, which is
presented in Algorithm 3. Intuitively, it is designed based
on two principles: (i) the EPM rules to guarantee an effi-
cient NE according to Proposition 2, and (ii) the dual-based
gradient methods to enable the distributed fashion similar to

Algorithm 2. We explain the operation of Algorithm 3 as
follows.

Algorithm 3. Distributed Algorithm for EPM

1: k = 0, the operator set a random ν̃(0) > 0 and broadcasts


(0)
−i = g−1(ν̃(0)), D, and α to all tenants;

2: repeat
3: Tenant i submits θ

(k)
i ≥ 0 that satisfies

θ
(k)
i D

θ
(k)
i + 

(k)
−i

= C ′
i
−1
((

θ
(k)
i + 

(k)
−i

)−α
)

,∀i; (29)

4: Operator updates its virtual reward rate as follows

ν̃(k+1) =
[
ν̃(k) − γ (k)

(∑
i∈I

θ
(k)
i D

θ
(k)
i + 

(k)
−i

− D

)]+

(30)

and sends 
(k+1)
−i = g−1(ν̃(k+1)) − θ

(k)
i to tenant i , ∀i ;

5: k = k + 1;
6: until|ν̃(k+1) − ν̃(k)| < ε.

At the beginning of each demand response period (line 1),
the operator will broadcast D, α, and random initial values of
−i > 0 to all tenants i , ∀i , according to the energy reduction
and reward rules of EPM. The initial −i is randomly set to
a positive value to avoid the trivial NE, as in Proposition 2.
Then, the next loop (lines 2-5) is simply iterating the interaction
between the operator and tenants in steps 1 and 2 of EPM until
the equilibrium is reached. Specifically, at line 4, in each itera-
tion k, the operator collects all bids and calculates a new value


(k+1)
−i for tenant i based on an updated virtual rate ν̃(k+1) that

tracks the values of g(·) (EPM step 1). After receiving its value,
at line 3, tenant i updates its bid (29), which is the solution to its
net utility maximization problem (27) (EPM step 2). The algo-
rithm will stop if the convergence condition is satisfied at line
6, where ν̃(k+1) ≈ ν̃(k) with a sufficiently small ε.

Proposition 3: Algorithm 3 can converge to the unique
efficient NE θne with an appropriate step-side rule.

We have some remarks for Algorithm 3 as follows:
• Similar to Algorithm 2, tenants need not reveal their

private information (e.g., ωi,1, ωi,2, Mi , and ρi ) to the
operator. However, unlike Algorithm 2 where each tenant
submits its �ei and the operator broadcasts the reward
rate, in Algorithm 3, based on the bids of all tenants {θi },
the operator announces the aggregate of other tenant bids
−i for tenant i to update its strategy. Therefore, it is not
necessary for tenant i to know each individual bid of other
tenants.

• We can see that tenants have discriminate reward rates:
Ri (θ

ne
i , θne

−i )/�ei (θ
ne
i , θne

−i ). We observe through simu-
lations (Section VII) that this rate is higher than the
optimal rate ν∗ of Algorithm 2, inducing that the oper-
ator has to give more incentives to strategic tenants than
to price-taking ones in order to achieve the optimal social
cost.
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VI. PRACTICAL EXTENSION DISCUSSION

In this section, we discuss other practical scenarios for colos’
demand responses. We first consider the operator with a fixed
reward budget constraint in the case of economic demand
response. We next examine how colos use their backup genera-
tor to fulfill an LSE’s emergency demand request which cannot
be achieved through tenant reduction.

A. Economic Demand Response: Colos with a Reward Budget

In Section IV, the Stage-I operator model has no restric-
tion on the budget. We include the budget, denoted by B, into
this model, where the original operator’s problem (8) can be
modified as follows

maximize
r,{zi }i∈I

U
(∑

i∈I zi fi (r)
)

,

s.t. r
∑

i∈I zi fi (r) ≤ B,

r ≥ 0,

zi ∈ {0, 1},∀i.

(31)

By assuming a fixed configuration of {zi = 1}i∈I, problem (31)
is reduced to

maximize
r≥0

U
(∑

i∈I fi (r)
)

,

s.t.
∑

i∈I r fi (r) ≤ B.

(32)

Then we can solve (31) in a similar way as with Algorithm 1,
replacing unconstrained problem (16) at line 4 by its con-
strained version (32).

