
DYNAMIC COMPRESSIVE SENSING:
SPARSE RECOVERY ALGORITHMS FOR STREAMING

SIGNALS AND VIDEO

A Dissertation
Presented to

The Academic Faculty

by

Muhammad Salman Asif

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Muhammad Salman Asif

DYNAMIC COMPRESSIVE SENSING:
SPARSE RECOVERY ALGORITHMS FOR STREAMING

SIGNALS AND VIDEO

Approved by:

Professor Justin Romberg, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Sung Ha Kang
School of Mathematics
Georgia Institute of Technology

Professor James McClellan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Patricio Vela
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Mark Davenport
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: June 20, 2013

Dedicated to my parents.

iii

ACKNOWLEDGEMENTS

While not exactly getting as far as to stand on the proverbial shoulders of the giants,

I had the good fortune to look at the world while standing in a close neighborhood

of the said giants. In that process I got inspired and motivated to work on many

interesting problems for which I received constant guidance and encouragement from

the people whom I worked with and learned from. I have also been fortunate to

receive tremendous support and encouragement from the friends and family during

my graduate studies. I thank you all from the depth of my heart for everything.

The biggest influence on the work in this thesis, and my research and thinking

process in general, has been from my advisor Justin Romberg. He has been an

inspiring figure and a role model for me since I came to Georgia Tech and attended

his first seminar there. Everything in this thesis is a direct result of preliminary ideas

from Justin, our long discussions on the white board, and the offhand comments

he made at times when I went to his office (almost always unannounced) to discuss

a problem. In this process I learned tremendously from Justin on how to describe,

analyze, or write a problem (and its solution), and the wealth of knowledge he exposed

me to is my prized possession. It has been an absolute pleasure and honor to be his

student, and I am immensely grateful to him for everything.

I would like to thank all the members in my thesis committee for reading my

thesis, exchanging several ideas, and providing constructive feedback. I would also

like to express my sincere gratitude to all the professors at Georgia Tech from whom

I learned about mathematics, engineering, writing, and much more. Many thanks to

my teachers from earlier education institutions, who inspired me to ask questions and

pursue higher education.

iv

I want to thank Petros Boufounos for providing me the opportunity to work as an

intern at MERL in Cambridge, where I spent one of my best Summers. Many thanks

to Felix Fernandes for providing me the opportunity to work as an intern in Samsung

research laboratories in Dallas for one Summer, which was an amazing experience.

I thoroughly enjoyed the companionship of my fellow students in Justin’s (ex-

tended) group, Adam, Aditya, Ali, Aurèle, Chris, Darryl, Han, Steve, and William.

Thank you all; I will dearly miss our long, multi-topic discussions. A very special

thanks to my closest friend (also in terms of distance) for a long time, Umair, who

had to suffer from my dozen or so alarms every morning, evening, etc. Thanks patti

for all the good and spoiled times. Farasat and Omer, I cherish your friendship and

appreciate the support and affection you have always offered me and also that I have

at times extracted from you. Many thanks to Ehsanullah for being there whenever I

had to pour my heart out to someone.

The biggest thank you goes to all my family members: My mother and father, who

always trusted in me and allowed me to come this far in the pursuit of my dreams;

Ammi and Abu, it is only because of your encouragement, love, and prayers that I

could do this or anything else. Many thanks to my sisters, brother, and brothers-in-

law for their consistent love and support. I would also like to thank my in-laws for

their support and prayers. I owe a huge debt of gratitude to my wife, Wajiha, for her

patient support, much-needed distractions, and unending love. The years spent with

her have been filled with joy and happiness, the biggest of all is our son, Noraiz, who

was born while I was working on the final parts of this thesis. Thank you bv!

Finally, I would like to acknowledge and express my gratitude for the financial

support from the Higher Education Commission of Pakistan during my graduate

studies. It was indeed a generous award from the homeland that gave me so much

more and that is now, more than ever, in need of a return on such investments and a

relief from so many miseries. In the words of Faiz, hum dekhain gey (we shall see).

