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Online Electricity Cost Saving Algorithms
for Co-Location Data Centers

Linquan Zhang, Zongpeng Li, Chuan Wu, and Shaolei Ren

Abstract—This work studies the online electricity cost mini-
mization problem at a co-location data center, which serves mul-
tiple tenants who rent the physical infrastructure within the data
center to run their respective cloud computing services. The co-
location operator has no direct control over power consumption
of its tenants, and an efficient mechanism is desired for elicit-
ing desirable consumption patterns from the tenants. Electricity
billing faced by a data center is nowadays based on both the total
volume consumed and the peak consumption rate. This leads to an
interesting new combinatorial optimization structure on the elec-
tricity cost optimization problem, which also exhibits an online
nature due to the definition of peak consumption. We model and
solve the problem through two approaches: the pricing approach
and the auction approach, and design online algorithms with small
competitive ratios.

Index Terms—Co-location data centers, mechanism design,
online algorithms.

I. INTRODUCTION

C O-LOCATION data centers (or co-locations) rent physi-
cal space and infrastructure support, e.g., reliable power

supply and cooling service, to multiple tenants for hosting their
servers at a common site. They are rather different from pri-
vate (owner-operated) data centers in which operators have full
control of computing resources and site facilities. Co-locations
offer a flexible data center solution to small and medium users
who wish to run their own ‘cloud’ but are otherwise deterred
by the daunting cost of constructing and maintaining their own
data center. Even large users like Google and Akamai rely
on co-locations as a cost-effective complement to their own
data centers for achieving a global presence, particularly in
regions of relatively low demand that do not justify a dedicated
data center. The surging market of co-locations is expected to
reach $43 billion by 2018, with a compound annual growth
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rate of 11% [1]. The recent paradigm of modular datacen-
ter design further facilitates the management and scalability
of co-locations — accommodating a new tenant could be as
simple as the plug-and-play of a few extra pods.

Electricity charges paid by a co-location is computed by an
interesting formula that includes two components: i) the peak
charge, determined by the peak demand within a billing cycle,
e.g., the maximum average power consumption measured over
each 15-minute interval; ii) the volume charge, based on total
energy consumption in the billing cycle [2], [3], [4]. Tab. I
summarizes several electricity rate plans available in North
America. The volume charge is relatively intuitive. The ratio-
nale behind the peak charge is that peak consumption shedding
is critical to a power grid; even a small reduction in peak
demand can provide significant cost savings and reduce green-
house gas emission since a smaller number of peaking power
plants, which usually burn natural gas or diesel oil and run only
in peak hours with higher cost, are needed.

In practice, the peak charge component is seen to account
for over 30% of the total electricity bill [3], [4]. For example,
consider a co-location data center located in British Columbia,
Canada, powered by BC Hydro with 24 MW peak demand and
15 MW average demand. The monthly peak charge is 238,800,
while the volume charge is 524,880. In this case, the peak
charge is 31% of the total monthly payment. The peak charge
represents even higher portions of the bill in Georgia, where
the monthly peak charge would be 405,600 while the volume
charge is 61,333.2, under the same consumption pattern as in
the British Columbia case. This suggests that a well designed
algorithm for shaping the power consumption profile and con-
trolling the peak demand has a great potential in helping cut
electricity cost at a co-location.

However, different from the case of private data centers, the
co-location operator has no direct control on which machines
are on/off, since its role is to offer basic services such as
stable power supply and cooling. The individual tenants at
a co-location manage their own servers and control the cor-
responding power consumption. While the co-location has a
strong incentive to cut peak consumption and therefore save
cost, its tenants may or may not share that same interest,
depending on the contract between the two sides.

Typical electricity pricing today between a co-location and
its tenants is flat-rate based, and does not depend on the real
consumption volume or pattern [9], [10]. The tenants have lit-
tle incentive to reduce their electricity usage by shutting down
under-utilized servers, or by modulating their consumption pat-
tern via shifting computing jobs in the temporal domain to
reduce peak consumption rate. Such actions desired by the
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TABLE I
SUMMER ELECTRICITY RATES IN NORTH AMERICA

co-location will not automatically happen without appropriate
incentives. Co-locations are sometimes so desperate to cut peak
consumption that they start their stand-by generators to cover
part of its tenants’ demand [4]. Such quick-start generation
(e.g., using diesel generators) is often not economical, nor is
it environment friendly. A simple solution is to bill each ten-
ant based on its peak charge and volume charge. Unfortunately
such an approach may not help reduce the peak energy cost
since many of the peaks do not coincide with the overall peak of
the entire co-location. On the contrary, auction-based demand
response mechanisms have the potential of efficiently providing
incentive for tenants to cooperate, eliciting desired electricity
consumption patterns with remuneration paid in return. A well
designed auction may represent a win-win solution for both the
co-location operator and its tenants.

The maximum power demand is dependent on the power
consumption in all time intervals during a billing cycle.
Decisions in different time slots are therefore coupled, leading
to an inherent online nature of the problem of demand shaping.
Even for the offline version of the problem (future prices and
demands are perfectly known), computing the optimal solution
efficiently is still highly non-trivial, since its underlying opti-
mization problem is an integer program, which is NP-hard in
general. The challenge escalates when one seeks to design an
online solution for practical application, as knowledge on the
demands, unit power prices as well as tenants’ bids in the future
are completely unknown.

Tenants could reduce energy consumption in various man-
ners, e.g. shutting down under-utilized servers and shifting
delay insensitive workloads in the temporal domain. The spe-
cific choice of a tenant’s energy reduction is not our focus.
We focus on designing mechanisms for eliciting desirable con-
sumption patterns from the tenants. We model and solve the
electricity cost saving problem in a co-location data center
through two approaches: the pricing approach and the auction
approach.

In the pricing approach, the co-location data center offers
a price it is willing to pay for unit energy reduction by tenants,
and the tenants decide and submit how much energy they are
willing to save at that price. Finally the co-location data center
determines which tenants’ energy reductions are accepted. In
the auction approach, the co-location data center invites the
tenants to submit energy reduction bids including the amount
of energy consumption to shed and the amount of remuneration
asked. The co-location then conducts a reverse auction to deter-
mine winning bids along with their corresponding payments.
The pricing approach is relatively simple and has been applied

in real world demand response solutions, implemented in elec-
tric appliances on the market [11]. It is simple but requires the
co-location to first come up with a good estimate on a unit
reduction offer. The auction approach eliminates the need of
such ad hoc guesses and resorts to the power of the market
instead for automatic fair price revelation based on demand and
supply. Yet, the auction design is more complex than the algo-
rithm design in the pricing approach, and our solution to the
former borrows techniques from the latter.

In each approach, we design efficient online algorithms with
small competitive ratios. For the auction approach, we further
apply a randomized auction design framework, which decom-
poses a fractional optimal solution to the second sub-problem
into a convex combination of feasible integer solutions, to
ensure truthfulness. Trace-driven simulation studies further ver-
ify the efficacy of the proposed algorithms, showing their
close-to-optimum performance that is better than the worst-case
bounds.

The rest of the paper is organized as follows. Sec. II reviews
related work. The system model and the problem formulation
are presented in Sec. III. We then study the pricing version and
the auction version of the cost minimization problem in Sec. IV
and Sec. V, respectively. Trace-driven simulation studies are
presented in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Energy efficiency in data centers attracted high attention
from both academia and industry in recent years, since a small
fraction of improvement in energy efficiency transfer into mil-
lions of dollars of cost savings. Several algorithms [12], [13]
are proposed to ensure that power consumption is proportional
to total workload, by dynamically turning on/off machines in
data centers (dynamic capacity provisioning) or adjusting their
speed (CPU speed scaling). Different from traditional data cen-
ters, co-location data centers are not able to directly control the
servers’ on/off status or speed.