B. Emergency Demand Response: The Use of Backup
Generators

In Section V, the social cost minimization problem (17) is
infeasible if the request target D is higher than the tenant cost
(e.g., D >

∑I
i Mi ). In this case, the operator has to rely on

backup energy storage, e.g., diesel generator, pre-charged bat-
teries [16], etc., to fulfill the mismatch. A similar model was
studied in [28] with a different approach. Let y denote the
backup energy used by the operator and β denote the cost
of backup usage per kWh; a new social cost problem is then
formulated as follows

SWO′ : minimize
y≥0,{�ei }≥0

βy +
∑

i∈I Ci (�ei )

s.t. y +
∑

i∈I �ei = D.

(33)

The Lagrangian of problem (33) is as follows

L({�ei }, y, {μi }, ν, ζ ) = βy +
∑

i∈I Ci (�ei )

− ν(y +
∑

i
�ei − D) −

∑
t
μi�ei − ζ y,

where {μi }, ν, and ζ are the dual variables.

Fig. 1 Traced and synthesized workloads.

Then, the KKT condition of (33) can be simplified as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν∗ = β = C ′
i (�e∗

i ), if �e∗
i > 0 and y∗ > 0;

ν∗ < β, if y∗ = 0;
ν∗ ≤ C ′

i (0), if �e∗
i = 0,∀i;

y∗ +∑
i∈I �e∗

i = D.

(34)

Algorithm 4. Distributed Algorithm for SWO′

1: Operator initializes and broadcasts a random reward rate
ν(0) > 0 to all tenants, k = 0;

2: repeat
3: Tenant i submits its reduced energy level

�ei
(k) = arg max

�ei ≥0

[
ν(k)�ei − Ci (�ei )

]
; (35)

4: Operator updates its reward rate

ν(k+1) =
[
ν(k) − γ (k)

(
y(k) +

∑
i∈I �e(k)

i − D
)]+

,

(36)

then broadcasts ν(k+1) to all tenants;
5: Operator updates its backup usage

y(k+1) =
⎧⎨
⎩
[

D −∑
i∈I �e(k)

i

]+
, if ν(k+1) ≥ β,

0, otherwise.
(37)

6: k = k + 1;
7: until |ν(k+1) − ν(k)| < ε.

There are many interesting observations from condition (34).
First, we always have ν∗ ≤ β: the optimal incentive price is no
greater than the backup energy cost. Intuitively, if incentivizing
tenants is more costly than using backup, the operator is better
off performing the demand response using its backup energy.
Second, if D is too high such that all tenants cannot fulfill it,
then the operator will turn on the backup to complement the
mismatch: ν∗ = β, and y∗ > 0 such that y∗ +∑

i∈I �e∗
i = D.

Finally, if D is small such that tenant reduction is sufficient
to fulfill, then backup energy is not necessary (i.e., a feasible
solution of the problem SWO in Section V): ν∗ < β, y∗ = 0,
and

∑
i∈I �e∗

i = D.
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Fig. 2. Comparison among three schemes in economic demand response with utility U as a log function: a) Reward rate, b) Operator profit.

Fig. 3. Comparison among three schemes in economic demand response with utility U as a linear function: a) Reward rate, b) Operator profit.

Fig. 4. Comparison among three schemes in economic demand response with varying ω3: a) Reward rate, b) Operator profit.

Fig. 5. Comparison among three schemes in economic demand response with a budget constraint: a) Reward rate, b) Operator profit.
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Fig. 6. Convergence of EPM: a) Tenant bids, b) Tenant energy reduction, and c) Operator payment.

Based on these observations from KKT condition (34), the
incentive mechanism for price-taking tenants in Algorithm 2
can be modified as in Algorithm 4 to include the backup energy
constraints, which are reflected in lines 4 and 5 of Algorithm 4.
Therefore, the convergence of Algorithm 4 to the solution of
SWO′ can be stated similarly to that of Algorithm 2.

However, due to the coupling among y, �ei and D, EPM
cannot be extended to problem SWO′ to deal with strategic
tenants, which is an interesting problem for future work.

VII. SIMULATION RESULTS

In this section, we present the simulation settings, then
provide the results to validate our proposal’s efficacy.