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

1.1 Dynamic `1 updating . 2

1.2 Dynamic model in video . 4

1.3 Organization . 6

II BACKGROUND . 8

2.1 Sampling and compression . 8

2.2 Compressive sensing . 10

2.3 Sparse signal recovery . 12

PART I DYNAMIC `1 UPDATING

III DYNAMIC SIGNAL RECOVERY USING `1 HOMOTOPY . . 18

3.1 Problem formulation and motivation 18

3.2 `1-homotopy: A unified homotopy algorithm 21

3.3 Discussion . 26

IV TIME-VARYING SPARSE SIGNALS 28

4.1 Problem formulation . 28

4.2 Numerical experiments . 30

V SEQUENTIAL MEASUREMENTS OF FIXED SIGNALS . . . 34

5.1 Problem formulation . 34

5.2 Numerical experiments . 36

vi

VI ITERATIVE AND ADAPTIVE WEIGHTED `1 38

6.1 Introduction . 39

6.2 Iterative reweighting via homotopy 41

6.3 Adaptive reweighting via homotopy 44

6.4 Numerical experiments . 50

6.5 Discussion . 59

VII SPARSE RECOVERY FROM STREAMING SYSTEMS 66

7.1 Introduction . 67

7.2 Signal representation in compactly supported bases 69

7.3 Sparse recovery from overlapping systems 71

7.4 Numerical experiments . 76

VIII SPARSE RECOVERY FROM DYNAMICAL SYSTEMS 84

8.1 Introduction . 84

8.2 Sparse recovery with dynamic model 87

8.3 Numerical experiments . 90

IX NON-NEGATIVE `1 HOMOTOPY 97

X THE DANTZIG SELECTOR `1 HOMOTOPY 101

10.1 Primal-dual formulation . 101

10.2 Primal-dual `1-homotopy . 106

10.3 Non-negative Dantzig selector . 111

XI `1 DECODING . 114

11.1 Problem formulation . 115

11.2 Homotopy algorithm . 116

PART II DYNAMIC MODELS IN VIDEO

XII LOW-COMPLEXITY VIDEO CODING 125

12.1 Background . 126

12.2 Video compressive sensing . 128

vii

12.3 Experiments and Results . 133

XIII ACCELERATED DYNAMIC MRI 137

13.1 Background . 137

13.2 Problem formulation . 141

13.3 Motion-adaptive spatio-temporal regularization 145

13.4 Methods . 149

13.5 Results . 152

13.6 Discussion . 157

XIV CONCLUSION . 166

14.1 Dynamic `1 updating . 166

14.2 Dynamic models in video . 167

14.3 Future directions . 168

REFERENCES . 170

viii

LIST OF TABLES

4.1 Dynamic `1 updating for time-varying sparse signals. 33

5.1 Dynamic `1 updating for sequential measurements. 37

11.1 Dynamic `1 updating for `1 decoding. 122

ix

LIST OF FIGURES

4.1 Blocks and Piecewise polynomial signals. 32

4.2 House image . 33

6.1 Variation of weights in adaptive reweighting 47

6.2 Blocks and HeaviSine signals. 52

6.3 Comparison of SER for iterative and adaptive reweighted `1 recovery
of Blocks signals. 57

6.4 Comparison of SER for iterative and adaptive reweighted `1 recovery
of HeaviSine signals. 58

6.5 Comparison of computational cost for iterative and adaptive reweighted
`1 recovery of Blocks signals. 59

6.6 Comparison of computational cost for iterative and adaptive reweighted
`1 recovery of HeaviSine signals. 60

6.7 Comparison of MATLAB runtime for iterative and adaptive reweighted
`1 recovery of Blocks signals. 61

6.8 Comparison of MATLAB runtime for iterative and adaptive reweighted
`1 recovery of HeaviSine signals. 62

6.9 Results for the recovery of 256×256 images using adaptive reweighting
in `1 problems. 65

7.1 Illustration of overlapping systems on an active interval 68

7.2 Signal decomposition in LOT and wavelet bases. 72

7.3 Illustration of the system used for the streaming signal reconstruction. 75

7.4 Experiments on the LinChirp signal reconstruction from streaming,
compressed measurements using LOT representation. 81

7.5 Experiments on the MishMash signal reconstruction from streaming,
compressed measurements using LOT representation. 82

8.1 Experiments on the time-varying HeaviSine signal reconstruction from
streaming, compressed measurements in a dynamical system. 93

8.2 Experiments on the time-varying Piece-Regular signal reconstruction
from streaming, compressed measurements in a dynamical system. . . 94

11.1 Total number of homotopy iterations for the `1 decoding. 123

11.2 Average number of homotopy iterations for the `1 decoding. 123

x

12.1 Distribution of measurements for a group of T video frames. 130

12.2 Bi-directional inter-frame motion interpretation. 131

12.3 Images from video test sequences. 133

12.4 Results for video compressive sensing. 136

13.1 Comparison of MASTeR and k-t FOCUSS with ME/MC reconstruc-
tion for the short-axis MRI scan (spatial view) 154

13.2 Comparison of MASTeR and k-t FOCUSS with ME/MC reconstruc-
tion for the short-axis MRI scan (temporal variations) 155