A number of recent studies are devoted to demand response
in data centers. Wang et al. [14] advocate that data center
demand response can be an effective approach to improve
power grid stability, to reduce the energy consumption as well
as to increase the revenue of data centers. Liu et al. [15] pro-
pose predication-based pricing for demand response in data
centers, where the data center operator has full control over
all its servers. Again, co-locations have no direct control over
the servers’ power consumption, thus these methods are not
directly applicable.

The peak-based electricity charge model is applied in the
real-world for large business users as exemplified by data cen-
ters. Wang et al. [16] propose offline and online algorithms to
minimize the electricity cost by delaying or dropping work-
loads. They prove a theoretical bound for the dropping only
case. However, they assume that the dropping cost is propor-
tional to the size of the workload, which ignores the fact that
different jobs of the same size may be of different importance.
Xu et al. [17] study the electricity cost minimization problem
in a data center through partial execution while trying to satisfy
the Service Level Agreement (SLA). Different from their work,



2908 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 12, DECEMBER 2015

TABLE II
PPUE V.S. AMBIENT TEMPERATURE [21]

we tackle the problem by eliciting voluntary energy reduc-
tion from the co-location tenants in an otherwise uncoordinated
power consumption environment within a co-location data cen-
ter. Bar-Noy et al. [18] advocate shaving the peak demand by
using stored energy. Their solution focuses on optimizing the
peak charge only without considering the volume charge and
energy storage cost, while our work concentrates on the overall
cost including the peak charge, volume charge as well as tenant
costs.

The primal-dual approach [19] is a general tool for design-
ing competitive online algorithms. A well designed primal-dual
online algorithm sometimes achieves a small competitive ratio
against the offline optimum. However, the method requires that
the underlying problem is of a packing type or a covering
type. The peak power demand charge model essentially makes
our problem a mixed packing and covering problem. Directly
applying the primal-dual approach is hence infeasible. Azar et
al. [20] recently propose a technique to tackle mixed packing
and covering problems. Yet it assumes that the packing con-
straints are given at the beginning while the covering constraints
are revealed on the fly, and the problem only focuses on min-
imizing the maximum amount by which a packing constraint
is violated. So their technique still has restrictions and is not
directly applicable to our problem.

III. THE CO-LOCATION DATACENTER MODEL

We consider a co-location data center hosting a large number
(thousands) of servers for its tenants. The co-location pays the
utility company both a peak charge and a volume charge for
electricity consumed by the data center. The system runs in a
time-slotted fashion. The length of each time slot is τ , e.g., 15
minutes [3]. The price of a unit amount of electricity fluctuates
over time. Let ft be the price at t . After a billing cycle, the peak
demand among all time slots is identified, and used to compute
the peak charge. Let f peak be the peak demand price, known
by the co-location at the beginning of the billing cycle. The co-
location can save energy used towards server cooling when its
tenants save energy by shutting down their servers. Let λ be the
partial Power Usage Effectiveness (pPUE), which is the ratio
between (a) the total energy consumption for IT and cooling
and (b) the IT energy consumption. The pPUE varies as the
ambient temperature varies, and a typical value ranges from 1.1
to 2.0, as shown in Tab. II.

Following empirical models from recent measurement stud-
ies [21], [22], we compute the pPUE using quadratic curve
fitting based on data in Tab. II.

λ = 3.0825 × 10−5θ2 + 5.7154 × 10−4θ + 1.0127 (1)

Fig. 1. An illustration of the two approaches for reducing energy consumption
in a co-location data center. PA = the Pricing Approach, AA = the Auction
Approach.

where the formula is valid on the interval θ ∈ [25, 90], and θ is
the ambient temperature. Since θ fluctuates over time, so does
the pPUE. We use λt to denote the pPUE at time t .

Let Dt be the power demand at time t without energy reduc-
tion by tenants. At the end of slot t − 1, Dt can be accurately
predicted, and ft is known. We assume that maxτ Dτ /Dt ≤
ξ,∀t . Typically ξ ranges from 1.2 ∼ 2 since idle machines still
consume around 50% of energy [23].

Diesel generators can also help shed the co-location’s peak
consumption from the power grid, yet they represent a less
preferred option due to environment concerns [4] and are not
considered in this work. As shown in Fig. 1, the system has
two alternative ways to call for energy reduction from tenants
for the next time slot, i) offering a pt , determined by the co-
location, as the unit price for energy reduction from tenants;
ii) conducting a reverse auction by soliciting energy reduc-
tion bids from tenants. We assume that pt/λt ≤ κ ft , i.e., the
co-location will not offer too high prices for the energy reduc-
tion. Let Mt be the set of tenants willing to join the process
in i) at t . Each tenant i ∈ Mt submits ri,t to the co-location,
indicating how many kilowatts it is willing to save at t . Let
Nt be the set of tenants willing to participate in the power
reduction reverse auction in ii) at t . Each tenant j ∈ Nt sub-
mits (r j,t , b j,t ) to the co-location, where r j,t is its possible
energy reduction at t , and b j,t is the remuneration asked for. We
assume that b j,t/(λt r j,t ) ≥ ft , pt/λt ≥ ft , i.e., the unit price
for the energy reduction from tenants is higher than price of
energy from the grid. The total energy reduction contributed by
co-location tenants is a fraction of Dt and cannot exceed Dt ,
i.e., λt

∑
i ri,t ≤ 1

ρ
Dt ,∀t . A typical ρ ranges from 2 to 5.

Let Ht be a continuous variable indicating the amount of
energy purchased from the grid at time t . For each ri,t given by
the tenant i ∈ Mt , a binary variable xi,t indicates whether the
co-location accepts ri,t . For each bid (r j,t , b j,t ) submitted by
tenant j ∈ Nt , we have a binary variable x j,t indicating whether
this bid wins. A notation table is provided for ease of reference.

A. The Pricing Approach Model

In the pricing approach, we have the following con-
straint for meeting the power demand after considering
energy reduction by tenants: Ht ≥ Dt − λt (

∑
i ri,t xi,t ),∀t .

We focus on the total cost of the co-location:
∑

t ft Ht +
f peak maxt Ht + ∑

t,i ptri,t xi,t , where
∑

t ft Ht is the volume
charge, f peak maxt Ht is the peak charge, and

∑
t,i ptri,t xi,t is
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the cost of paying energy reduction from the tenants. The cost
minimization problem is then formulated as follows:

minimize
∑

t

ft Ht + f peak max
t

Ht +
∑
t,i

ptri,t xi,t (2)

subject to: Ht + λt

∑
i∈Mt

ri,t xi,t ≥ Dt ∀t (2a)

xi,t ∈ {0, 1}, Ht ≥ 0 ∀i ∈ Mt , t (2b)

B. The Auction Approach Model

In the auction approach, the following constraint ensures
that the power demand is met after considering the energy
reduction by tenants: Ht ≥ Dt − λt (

∑
j∈Nt

r j,t x j,t ),∀t . We
focus on the overall social cost of the co-location and its ten-
ants:

∑
t ft Ht + f peak maxt Ht + ∑

t, j b j,t x j,t . Here
∑

t ft Ht

is the volume charge, f peak maxt Ht is the peak charge and∑
t,i bi,t xi,t is the cost of the tenants. Payments between the co-

location and its tenants cancel themselves and are not reflected
in the social cost. The social cost minimization problem can
then be formulated as follows:

minimize
∑

t

ft Ht + f peak max
t

Ht +
∑
t, j

b j,t x j,t (3)

subject to: Ht + λt

∑
j∈Nt

r j,t x j,t ≥ Dt ∀t (3a)

x j,t ∈ {0, 1}, Ht ≥ 0 ∀ j ∈ N, t (3b)

IV. THE PRICING APPROACH

Let Hmax be the maximum of Ht over time, i.e., Ht ≤
Hmax ,∀t . The optimization problem (2) then becomes a linear
integer program (LIP):

minimize
∑

t

ft Ht + f peak Hmax +
∑
t,i

ptri,t xi,t (4)

subject to: Ht + λt

∑
i∈Mt

ri,t xi,t ≥ Dt ∀t (4a)

Ht ≤ Hmax , ∀t (4b)

xi,t ∈ {0, 1}, Ht ≥ 0 ∀i ∈ Mt , t (4c)

LIPs are NP-hard in general. Even if complete future infor-
mation on D, f, p, λ and r are perfectly known, solving (4)
optimally is still computationally challenging.