A. Settings

We consider a colo with varying number of tenants for
performance evaluation, where each tenant i has a number
of maximum servers Mi that varies uniformly from 3,000 to
10,000, representing heterogeneous tenant business. The wear-
and-tear and delay cost weights, ωi,1 and ωi,2, respectively,
also are uniformly distributed on [0.1, 3], which captures a
wide range of tenant cost sensitivity. The total energy reduction
requested by the operator is scaled to a ratio such that D = 20
kWh for every considered one-hour period (i.e., T = 1). Unless
otherwise stated, we set α = 1 in all scenarios.

In terms of workload of each tenant λi , we uses two basic
traces “MSR” and “FIU”, which were also used in [18], to
generate synthetic workloads for all tenants. Each tenant’s
workload is normalized with respect to its service rate μi ,
which is set to 1000 jobs/s [12]. All workload samples of five
tenants in 12 hours are illustrated in Fig. 1.

B. Results

Since we have two different scenarios, we will evaluate them
separately and compare each individual with its corresponding
baselines.

1) Economic demand response: We compare the perfor-
mance of Algorithm 1 (Alg. 1) with two baselines. The
first baseline, named OPT, is the optimal solutions of prob-
lem (12) using the exhaustive search. The second baseline,
called RAND, is a random price νrand uniformly distributed in
[mini {C ′

i (0)}, maxi {C ′
i (0)}] to enable feasible solutions, which

represents a simple but inefficient scheme.

Fig. 7. The impact of α on EPM. The left plot shows that α has no effect on
virtual reward rate’s convergent value. The right plot shows that total payment
of the operator increases with α.

Fig. 8. Total tenant cost of three schemes.

Impact of utility functions. When the operator’s utility is
chosen to be U = ω3 log

(
1 +∑

i∈I m∗
i (r)

)
, where ω3 is set to

be uniformly distributed on [0.2, 50] and log term reflects the
diminishing return on the amount of reduced load, we show
the values of the reward rates of different schemes and the cor-
responding operator’s profit in Figs. 2a and 2b, respectively.
When the operator’s utility is affine U = ω4

(∑
i∈I m∗

i (r)
)+

ω5, where ω4 and ω5 are uniformly distributed on [1, 2] and
[5, 10], respectively, we show the operator’s reward rate and
profit of three schemes in Figs. 3a and 3b, respectively. Since
the operator can have a wide range of possible utility val-
ues depending on many factors such as LSE’s reimbursement,
peak or non-peak demand response period, and colo character-
istics, we have the freedom to choose the weight parameters
in order to achieve feasible solutions. We also compare the
operator profit and reward rates of the three schemes with a
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Fig. 9. Tenant energy reduction of three schemes.

Fig. 10. Operator rewards to tenants of three schemes.

budget constraint of problem (31) in Figs. 5a and 5b, respec-
tively. In all scenarios, while Alg. 1 and OPT achieve the same
performance, the scheme RAND is not as efficient as the others.

Impact of ω3. We also examine the effect of ω3 in the case
of log utility function in Figs. 4a and 4b. We see that ω3 has an
impact on the operator profit. Specifically, the optimal operator
profit increases linearly when ω3 increases, while the optimal
reward rates are unchanged. We observe a similar behavior in
the case of linear utility function with varying parameters ω4
and ω5.

2) Emergency demand response: We first illustrate the con-
vergence of the proposed schemes with fixed number of five
tenants (their workload traces are in Fig. 1). Considering the
first period and setting ε = 10−3, γ (k) = 1/k, we show in Fig. 6
that tenant bids and reduced energy and operator reward of
EPM converge within an acceptable number of iterations (i.e.,
less than 90 iterations).

Impact of α. We further consider the effect of α in Fig. 7.
There are two important observations to highlight: a) varying
α has no effect on the convergence of the virtual reward rate
g(ne), which is the same value as the optimal price ν∗ of
the problem SWO (c.f., left plot of Fig. 7), and b) the total
reward that the operator gives tenants increases with α (c.f.,
right plot of Fig. 7). Therefore, we expect that the operator
will choose an α as small as possible. However, we observe
that when α is small, more iterations are required for conver-
gence, and when α is sufficiently small (e.g, less than 1), there
is no convergence. We conclude numerically that there is a
trade-off between convergence speed and operator payment via
adjusting α.

Comparison with other baselines. To evaluate the efficacy
of the proposed mechanisms, we compare EPM with two base-
lines. The first baseline, named SWO, is an efficient scheme that
uses the optimal price ν∗ satisfying (19) of the SWO problem.