13.3 Comparison of MASTeR and k-t FOCUSS with ME/MC reconstruc-
tion for the short-axis MRI scan (SER) 156

13.4 Comparison of MASTeR and k-t FOCUSS with ME/MC reconstruc-
tion for two-chamber MRI scan (spatial view) 158

13.5 Comparison of MASTeR and k-t FOCUSS with ME/MC reconstruc-
tion for the two-chamber MRI scan (temporal variations) 159

13.6 Comparison of MASTeR, MASTeR with k-t FOCUSS, and k-t FO-
CUSS with ME/MC reconstruction for the short-axis MRI scan (spa-
tial view) . 162

13.7 Comparison of MASTeR, MASTeR with k-t FOCUSS, and k-t FO-
CUSS with ME/MC reconstruction for the two-chamber MRI scan
(spatial view) . 163

13.8 Comparison of different motion estimation schemes in MASTeR . . . 165

xi

SUMMARY

This thesis presents compressive sensing algorithms that utilize system dy-

namics in the sparse signal recovery process. These dynamics may arise due to a

time-varying signal, streaming measurements, or an adaptive signal transform. Com-

pressive sensing theory has shown that under certain conditions, a sparse signal can

be recovered from a small number of linear, incoherent measurements. The recovery

algorithms, however, for the most part are static: they focus on finding the solution

for a fixed set of measurements, assuming a fixed (sparse) structure of the signal.

In this thesis, we present a suite of sparse recovery algorithms that cater to var-

ious dynamical settings. The main contributions of this research can be classified

into the following two categories: 1) Efficient algorithms for fast updating of `1-norm

minimization problems in dynamical settings. 2) Efficient modeling of the signal dy-

namics to improve the reconstruction quality; in particular, we use inter-frame motion

in videos to improve their reconstruction from compressed measurements.

Dynamic `1 updating: We present homotopy-based algorithms for quickly updating

the solution for various `1 problems whenever the system changes slightly. Our ob-

jective is to avoid solving an `1-norm minimization program from scratch; instead, we

use information from an already solved `1 problem to quickly update the solution for

a modified system. Our proposed updating schemes can incorporate time-varying sig-

nals, streaming measurements, iterative reweighting, and data-adaptive transforms.

Classical signal processing methods, such as recursive least squares and the Kalman

filters provide solutions for similar problems in the least squares framework, where

each solution update requires a simple low-rank update. We use homotopy continua-

tion for updating `1 problems, which requires a series of rank-one updates along the

xii

so-called homotopy path.

Dynamic models in video: We present a compressive-sensing based framework

for the recovery of a video sequence from incomplete, non-adaptive measurements.

We use a linear dynamical system to describe the measurements and the temporal

variations of the video sequence, where adjacent images are related to each other via

inter-frame motion. Our goal is to recover a quality video sequence from the avail-

able set of compressed measurements, for which we exploit the spatial structure using

sparse representations of individual images in a spatial transform and the temporal

structure, exhibited by dependencies among neighboring images, using inter-frame

motion. We discuss two problems in this work: low-complexity video compression

and accelerated dynamic MRI. Even though the processes for recording compressed

measurements are quite different in these two problems, the procedure for recon-

structing the videos is very similar.

xiii

CHAPTER I

INTRODUCTION

Recent advances in technology have enhanced our ability to sample, analyze, store,

and transmit more information, both in terms of quantity and variety. For instance,

a human body can be imaged in high detail and quality using computational to-

mography scans or magnetic resonance imaging, high-dynamic range and high-speed

images and videos can be produced using computational photography, and high-

definition videos can be stored or broadcast on hand-held devices. Several factors

have contributed to these phenomena over decades: innovations in sensor technol-

ogy, improvements in the circuits and hardware design, high-performance computing

resources, sophisticated signal analysis and elaborate compression schemes, and as

always the demand for better and bigger pictures.