A. An Offline Approximation Algorithm

We first design an offline approximation algorithm, assum-
ing all future information are known. We introduce a linear
programming (LP) relaxation by relaxing the integer constraint
xi,t ∈ {0, 1} to xi,t ≥ 0. The main challenge in such offline
algorithm design is to effectively modulate the power consump-
tion over time, for controlling the peak charge during the billing
cycle. We start analyzing such peak charge as follows:

min
x,Hmax ,H

⎧⎨
⎩

∑
t

ft Ht + f peak Hmax +
∑
t,i

ptri,t xi,t

⎫⎬
⎭

= min
Hmax ,H

{∑
t

( ft Ht + pt (Dt − Ht )/λt ) + f peak Hmax

}

=
∑

t

pt Dt/λt + min
Hmax ,H

{∑
t

( ft − pt/λt ) Ht + f peak Hmax

}

Note that Hmax is defined as the maximum Ht ,∀t . If Dt ≥
Hmax , then Ht = Hmax . If Dt < Hmax , then Ht = Dt .

min
Hmax ,H

{∑
t

( ft − pt/λt ) Ht + f peak Hmax

}

= min
Hmax

{∑
t

( ft − pt/λt ) (Dt − (Dt − Hmax )1Dt ≥Hmax )

+ f peak Hmax

}

=
∑

t

( ft − pt/λt ) Dt + min
Hmax

{
f peak Hmax

+
∑

t

(pt/λt − ft ) (Dt − Hmax )1Dt >Hmax

}

=
∑

t

( ft − pt/λt ) Dt + �

where � � minHmax

{
f peak Hmax + ∑

t (pt/λt − ft ) (Dt−
Hmax )1Dt >Hmax )

}
, and 1Dt >Hmax = 1 if Dt ≥ Hmax , and 0

otherwise. In order to minimize the total cost, we sort all Dt s
in descending order. Let Dt1 ≥ Dt2 . . . ≥ DtT . We analyze the
total cost based on different Hmax as follows.

If Hmax = Dt1 , then � = f peak Dt1 .
If Dt1 > Hmax ≥ Dt2 , then � = f peak Hmax +∑1
k=1(ptk /λtk − ftk )(Dtk −Hmax ) = ∑1

k=1(ptk /λtk − ftk )Dtk

+ ( f peak − ∑1
k=1(ptk /λtk − ftk ))Hmax .

If Dtτ > Hmax ≥ Dtτ+1 , then � = f peak Hmax +∑τ
k=1(ptk /λtk − ftk )(Dtk −Hmax ) = ∑τ

k=1(ptk /λtk − ftk )Dtk
+ ( f peak − ∑τ

k=1(ptk /λtk − ftk ))Hmax .
We illustrate the relation between Hmax and � in Fig. 2,

and observe that � reaches its minimum when ∃τ̃ , s.t. f peak =∑τ̃
k=1(ptk /λtk − ftk ), which implies that Hmax ∈ (Dτ̃ , Dτ̃+1].
Energy reduction offered by co-location tenants may be

limited, the optimal H∗
max is

H∗
max =

{
Dτ̃ , if Dτ̃ > H̃

H̃ , otherwise
(5)
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Fig. 2. The relation between Hmax and �.

where H̃ = maxt {Dt − λt
∑

i ri,t }.
Based on the analysis above, we design an approximation

algorithm for LIP (4). At each t , the total amount of energy
reduction by the tenants is determined once H∗

max is decided.
Let Ht be the energy purchased from the grid at time t . We
have a sub-problem for each time slot t :

minimize pt

∑
i

ri,t xi,t (6)

subject to: λt

∑
i∈Mt

ri,t xi,t ≥ Dt − Ht (6a)

xi,t ∈ {0, 1},∀i ∈ Mt (6b)

Problem (6) is a simplified version of (10), which we will
discuss in Sec. V later. Alg. 5, to be presented later in Sec. V, is
a polynomial approximation algorithm to the problem (6), ver-
ifying an integrality gap of 2, as proven in Theorem 5 later.
By employing Alg. 5, we present our offline approximation
algorithm as shown in Alg. 1.

Theorem 1. Alg. 1 is a polynomial-time 2-approximation
algorithm to (4).

Proof: since the approximation algorithm uses the same
H∗

max and Ht as the offline optimal solution does, we have∑
t

ft Ht + f peak Hmax +
∑
i,t

ptri,t xi,t

≤
∑

t

ft H∗
t + f peak H∗

max + 2
∑
i,t

ptri,t x
∗
i,t

= 2O PTL P R ≤ 2O PTL I P
�

Algorithm 1. An Offline Approximation Algorithm for the
Pricing Approach

1: xi,t = 0,∀i, t ; Ht = 0,∀t ;
2:
3: Sort all Dt s in descending order;
4: Find the optimal H∗

max according to (5)
5: for all t ∈ [1, T ] do
6: Determine Ht ,

Ht =
{

Dt , if H∗
max > Dt

H∗
max , otherwise

7: Solving the sub-problem (6) using Alg. 5 when energy
reduction target is Dt − Ht ;

8: end for

B. An Online Algorithm

An online algorithm works with hitherto information, and
cannot access information that is available only in the future.
New information comes on the fly and decisions for each time
slot have to be made immediately without delay. Competitive
analysis is employed to analyze the performance of an online
algorithm compared with the offline optimum, to which full
future information is available a priori. An online algorithm
A for a minimization problem is γ -competitive if A(I ) ≤
γ O PT (I ),∀I , where I is an input and O PT (I ) is the offline
optimum.

Drawing experiences from the offline case, we design an
online algorithm in Alg. 2. The idea of Alg. 2 is that upon
receiving a new request, it calculates and updates the optimal
H ′

max based on all information received so far. Then the amount
of energy that the co-location data center needs to draw from the
grid is determined as well.

Algorithm 2: An Online Algorithm for the Pricing Approach

1: xi,t = 0,∀i, t ; Ht = 0,∀t ; Hmax = 0;
2:
3: for all t ∈ [1, T ] do
4: Sort all Dt s received so far in descending order;
5: Find τ̃ , s.t. f peak = ∑τ̃

k=1(ptk /λtk − ftk )

6: if such τ̃ does not exist then
7: Ht = max{min{Hmax , Dt }, Dt − λt

∑
i ri,t };

8: else
9: Ht = max{min{Dt , max{Hmax , Dτ̃ }}, Dt − λt

∑
i ri,t };

10: end if
11: Solving the sub-problem (6) using Alg. 5 when energy

reduction target is Dt − Ht ;
12: Update Hmax ;
13: end for

Theorem 2: Alg. 2 is (1 + 2(κ + 1)/ρ + 2)-competitive.