Fig. 11. Convergence of Algorithm 4 with backup energy.

The second baseline is the random scheme RAND used in
economic demand response comparison.

We first compare all schemes without backup energy. Fig. 8
shows the sum cost of all tenants of the three schemes. Different
from RAND, SWO and EPM have the same performance in all
periods, which illustrates that EPM can achieve the objective
of social welfare maximization problem (17). Fig. 9 shows how
different schemes respond to the energy reduction request D in
12 periods. While EPM and SWO have the same energy reduc-
tion levels for all tenants and can achieve the energy reduction
target, RAND has off-target responses from tenants due to its
random nature, which is not efficient. In terms of rewards,
Fig. 10 compares how much the operator pays to tenants with
different schemes. It is interesting to see that the operator has
to pay approximately 25% more with EPM than with SWO.
This observation indicates that in order to achieve efficiency
while dealing with the strategic behaviors of tenants, the oper-
ator must provide more incentives with EPM than those of
SWO scheme with presumed price-taking tenants. Furthermore,
Fig. 9 and Fig. 10 show that tenants receive their rewards
proportionally to their reduced energy levels.
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Fig. 12. Backup usage y and tenant reduction energy.

We also illustrate the demand response with backup energy
in Algorithm 4. The value of β is set to 0.3 $/kWh, corre-
sponding to a typical diesel cost [40]. Fig. 11 shows that all
reduced and backup energy of Algorithm 4 converge to the opti-
mal point of SWO′. We next demonstrate the effect of backup
energy in Fig. 12 by increasing D linearly from 30 to 50 kWh
in 12 periods. In this figure, we see that the backup energy also
increases in order to fulfill the high demand target D since the
total reduced energy of all tenants is not sufficient to match the
target.

VIII. CONCLUSIONS

In this paper, we addressed the demand response of a cru-
cial but less-studied segment of datacenter market: colocation
datacenters (colos). We tackled the split-incentive hindrance
between colo tenants and operator, a unique feature of colos,
by proposing two incentive schemes. The first scheme, which
is appropriate for a controllable demand target of the operator,
is based on the two-stage Stackelberg game, where the operator
is the leader who sets its incentive reward rate, and the tenants
are the followers who decide how much energy to reduce given
the operator’s reward. We first analyze this hierarchical game
structure using the backward induction method and propose
a linear time complexity to find its equilibrium. The second
scheme, which is designed for fixed demand response target in
many grid emergency incidents, is considered with two types of
tenants: if tenants are price-takers, for which we propose a dual-
based distributed algorithm that can achieve the optimal social
cost; if otherwise, tenants are price-predictors, we propose a
proportional mechanism with a distributed algorithm that can
incentivize the tenants to reduce their energy in strategies that
produce the same optimal social performance as in the previ-
ous price-taking case. Finally, the trace-based simulation results
validate the efficacy of our proposals.

APPENDIX A
PROOF OF PROPOSITION 1

Since the tenants are sorted according to increasing κi

(line 1), when the sufficient condition r > κi is satisfied, we
have z j = 1, ∀ j ≤ i . In this case, the operator’s problem (15)
becomes (16), which is a single-variable and continuous prob-
lem and can be solved efficiently using any numerical methods
(e.g., bisection, Newton, etc.) (lines 1-4).

Therefore, we assume that (16) is available, then find its solu-
tions and keep those satisfying the sufficient condition (line
5). By successively solving (16) and checking the sufficient
condition (lines 5–8), we cover all possible cases of equiva-
lence between problems (15) and (16). Finally, we compare and
choose the solutions that result in the highest operator profit
(line 10).

Clearly, with a single loop, Algorithm 1 has the complexity
O(cI ), where c is complexity to solve problem (16).

APPENDIX B
PROOF OF THEOREM 1

It is obvious that U(r�, {mi }) ≥ U(r, {mi }), ∀r , for any
given {mi } since r� is the solution to the Stage-I problem;
hence, we have U(r�, {m�

i }) ≥ U(r, {m�
i }). Similarly, for any

given values r and ∀i , we have ui (m�
i , r) ≥ ui (mi , r), ∀mi ;

hence, ui (m�
i , r�) ≥ ui (mi , r�), ∀mi . Combining these facts,

we conclude the proof based on the definitions of (9) and (10).