In many cases, sensing and imaging devices record indirect measurements of the

desired signals. The recovery of the signal in turn requires solving an inverse problem,

and any knowledge about the signal structure helps in the solution. In an increasing

number of applications, the measurements available for the signal of interest are highly

incomplete, and the resulting inverse problems become ill-possed. What makes signal

recovery possible in such cases is the use of some prior knowledge that the underlying

signal exhibits a simple, low-dimensional structure. In this regard, recent work in

compressive sensing and related areas has raised and addressed fundamental questions

concerning the amount and the content of measurements that are sufficient for signal

recovery, the representative signal models that are most suitable, and the recovery

methods that are fast, accurate, and robust [33, 34, 37, 55].

1

The work presented in this thesis is motivated by similar questions on the re-

covery of structured, sparse signals from linear measurements, where compressive

sensing ideas are applied to various dynamic settings. The dynamics may arise be-

cause of time-varying signals, streaming measurements, or data-adaptive transforms.

The overall theme of this work is to efficiently incorporate these system dynamics

in the sparse signal recovery algorithms. The main contributions of this work can

be classified into the following two categories: 1) Algorithms for fast updating of `1-

norm minimization based sparse recovery problems in dynamical settings. 2) Efficient

modeling of signal dynamics for improving the reconstruction quality; in particular,

motion-adaptive models for reconstructing videos from compressed measurements.

1.1 Dynamic `1 updating

The first part of this thesis details our contributions to the dynamic updating of

`1-norm minimization programs. Solving an `1-norm minimization problem, such as

basis pursuit [46], basis pursuit denoising [46], LASSO [131] and the Dantzig selec-

tor [34], has been shown to be an effective way to recover a sparse vector in many

different contexts. Most of the existing schemes for solving such `1 problems are static

in nature as they focus on finding the solution for a fixed set of measurements, assum-

ing a fixed (sparse) representation of the signals. However, the same representation

and reconstruction formulation is not readily applicable for a streaming system in

which the signal changes over time; instead of measuring the entire signal or process-

ing the entire set of measurements at once, these tasks are performed sequentially

over short time intervals. Our objective for dynamic `1 updating is to avoid solving

an `1 problem from scratch every time the system changes; instead, we want to utilize

information about the current signal estimate to quickly update the solution. In this

regard, we have developed a suite of homotopy algorithms for updating `1 problems

2

in a variety of dynamical settings, such as time-varying signals, sequential measure-

ments, iterative reweighting in `1 norm, and streaming signals that follow a linear

dynamic model.

Homotopy methods provide a general framework to solve an optimization program

by continuously transforming it into a related problem for which the solution is either

available or easy to compute. Starting from an available solution, a series of simple

problems are solved along the so-called homotopy path towards the desired solution

for the original problem [59, 106, 138]. The progression along the homotopy path

is controlled by a transformation parameter called the homotopy parameter, usually

varied between 0 and 1, which correspond to the two end points of the homotopy

path.

The homotopy algorithms presented in this thesis update the solution for an `1

problem by first transforming it into a problem for which the solution is a known

(warm-start) vector, and then following a piecewise linear path toward the final solu-

tion (for the target `1 problem). The warm-start vector can be a solution of a related

`1 problem or an arbitrary vector believed to be close to the final solution, whereas

updating the solution along the piecewise linear path requires a series of rank-one

updates. The underlying assumption is that since small changes in the system cause

small changes in the solution, updating a warm-start vector would require only a

small number of (computationally simple) low-rank updates. By comparison, classi-

cal signal processing methods such as recursive least squares and the Kalman filter

update solutions of similar problems in the least squares framework and they require

a single low-rank update [77, 78].

Part 1 of the thesis is organized as follows. We begin with the discussion of

a general `1 homotopy algorithm in Chapter 3. This algorithm provides a unified

solution for dynamic `1 updating as it can update the `1 problem in various dynamical

settings. In Chapter 4, we discuss dynamic `1 updating when the sparse signal changes

3

while the measurement matrix remains fixed [14]. In Chapter 5, we discuss dynamic

`1 updating as measurements of a fixed signal are sequentially added to the system.

In Chapter 6, we discuss dynamic `1 updating of weights in the `1 problem and an

algorithm to adaptively select weights while solving a sparse recovery problem from

scratch [12]. In Chapter 7, we discuss dynamic `1 updating for a streaming system

in which measurements, sparse signal, and sparse representation change over time

and the streaming signal is iteratively estimated over short, sliding interval [13]. In

Chapter 8, we discuss dynamic `1 updating for a streaming signal that varies according

to a linear dynamic model. This work is in the spirit of an `1-regularized Kalman

filter [13]. In Chapter 9, we discuss how a simple change in the `1-homotopy algorithm

imposes the positivity constraints on the solution of the `1 programs. In Chapter 10,

we discuss a dynamic updating algorithm for the Dantzig selector, where we apply

similar principles of `1-homotopy to the primal and dual formulations of the Dantzig

selector program. In Chapter 11, we discuss dynamic `1 updating for streaming

measurements in the context of decoding by linear programming [38], where we want

to recover an arbitrary signal from coded measurements that are corrupted by sparse

errors.