Proof: We analyze the competitive ratio by comparing
Alg. 2 with the offline optimal algorithm for the relaxed prob-
lem. For any time slot t , let Ht and xi,t be the decisions made
by the offline optimal algorithm, while H ′

t and x ′
i,t are those

made by Alg. 2. As the requests are revealed one after another,
the maximum amount of energy drawn from the grid that is
allowed by Alg. 2 increases gradually, and finally approaches
H∗

max defined in (5). Therefore, H ′
t ≤ Ht ,∀t . Let Cof f and Con

be the total cost incurred by the offline optimal algorithm and
by Alg. 2, respectively.

Cof f = f peak H∗
max +

∑
t

ft Ht +
∑
i,t

ptri,t xi,t

= f peak H∗
max +

∑
t

ft Ht +
∑

t

(pt/λt )(Dt − Ht )

Con = f peak H∗
max +

∑
t

ft H ′
t +

∑
i,t

ptri,t x
′
i,t

≤ f peak H∗
max +

∑
t

ft H ′
t + 2

∑
t

(pt/λt )(Dt−H ′
t )
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where the last inequality holds because Alg. 2 uses a
2-approximation algorithm to (6).

Con

Cof f
≤ f peak H∗

max + ∑
t ft H ′

t + 2
∑

t pt/λt (Dt − H ′
t )

f peak H∗
max + ∑

t ft Ht + ∑
t pt/λt (Dt − Ht )

≤ 1 +
∑

t pt/λt (Dt + Ht − 2H ′
t )

f peak H∗
max + ∑

t ft Ht + ∑
t pt/λt (Dt − Ht )

Note that H∗
max = Dtτ̃ , where f peak = ∑τ̃

k=1(ptk /λtk − ftk ).

f peak H∗
max +

∑
t

ft Ht +
∑

t

pt/λt (Dt − Ht )

= f peak H∗
max +

T∑
k=τ̃+1

ftk Htk +
τ̃∑

k=1

ftk Htk

+
τ̃∑

k=1

ptk /λtk (Dtk − Htk )

= f peak H∗
max +

T∑
k=τ̃+1

ftk Dtk +
τ̃∑

k=1

ftk H∗
max

+
τ̃∑

k=1

ptk /λtk (Dtk − H∗
max )

=
T∑

k=τ̃+1

ftk Dtk +
τ̃∑

k=1

Dtk ptk /λtk

Similarly, we have∑
t

pt/λt (Dt + Ht − 2H ′
t )

=
T∑

k=τ̃+1

ptk /λtk (Dtk + Htk − 2H ′
tk )

+
τ̃∑

k=1

ptk /λtk (Dtk + Htk − 2H ′
tk )

=
T∑

k=τ̃+1

ptk /λtk (2Dtk − 2H ′
tk )

+
τ̃∑

k=1

ptk /λtk (Dtk + H∗
max − 2H ′

tk )

≤ 2
T∑

k=τ̃+1

(ptk /λtk )λtk

∑
i

ri,tk +2
τ̃∑

k=1

ptk /λtk (λtk

∑
i

ri,tk +Dtk )

Therefore

Con

Cof f
≤ 1 + 2

∑T
k=τ̃+1(ptk /λtk )λtk

∑
i ri,tk∑T

k= ˜τ+1
ftk Dtk + ∑τ̃

k=1 Dtk ptk /λtk

+ 2
∑τ̃

k=1 ptk /λtk (λtk
∑

i ri,tk + Dtk )∑T
k= ˜τ+1

ftk Dtk + ∑τ̃
k=1 Dtk ptk /λtk

≤ 1 + 2(max
t

pt

λt ft
+ 1)/ρ + 2 ≤ (1 + 2(κ + 1)/ρ) + 2

�

Values of κ and ρ are related to the system setting. In our
empirical studies in Sec. VI, κ = 3 and ρ ≈ 2.5, which results
in a competitive ratio guarantee of 6.2. We will further present
in Sec. VI that the real competitive ratio observed ranges from
1.1 to 1.2, which is better than the theoretical worst-case bound
of 6.2.

It is interesting to observe that, if full information is known,
and then the online Alg. 2 degrades into the offline Alg. 1,
whose approximation ratio is 2. We can view the competitive
ratio (1 + 2(κ + 1)/ρ) + 2 as two separate components, where
the 1 + 2(κ + 1)/ρ term is due to challenges from the online
nature of the problem, while the term 2 results from computa-
tional challenges associated with linear integer optimization.

V. THE AUCTION APPROACH

In the auction approach, the co-location conducts a reverse
auction, a.k.a. a procurement auction, to solicit energy reduc-
tion bids from its tenants. Each tenant participating in the
auction submits a biding price as well as the amount of potential
energy reduction to the co-location. The co-location computes
the winning bids and their corresponding payments. Different
from the pricing approach, the bidding prices are determined by
tenants themselves instead of the co-location, and are therefore
heterogeneous, invalidating the analysis technique in Sec. IV.

A. An Online Algorithm

Similar to the pricing approach, we introduce Hmax , so that
(3) becomes an LIP:

minimize
∑

t

ft Ht + f peak Hmax +
∑
t, j

b j,t x j,t (7)

subject to: Ht + λt

∑
j∈Nt

r j,t x j,t ≥ Dt ∀t (7a)

Ht ≤ Hmax ∀t, (7b)

x j,t ∈ {0, 1}, Ht ≥ 0 ∀ j ∈ N, t (7c)

We first relax the above integer program into a linear pro-
gram. A straightforward relaxation may lead to an unbounded
integrality gap. Applying the technique of redundant LP con-
straints [24], [25], we introduce valid inequalities that are
satisfied by all feasible mixed integer solutions of (3), to care-
fully bound the integrality gap. Such a bound is important for
our auction design later. Let St ⊆ Nt be a subset of bids sub-
mitted at time slot t . Let δ(St ) = Dt − λt

∑
j∈St

r j,t denote the
remaining amount of energy when all bids in St are accepted to
reduce the energy consumption. Let r j,t (S) = min{λt r j,t , δ(S)}
be the contribution of an additional bid j in making up the dif-
ference. We formulate the following enhanced LP relaxation
to (7):

minimize
∑

t

ft Ht + f peak Hmax +
∑

j,t

b j,t xi,t (8)

subject to:

Ht +
∑

j∈Nt \S

r j,t (S)x j,t ≥ δ(S), ∀t, S ⊆ Nt : δ(S) > 0

(8a)
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Ht ≤ Hmax , ∀t (8b)

Ht , Hmax , x j,t ≥ 0, ∀ j, t (8c)

We proceed to derive the dual LP of (8), by introducing dual
variables α and β corresponding to primal constraints (8a) and
(8b), respectively. The dual variables admit the following inter-
pretation. αS is unit energy price in set S, while βt reflects
how much power the co-location wants to draw from the grid.
A higher βt implies that the co-location intends to use power
reduction from the tenants more than the grid. Usually high βt

is used when Ht is already too high and any increase in Ht may
lead to a high peak charge.

maximize
∑

t,S⊆Nt :δ(S)>0

δ(S)αS (9)

subject to:
∑

S⊆Nt :δ(S)>0

αS − βt ≤ ft , ∀t (9a)

∑
t

βt ≤ f peak (9b)

∑
S⊆Nt : j∈Nt \S,δ(S)>0

r j,t (S)αS ≤ b j,t , ∀ j, t (9c)

Based on the dual problem (9), we design a primal-dual
online algorithm in Alg. 3. The high level idea behind Alg. 3
is the following. For each time slot t , the algorithm initial-
izes an empty set St as a candidate tenant set, from which
the co-location purchases energy reduction to reduce its total
energy consumption. During each iteration, the dual variable
αSt increases continuously. Once any constraint from (9a) and
(9c) becomes tight, the co-location purchases energy from the
corresponding tenant and the grid, respectively. Different allo-
cation rules of βt lead to different variations of the algorithm.
We first design an algorithm using a rather straightforward way
to allocate f peak to all βt , i.e., equally allocating over all time
slots (line 6).