APPENDIX C
PROOF OF THEOREM 2

It is straightforward to see that θ = 0 is an NE because, when
θ−i = 0, tenant i , ∀i , receives reward Ri (θi , θ−i ) = 0 according
to (26) so that it has no incentive to submit a positive bid.

We next show that if θ has only one positive element, then it
is not an NE. Suppose, w.l.o.g., tenant 1 has θ1 > 0 and θ−1 =
0, then the reward to tenant 1 is zero. Therefore, tenant 1 will
decrease its bid to 0.

Finally, we show the existence and uniqueness of an efficient
NE θne (with at least two positive elements) via two steps. In
step 1, we provide a necessary and sufficient condition for a
bidding profile to be an NE. Based on this condition, in step
2, we show that the solution of SWO can lead to an NE of the
bidding game and vice versa, which finishes the proof due to
the existence of SWO’s unique solution.

Step 1: For a profile θ̂ to be an NE according to (24), using
the first-order condition, we have

∂ui

∂θi
(θ̂i , θ̂−i ) = 0

= ̂−i D(
θ̂i + ̂−i

)2

((
θ̂i + ̂−i

)−α − C ′
i

(
�ei (θ̂i , θ̂−i )

))
,

(38)

if θ̂i > 0, and

∂ui

∂θi
(0, θ̂−i ) = D

̂−i

(
̂−α

−i − C ′
i (0)

)
≤ 0, (39)

if θ̂i = 0, which implies{
g(θ̂i + ̂−i ) = C ′

i

(
�ei (θ̂i , θ̂−i )

)
, θ̂i > 0;

g(θ̂i + ̂−i ) ≤ C ′
i (0), θ̂i = 0,∀i.

(40)

Since g(θ̂i + ̂−i ) is strictly decreasing (we can check

that ∂g
∂θi

(θ̂i + ̂−i ) < 0, ∀i) and C ′
i

(
�ei (θ̂i , θ̂−i )

)
is strictly
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increasing with respect to θ̂i , we see that, for a fixed θ̂−i ,
there exists a unique solution θ̂i to (40), which is the solu-
tion to maxθi ui (θi , θ̂−i ), ∀i . Therefore, (40) is a necessary and
sufficient condition for θ̂ to be an NE.

Step 2: Comparing the KKT conditions (19) with (40), we
show the existence and uniqueness of an efficient NE θne. That
is, there exists a unique NE θne such that �e∗ = �e(θne).

First, if θne with a corresponding ne is an NE satisfying
(40), then by choosing ν′ = g(ne), we see that (�e(θne), ν′)
satisfies (19), which implies that (�e(θne), ν′) coincides with
the unique primal-dual solution (�e∗, ν∗) of the SWO.

Second, with the unique solution (�e∗, ν∗) of SWO, we can
construct a profile θne as follows

g(ne) = ν∗, (41)

θne = ne

D
�e∗. (42)

We see that there exists a unique ne satisfying (41) since g(·)
is strictly decreasing. Hence, with (�e∗, ν∗), the constructed
profile θne is unique and satisfies (40), which implies an NE.

APPENDIX D
PROOF OF PROPOSITION 3

We show that all updates of Algorithms 2 and 3 have the
same functionalities. Therefore, with a chosen step-side rule,
if the former can converge the unique solution of SWO, then
the latter also converges to the same point due to a one-to-one
relationship between the solution of SWO and the NE of EPM
(c.f. Proposition 2.)

First, according to EPM’s rules, we see that the tenants’ bid
update (29) of Algorithms 3 can be rewritten as

�ei (θi ,−i ) =
[
C ′

i
−1

(g(θi + −i ))
]+

. (43)

However, in line 4 of Algorithm 3, we know that the vir-
tual reward rate ν̃ tracks the values of g(·); therefore, (43) is
equivalent to

�ei (θi ,−i ) =
[
C ′

i
−1

(ν̃)
]+

,∀i. (44)

Second, according to EPM’s rules, we see that the operator’
virtual rate updates (29) of Algorithm 3 can be rewritten as

ν̃(k+1) =
[
ν̃(k) − γ (k)

(∑
i∈I �ei (θi ,−i ) − D

)]+
, (45)

It is obvious that updates (44) and (45) of Algorithm 3 are
equivalent to the energy reduction level and reward rate updates
(20) and (21) of Algorithm 2, respectively.
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