Algorithm 3. A Primal-Dual Online Algorithm for the Auction
Approach

1: // Initialization
2: x j,t = 0,∀ j, t ; Ht = 0,∀t ; αS = 0,∀t, S;
3:
4: for all t do
5: // when time slot t starts
6: St = ∅; βt = f peak/T ;
7: // Iterative update of primal and dual variables:
8: while δ(St ) > 0 do
9: increase αSt continuously until some constraint gets

tight;
10: if

∑
S⊆Nt : j∈Nt \S,δ(S)>0 r j,t (S)αS = b j,t then

11: x j,t = 1; St = St ∪ { j};
12: end if
13: if

∑
S⊆Nt :δ(S)>0 αS − βt = ft then

14: Ht = δ(St ); break;
15: end if
16: end while
17: end for

Lemma 1: Alg. 3 computes feasible solutions to both primal
LP (8) and dual LP (9).

Proof: We first check whether the returned solution is fea-
sible to the primal LP (7). Constraints (7b) and (7c) are always
respected because of the settings in line 11 and line 14. If the
while loop breaks due to δ(St ) ≤ 0, then the demand constraint
(7a) is also satisfied. Otherwise it jumps out from the while
loop because

∑
S⊆Nt :δ(S)>0 αS − βt = ft . In this case, Ht +

λt
∑

j r j,t x j,t = Dt , which implies the demand constraint is
not violated, either. Therefore the solution is feasible to LP (7).
We can verify that it is also feasible to LP (8).

We next examine the dual constraints. Once the con-
straint (9a) becomes tight, the algorithm will break from the
while loop, and therefore the constraint will not be violated.
Constraint (9b) is always respected due to the setting in line 6.
Note that once tenant j is selected into the candidate set St , the
corresponding item in (9c), i.e.,

∑
S⊆Nt : j∈Nt \S,δ(S)>0 r j,t (S)αS

will not increase, and hence (9a) will be respected as well. �
We next investigate the component of the competitive ratio

that is contributed by the peak demand, in the following lemma.
Lemma 2: Alg. 3 produces result (H, x) such that:

f peak Hmax ≤ ξ/(1 − 1
ρ
) · O PT , where O PT is the cost of the

optimal offline solution.

Proof: f peak Hmax = f peak maxt δ(St ) = f peakδSτ̃
,

where τ̃ = arg maxt δ(St ).
Note that βt = f peak/T , and then

∑
t βt = f peak , which

implies that:

f peakδ(Sτ̃ ) = δ(Sτ̃ )
∑

t

⎛
⎝ ∑

S⊆Nt :δ(S)>0

αS − ft

⎞
⎠

≤ Dτ̃

∑
t

⎛
⎝ ∑

S⊆Nt :δ(S)>0

αS − ft

⎞
⎠

≤
∑

t

∑
S⊆Nt :δ(S)>0

αS Dtξ

=
∑

t

∑
S⊆Nt :δ(S)>0

αS Dt

(
1 − 1

ρ

)
ξ

/(
1 − 1

ρ

)

≤ ξ

/(
1 − 1

ρ

) ∑
t

∑
S⊆Nt :δ(S)>0

αSδ(St )

≤ ξ

/(
1 − 1

ρ

) ∑
t

∑
S⊆Nt :δ(S)>0

αSδ(S)

The last inequality is due to S ⊆ St ,∀S : δ(S) > 0 and α(S) �=
0 ⇒ δ(S) ≥ δ(St ),∀S : δ(S) > 0 and α(S) �= 0. Following
weak duality,

∑
t,S⊆Nt :δ(S)>0 αSδ(S) ≤ O PT , which com-

pletes the proof. �
The next lemma examines the competitive ratio incurred by

the integrality constraint.
Lemma 3: Alg. 3 produces a solution (H, x) that:

∑
t ft Ht +∑

j,t b j,t x j,t ≤ 2O PT .

Proof: For any t ∈ [1, T ], we analyze the costs by exam-
ining the following two cases.
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Proof: the while loop terminates due to δ(St ) ≤ 0. We have∑
S⊆Nt :δ(S)>0 αS − βt �= ft before the termination. Therefore

Ht = 0.∑
j

b j,t x j,t =
∑
j∈St

b j,t =
∑
j∈St

∑
S⊆Nt : j∈Nt \S,δ(S)>0

r j,t (S)αS

=
∑

S⊆Nt :δ(S)>0

∑
j∈St \S

r j,t (S)αS

≤
∑

S⊆Nt :δ(S)>0

⎛
⎝λt

∑
j∈St \{ jω}

r j,t − λt

∑
j∈S

r j,t + r jω,t (S)

⎞
⎠ αS

≤
∑

S⊆Nt :δ(S)>0

⎛
⎝Dt − λt

∑
j∈S

r j,t + r jω,t (S)

⎞
⎠ αS

=
∑

S⊆Nt :δ(S)>0

(
δ(S) + r jω,t (S)

)
αS

≤
∑

S⊆Nt :δ(S)>0

2δ(S)αS

where jω is the last tenant added to the solution set St for
time slot t . The first inequality is due to the definition of
r j,t (S). The second inequality is because δ(St \ { jω}) > 0 ⇒
Dt > λt

∑
j∈St \{ jω} r j,t . The last inequality holds as a result of

δ(S) ≥ min{δ(S), λt r jω,t } = r jω,t (S).
Case 1, the while loop terminates because of the break in line
14, i.e.,

∑
S⊆Nt :δ(S)>0 αS − βt = ft . We then have

ft Ht = δ(St )

⎛
⎝ ∑

S⊆Nt :δ(S)>0

αS − βt

⎞
⎠

≤ δ(St )
∑

S⊆Nt :δ(S)>0

αS ≤
∑

S⊆Nt :δ(S)>0

αSδ(S)

where the last inequality is due to S ⊆ St ,∀S : δ(S) > 0
and α(S) �= 0 ⇒ δ(S) ≥ δ(St ),∀S : δ(S) > 0 and α(S) �= 0.
Similar to the analysis in Case 1, we have:∑

j

b j,t x j,t =
∑
j∈St

b j,t =
∑
j∈St

∑
S⊆Nt : j∈Nt \S,δ(S)>0

r j,t (S)αS

=
∑

S⊆Nt :δ(S)>0

∑
j∈St \S

r j,t (S)αS

≤
∑

S⊆Nt :δ(S)>0

⎛
⎝λt

∑
j∈St

r j,t − λt

∑
j∈S

r j,t

⎞
⎠ αS

≤
∑

S⊆Nt :δ(S)>0

⎛
⎝Dt − λt

∑
j∈S

r j,t

⎞
⎠αS

=
∑

S⊆Nt :δ(S)>0

δ(S)αS

where the last inequality is because δ(St ) > 0 ⇒
Dt > λt

∑
j∈St

r j,t . Therefore ft Ht + ∑
j b j,t x j,t ≤

2
∑

S⊆Nt :δ(S)>0 δ(S)αS for the second case. Thus, for any
t , we have ft Ht + ∑

j b j,t x j,t ≤ 2
∑

S⊆Nt :δ(S)>0 δ(S)αS

in either case. In summary:
∑

t ft Ht + ∑
j,t b j,t x j,t

≤ 2O PT . �

Theorem 3: Alg. 3 is (2 + ξ/(1 − 1
ρ
))-competitive.

Proof: Following Lemma 2 and Lemma 3, we have∑
t ft Ht + f peak Hmax + ∑

j,t b j,t x j,t ≤ (2 + ξ/(1− 1
ρ
))OPT .

Therefore the competitive ratio is (2 + ξ/(1 − 1
ρ
)). �

Values of ξ and ρ depend on the specific system settings. In
our trace-driven empirical studies in Sec. VI, ξ ≈ 1.2 and ρ ≈
2.5, for which the competitive ratio is 4. The real competitive
ratios observed range from 1.1 to 1.5, and are smaller than the
worst case bound of 4.

B. A More Intelligent Online Algorithm

In Alg. 3, the dual variable β is handled in a somewhat simple
way, leading to a competitive ratio of (2 + ξ/(1 − 1

ρ
)). In par-

ticular, Alg. 3 does not track the current maximum Ht , which
makes it less intelligent to the fluctuating power demand Dt as
well as unknown bids (b j,t , r j,t ). Our next goal is to manip-
ulate β in a more sophisticated way, for a better performance
guarantee. We introduce a new variable to record the maximum
demand so far, as shown in Alg. 4.

Algorithm 4. A Smart Primal-Dual Online Algorithm for the
Auction Approach

1: // Initialization
2: x j,t = 0,∀ j, t ; Ht = 0,∀t ; Hmax = 0; αS = 0,∀t, S;
3:
4: for all t do
5: St = ∅;
6: Eliminate bids where

b j,t
λt r j,t

≥ f peak + ft ;

7: Hmax = max{min{Dt , Hmax }, Dt − λt
∑

j r j,t };
8: // Iterative update of primal and dual variables:
9: while δ(St ) > Hmax do

10: increase αSt and βt continuously until some con-
straint in (9c) gets tight exactly before (9a);

11: if
∑

S⊆Nt : j∈Nt \S,δ(S)>0 r j,t (S)αS = b j,t then
12: x j,t = 1; St = St ∪ { j};
13: end if
14: end while
15: Ht = δ(St ); Update Hmax ;
16: end for

Theorem 4: Alg. 4 is (2 + c)-competitive, where c =∑
t

{
max j b j,t

min j (λt r j,t )
− ft

}
s/ f peak .

Proof: We observe that i) the offline optimum algorithm
will not accept any bids where

b j,t
λt r j,t

≥ f peak + ft , since the
energy reduction will not reduce any cost in peak charge or
volume charge. ii) Hmax is updated only when the algorithm
has to, therefore Hmax in Alg. 4 is bounded by H∗

max . Thus
f peak Hmax ≤ f peak H∗

max ≤ O PT .

Since
b j,t

λt r j,t
≥ ft ,∀ j, t ,

∑
t ft Ht ≤ ∑

t ft H∗
t +∑

j,t b j,t x∗
j,t ≤ O PT . Similar to the proof of the second case

in Lemma 3, we have
∑

j,t b j,t x j,t ≤ ∑
S⊆Nt :δ(S)>0 δ(S)αS .

However
∑

t βt may be increased to a value larger than f peak ,
which violates constraint (9b). Applying the classic technique
of dual fitting, we estimate the upper bound of

∑
t βt , and
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then scale down βt by this upper bound. The dual variable α

is scaled down correspondingly. The scaled dual variables are
feasible to the dual problem (9), acting as a valid lower bound
of the optimal solution.

Since αSt and βt are increased continuously until a constraint
in (9c) becomes tight exactly before (9a), therefore for each t :

min
j

(λt r j,t )
∑

S⊆Nt :δ(S)>0

αS

≤
∑

S⊆Nt : j∈Nt \S,δ(S)>0

r j,t (S)αS ≤ max
j

b j,t

where the first inequality holds because: i) the definition of
r j,t (S) and ii) αS = 0 before tenant j is added to St .

Consequently, we set βt = max j b j,t
min j (λt r j,t )

− ft so that some con-
straint in (9c) becomse tight exactly before (9a). Then the

summation of all βt is:
∑

t βt = ∑
t

{
max j b j,t

min j (λt r j,t )
− ft

}
.

Note that the constraint (9b) requires
∑

t βt ≤ f peak , thus the

scaled down factor is: c = ∑
t

{
max j b j,t

min j (λt r j,t )
− ft

}
/ f peak . We

then have that: (α/c,β/c) is a feasible solution to (9a).∑
j,t

b j,t x j,t ≤
∑

S⊆Nt :δ(S)>0

δ(S)αS

≤ c
∑

S⊆Nt :δ(S)>0

δ(S)αS/c ≤ cO PT

Therefore the total cost is∑
t

ft Ht +
∑

j,t

b j,t x j,t + f peak Hmax ≤ (2 + c)O PT
�

The value of c depends on system configuration. In our trace-
driven empirical studies, c = 1.49, and the competitive ratio is
3.49, which is better than the competitive ratio of Alg. 3. The
observed competitive ratios of Alg. 4 range from 1.1 to 1.2 in
the empirical studies in Sec. VI.

C. A Truthful Auction Mechanism

We finally design an auction mechanism based on the online
Alg. 4, to elicit truthful bids from co-location tenants for
each time slot. While the celebrated Vickery-Clarke-Groves
(VCG) mechanism is known to be truthful [26], it requires opti-
mally solving social cost minimization multiple times, and is
hence computationally infeasible. Our auction is based on the
polynomial-time Alg. 4, and inherits a competitive ratio close
to that of Alg. 4.

In each time slot, Alg. 4 decides Hmax that is the maxi-
mum amount of energy drawn from the grid. If Hmax = Dt .
There is no need to ask tenants to submit energy reduction bids.
Otherwise, the energy reduction target is Dt − Hmax . Then the
optimization problem (7) becomes:

minimize
∑

j∈Nt ,t

b j,t x j,t (10)

subject to: λt

∑
j∈Nt

r j,t x j,t ≥ Dt − Hmax , ∀t (10a)

x j,t ∈ {0, 1}, ∀ j, t (10b)

And its corresponding enhanced LP relaxation (8) becomes:

minimize
∑

j,t

b j,t x j,t (11)

subject to:∑
j∈Nt \S

r j,t (S)x j,t ≥ δ′(S), ∀t, S ⊆ Nt : δ(S) > 0 (11a)

x j,t ≥ 0, ∀ j, t (11b)

where δ′(S) = Dt − Hmax − λt
∑

j∈S r j,t . The corresponding
dual problem is shown as follows:

maximize
∑

t,S⊆Nt :δ(S)>0

δ(S)αS (12)

subject to: ∑
S⊆Nt : j∈Nt \S,δ(S)>0

r j,t (S)αS ≤ b j,t , ∀ j, t (12a)

αS ≥ 0, ∀S ⊆ Nt (12b)

We note that (11) and (12) are simplified versions of (8) and
(9) respectively. Thus, a simplified version of Alg. 3 or Alg. 4,
shown in Alg. 5 can still work on (11) and (12).

Algorithm 5. A Primal-Dual Online Algorithm for Sub
Problem (10)

1: // Initialization
2: x j,t = 0,∀ j, t ; αS = 0,∀t, S;St = ∅;
3:
4: while δ(St ) > 0 do
5: increase αSt continuously until some constraint gets tight;
6: if

∑
S⊆Nt : j∈Nt \S,δ(S)>0 r j,t (S)αS = b j,t do

7: x j,t = 1; St = St ∪ { j};
8: end if
9: end while

Theorem 5: Alg. 5 is a polynomial-time 2-approximation
algorithm to the linear integer program (10), and verifies an
integrality gap of 2 as well.

Proof: similar to the first case in Lemma Lemma 3. �
Now we convert Alg. 5 into a truthful auction by applying a

randomized convex decomposition technique [26], [27], [28].
First we solve the LP relaxation in (11) optimally, and then
decompose the fractional solution into a convex combination
of a series of integer solutions by exploiting the underlying
covering structure of the social cost minimization problem. We
then pick an integer solution randomly with the corresponding
convex combination weights viewed as selection probabilities.
The payments to the winning tenants are calculated according
to Step three, ensuring that the sufficient and necessary condi-
tion of truthfulness is satisfied. We describe the details of the
randomized auction as follows.

Step 1) Computing the optimal fractional solution. The
relaxed problem (11) can be solved efficiently using
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a standard LP solution method, such as the sim-
plex algorithm or the interior-point algorithm. After
solving (11), we obtain an optimal fractional solu-
tion x∗.

Step 2) Decomposing fractional solution into integer solu-
tions. We have designed a 2-approximation algo-
rithm verifying an integral gap of 2 for the sub-
problem. We use a convex decomposition tech-
nique, which employs the approximation algorithm
as a plug-in module, to decompose the fractional
solution into a set of integer solutions, i.e., find the
combination weight μ where

∑
p∈J μp = 1, such

that
∑

p∈J μpx p = min{2x∗, 1} where J is the set
of all feasible integer solutions to (10). The exact
decomposition assures the sufficient and necessary
condition of truthfulness stated in Theorem 6 is
satisfied.
To find μ, we solve the following linear program:

maximize
∑
p∈J

μp (13)

subject to:
∑
p∈J

μpxp = min{2x∗, 1} (13a)

∑
p∈J

μp ≤ 1 (13b)

μp ≥ 0, ∀p ∈ J (13c)

However J has an exponential number of elements,
which make (13) have an exponential number of
variables, and therefore directly solving (13) is
difficult. We consider the dual of (13) instead,
which has an exponential number of constraints.
We derive the dual (14) by introducing dual vari-
ables ν and η corresponding to (13a) and (13b),
respectively.

minimize
∑
j∈Nt

min{2x∗
j , 1}ν j + η (14)

subject to:
∑
j∈Nt

x p
j ν j + η ≥ 1 ∀p ∈ J (14a)

η ≥ 0 (14b)

The ellipsoid method [28] can solve the dual effi-
ciently in polynomial time, even though it has
exponentially many constraints. We employ Alg. 5
as a separation oracle, which can find violated
constraints in the dual (14) and provide them as
hyperplanes to the ellipsoid method for cutting the
solution space. After receiving a polynomial num-
ber of hyperplanes, the ellipsoid method can find
the optimal solution to the dual. During the process
of the ellipsoid method, a feasible integer solution
to (10) is generated when a hyperplane is found.
Therefore, after optimally solving the dual (14), the
decomposition (13) becomes a linear program with

a polynomial number of non-zero primal variables,
which can be efficiently solved using standard LP
solution algorithms. The following lemma ensures
that the convex decomposition method can correctly
find a convex combination of integer solutions, i.e.,∑

p∈J νp = 1.
Lemma 4: [27] The decomposition technique can

solve (13) optimally in polynomial time with optimal
objective value

∑
p∈J μp = 1, meanwhile it finds a

polynomial number of feasible integer solutions xp to
(10) as well as their corresponding convex combination
weights μp.

Briefly, if the optimal value of (14) is 1, then∑
p∈J νp = 1 as well by the strong duality of lin-

ear program. Note that there is a feasible solution
(ν = 0, μ = 1) to (14). Thus the dual (14) is at most
1. By exploiting the plug-in approximation algo-
rithm, we can find a contradiction if the dual (14)
is strict smaller than 1. During the process, violated
constraints which act as hyperplanes to the ellipsoid
method are found in dual (14).

Step 3) Winner determination and payment calculation.
After decomposing the fractional solution into a
series of integer solutions, we randomly pick an
integer solution xp with its corresponding combina-
tion weight μp as the probability. Let Pj (b j ) be the
probability that tenant j with bidding price b j wins.
b− j be the all bids except (b j , r j ). We compute the
payments according to the following sufficient and
necessary condition of truthfulness.

Theorem 6: [29], [30] A randomized auction with
bids b and payment f is truthful in expectation if and
only if: for any bidder j , i) Pj (b j ) is monotonically
non-increasing in b j ; ii)

∫ ∞
0 Pj (b)db < ∞; iii) E[ f j ] =

b j Pj (b j ) + ∫ ∞
b j

Pj (b)db.
We examine the three conditions one by one as follows:
1) Since x j is a binary variable, we have Pj (b j ) = Pj (b j ) ×

1 + (1 − Pj (b j )) × 0 = E[x j ] = min{2x∗
j , 1}. For the

relaxed problem (11), increasing b j makes corresponding
x∗

j non-increase. Hence, min{2x∗
j , 1} is non-increasing in

b j . So Pj (b j ) is monotonically non-increasing in b j ;
2) Any bid with bidding price higher than λt r j,t ( f peak + ft )

will be removed from the candidate set at
the very beginning. Therefore

∫ ∞
0 Pj (b)db =∫ λt r j,t ( f peak+ ft )

0 Pj (b)db < ∞.
3) For losing tenants, the payment is 0; for winning tenants,

the payment

f j = b j +
∫ ∞

b j
min{2x∗

j (b, b− j ), 1}db

min{2x∗
j (b j , b− j ), 1}db

We can verify that the payment satisfies condition iii) in
Theorem 6.

Theorem 7: The auction in Sec. V, is truthful in expec-
tation and achieves a (2 + 2c)-approximation ratio, where
c is defined in Theorem 4.
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Fig. 3. pPUE values, generated based on the temperature in Vancouver from
July 1, 2014 to July 7, 2014.

Proof: As the randomized auction satisfies the suffi-
cient and necessary condition in Theorem 6, it is truthful
in expectation. The expected social cost:

E

⎡
⎣∑

t

ft Ht +
∑

j,t

b j,t x j,t + f peak Hmax

⎤
⎦

≤ 2O PT +
∑

t

E

⎡
⎣∑

j

b j,t x j,t

⎤
⎦

≤ 2O PT + 2O PTDt −Hmax ≤ (2 + 2c)O PT

where O PTDt −Hmax is the optimal cost of (11) when the
target is Dt − Hmax . The last inequality is due to the dual
fitting in Theorem 4. �

VI. PERFORMANCE EVALUATION

Simulation Setup. We consider a practical scenario of a
co-location data center located in Vancouver, Canada, with 15
participating tenants. The maximum power demand of the co-
location data center is 21 MW. The data center is powered by
BC Hydro with a peak charge of $9.95 kW and a volume charge
of c/ 4.86 kWh. We then generate a series of time varying vol-
ume charge rate ft by adding randomness to the volume charge
of c/4.86 kWh.

We next collect the hourly ambient temperature in Vancouver
from July 1, 2014 to July 31, 2014 [31]. Based on the ambient
temperature, we compute the pPUE according to the fitting for-
mula in (1). The time-varying curve, from July 1 to July 7, 2014,
is depicted in Fig. 3.

The Hotmail and MSR workload traces [12] and the
Wikipedia workload trace [32], which are 24 hours long, are
used to drive the simulation. Since the trace data is limited, we
duplicate them with randomness of up to 20% to generate the
15 tenants’ workloads for 30 days. All workloads are normal-
ized with respect to each tenant’s maximum service capacity.
Fig. 4 illustrates the three traces for a 48-hour period.

Based on the workload traces, we generate the power demand
Dt . The tenants can achieve energy reduction by consolidating
low workload machines and shutting down idle machines. We
assume that the machines in idle status consume up to 50 %
energy of their peak power, therefore the possible energy reduc-
tion is (50% + 50% × W )C − 100%WC = 1−W

2 C , where W

Fig. 4. Normalized Workload.

Fig. 5. Comparison between Alg. 1 and Offline Optimum.

Fig. 6. Energy drawn from grid, July 1-3, 2014.

is the normalized workload and C is the peak power demand
when W = 1.

A tenant’s cost is proportional to its total energy reduction.
We set the unit price to be /c5 ∼ /c8.5/kWh at random, which is
more expensive than the volume charge.

Algorithms for the Pricing Approach. We set the price
offered by the co-location pt = κ ft , where by default κ = 3. If
bi,t/ri,t ≤ pt , then tenant i will participate in the energy reduc-
tion by submitting ri,t to the co-location, where bi,t is tenant i’s
true cost.

We first compare the approximation algorithm in Alg. 1 with
the offline optimum, as shown in Fig. 5. We observe that Alg. 1
achieves almost the same Hmax as the offline optimum does.
Alg. 1 draws the same amount of energy from the grid in most
time slots, which verifies the correctness of Eqn. (5).

We next investigate the performance of the online algorithm.
Comparison between Alg. 1 and Alg. 2 is shown in Fig. 6. We
have two key observations: i) Alg. 1 smooths the demand evenly
by the help of tenants; ii) Due to lack of future information,
Alg. 2 is unlikely to use high Ht ; however the peak demand
Hmax finally approaches the optimal H∗

max as the number of
requests that the algorithm receives increases. For example,
Hmax reaches H∗

max at around t = 125h.
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TABLE III
COST COMPARISON AMONG ALG. 1, ALG. 2, OFFLINE OPTIMUM

AND A SIMPLE APPROACH WITH NO SCHEME, UNDER BC HYDRO’S

PRICING SCHEME

Fig. 7. Under Duke Energy’s pricing scheme.

Fig. 8. Under PG&E’s pricing scheme.

Next we compare the overall cost for one month, i.e., T =
2880, in Tab. III. The cost achieved by Alg. 1 is rather close
to the offline optimum, and is much lower than suggested by
the theoretically proven approximation of 2 in Theorem 1. We
also notice that the overall cost achieved by Alg. 2 is close to
the offline optimum as well, showing a competitive ratio of
1.09. That is also noticeably better than the theoretical bound
in Theorem 2, which is (1 + 2(κ + 1)/ρ) + 2 = 6.2, where
κ = 3, ρ = 2.5.

We compare the volume charge, peak charge and the pay-
ments to tenants among Alg. 1, Alg. 2 and offline optimum,
under various pricing schemes used in Duke Energy, PG&E,
Mid American Energy and Georgia Power, respectively. The
results are illustrated in Fig. 7, Fig. 8, Fig. 9 and Fig. 10,
respectively. Both Alg. 1 and Alg. 2 achieve close-to-optimal
performance as compared with the offline optimum, under all
pricing scheme. Alg. 2 incurs higher costs than Alg. 1 due to
lack of future information. We also observe that the peak charge
is the dominant cost under Georgia Power’s pricing scheme,
which is different from other three pricing scheme. This is
because the volume charge of Georgia Power is an order of
magnitude cheaper than other utility providers’. More impor-
tantly, Alg. 2 achieves a better performance under Georgia
Power’s pricing scheme as shown in Fig. 10, closer to the offline
optimum, showing a competitive ratio nearly 1. This is due
to that Alg. 2 is sensitive to the peak demand raise, and tries
to avoid any unnecessary increase in peak demand. Therefore

Fig. 9. Under Mid American Energy’s pricing scheme.

Fig. 10. Under Georgia Power’s pricing scheme.

Fig. 11. Alg. 1 under various κ .

Fig. 12. Alg. 2 under various κ .

Alg. 2 works better under a pricing scheme where the peak
charge is the dominant one.

We next compare the energy drawn from the grid by Alg. 1
under various κ , ranging from 1.4 to 4.4. Results are shown in
Fig. 11. When κ is small, i.e., the unit price pt offered by the
co-location is cheap, the system has to draw a large amount of
energy from the grid due to tenants not willing to offer energy
reduction. As κ increases, the amount of energy from the grid
decreases. We also compare the energy drawn from the grid by
Alg. 2 in Fig. 12, where similar trend is observed.

Algorithms for the Auction Approach. We compare the
performance of the algorithms in Sec. V with the offline
optimum.
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Fig. 13. Energy drawn from grid, under BC Hydro pricing.

Fig. 14. Comparison among power demand D, Alg. 4, Offline Optimum, under
BC Hydro’s pricing scheme.

In Fig. 13, Alg. 3 tries to save more energy than the offline
optimum does to lower the peak demand, making itself spend
more money in paying tenants’ energy reduction at most time
slots. However Alg. 3 does not memorize the maximum demand
so far, so the amount of energy drawn from the grid is not sta-
ble over time. More importantly this makes Alg. 3 occasionally
raise the peak demand to a high value, e.g., t = 125, but fail
to utilize the raised peak demand in the consecutive time slots.
We also observe that the pattern of the amount of energy drawn
from the grid by Alg. 3 exactly follows power demand D(t),
i.e., it goes high as D(t) goes high, and it drops as D(t) drops,
which reveals that Alg. 3 is not intelligent enough.

In Fig. 14, we compare the amount of energy drawn from the
grid by Alg. 4 and that by the offline optimum. We observe that
Hmax in Alg. 4 approaches H∗

max as t increases. Compared with
Alg. 3, Alg. 4 keeps tracking the maximum demand so far, and
resorts to the energy reduction from tenants only when it would
exceed the maximum demand so far. Results show that Alg. 4
does act more intelligently than Alg. 3.

We run the randomized auction in Sec. 5.3 for 20 times to
obtain the average results. The amount of energy drawn from
the grid by the randomized auction is depicted in Fig. 15, com-
pared with Alg. 4. It follows the curve by Alg. 4 with a bit
of fluctuation, which results from the randomized selection
of integer solutions in the auction. We also observe that both
Alg. 4 and the randomized auction jump up a step at t = 125.
The reason is that the amount of energy drawn from the grid
has to jump as the energy reduction from the tenants can not
compensate the amount D(t) jumps at t = 125.

We next compare the monthly cost in each component, i.e.,
volume charge, peak charge and tenant cost, as shown in Fig. 16
and Tab. IV. Alg. 3 is the worst among them, but still achieves
1.104 times the offline optimum, which is much better than
the theoretical worst-case competitive ratio in Theorem 3 —
2 + ξ/(1 − 1

ρ
) = 4, where ξ = 1.2, ρ = 2.5. Alg. 4 and the

Fig. 15. Comparison between Alg. 4 and the Truthful Auction in Sec. 5.3.

Fig. 16. Comparison between Alg. 4 and the Truthful Auction in Sec. 5.3.

TABLE IV
COST COMPARISON AMONG ALG. 3, ALG. 4, THE TRUTHFUL AUCTION

AND OFFLINE OPTIMUM, UNDER BC HYDRO’S PRICING SCHEME

Auction both have a competitive ratio of 1.01, better than the
theoretical worst-case competitive ratios in Theorem 4 and
Theorem 7, respectively. In the trace, c ≈ 1.49, then the ratios
are 3.49 and 4.98, respectively.

VII. CONCLUSION

We studied the online electricity cost minimization prob-
lem at a co-location data center, considering that the electricity
billing model applied to a data center is nowadays based on both
the total volume consumed, and the peak consumption rate. We
consider two approaches to provide incentive for tenants to shed
energy consumption, for peak demand control. We designed
online algorithms based on primal-dual techniques that exploit
the salient feature of the data center electricity charge model,
and proved guarantees on their competitive ratios. We fur-
ther converted the online algorithm into an efficient auction
mechanism that executes in an online fashion, runs in polyno-
mial time, and guarantees truthful bidding and close-to-optimal
social cost. Trace-driven simulation studies further verified the
efficacy of the proposed algorithms, showing close-to-optimum
performance in most cases that were studied.
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