1.2 Dynamic model in video

The second part of this thesis details our work on the recovery of video sequences

from compressed, non-adaptive measurements. We use a linear dynamical system to

describe the measurements and the temporal variation of the video sequence, where

adjacent images are related to each other via inter-frame motion. Compressive sens-

ing theory suggests that a (structured) sparse signal can be recovered from a small

number of (non-adaptive) measurements. This combined acquisition and compression

lessens the burden on sensing devices in the following ways: Full signal acquisition is

4

not necessary, additional compression is not required, and the computationally expen-

sive task of reconstruction is performed at the decoder. These features inspired our

work on the following two problems: 1) Low-complexity video compression (Chap-

ter 12). 2) Accelerated dynamic magnetic resonance imaging (MRI) (Chapter 13).

Even though the motivation and processes for recording compressed measurements

are quite different in these two problems, the procedure for reconstructing the videos

is very similar. Our goal is to recover a quality video sequence from the available set

of compressed measurements, for which we exploit the spatial structure using sparse

representation of individual images in a spatial transform and the temporal structure,

exhibited by dependencies among neighboring images, using inter-frame motion.

1.2.1 Low-complexity video compression

Certain tasks in the standard video compression are either computationally expensive

or infeasible for low-power devices and distributed systems. The main computational

complexity in standardized video coding arises from motion estimation and trans-

form coding blocks. To reduce the encoder complexity, we eliminated these blocks

from the encoder. Our proposed encoder compresses a video sequence by recording a

small number of linear, non-adaptive measurements for each image. On the decoder

side, we exploit the sparsity of individual images in the wavelet representation and

the motion between neighboring images in the video sequence to improve its recon-

struction. We solve an optimization program that regularizes the spatial sparsity

of individual images and motion-compensated differences between neighboring im-

ages. Since motion information is not readily available at the decoder, we alternate

between learning motion from estimated images and using that motion information

to improve image estimates. We demonstrate with an extensive set of experiments

that motion-compensated regularization yields better results than frame-by-frame and

5

frame-difference regularized reconstructions. A comparison with some existing low-

complexity encoders shows that the motion-regularized decoder outperforms methods

that do not use any motion information at the decoder.

1.2.2 Accelerated dynamic MRI

In dynamic MRI, full signal acquisition is often impossible, and only a small num-

ber of the so-called k-space measurements can be acquired in a short time. Slow

imaging speed in MRI poses particular challenges for dynamic cardiac imaging, in

which images are often acquired during a patient’s breath-holds. A complete car-

diac cycle is usually recorded as a sequence of 16 to 20 images while only a small

portion of the Fourier transform of each image is recorded per heartbeat. Thus, to

reduce scan time, the acquisition process is accelerated by undersampling the k-space

(i.e., 2-D Fourier coefficients). In our work, we treat the images in an MRI sequence

as frames of a video sequence, for which undersampled Fourier measurements are

provided. The recovery algorithm solves an optimization problem that involves cost

functions for data mismatch, spatial sparsity of each image, and temporal sparsity of

motion-compensated residuals. We alternate between estimating MR images using

an estimate of the inter-frame motion and estimating inter-frame motion using an

estimate of MR images. We demonstrate that, using motion-compensated regular-

ization in the reconstruction, it is feasible to recover high-quality dynamic cardiac

images with up to ten-fold acceleration [5].

1.3 Organization

We present a brief background on compressive sensing and sparse recovery algorithms

in Chapter 2, where we also present a derivation of the homotopy algorithm for

LASSO. In Part 1 of the thesis, Chapters 3–11, we discuss algorithms for dynamic

updating of several `1-norm minimization problems. In Part 2 of the thesis, we

discus low-complexity video coding in Chapter 12 and accelerated dynamic MRI in

6

Chapter 13. We provide conclusions of this work and a discussion on future directions

of study in Chapter 14.

7

CHAPTER II

BACKGROUND

Modern digital sampling technology has enabled the acquisition, transmission, and

storage of ever increasing number and variety of physical signals [124, 136]. Despite

significant advances in data sampling and processing systems, in many cases, current

systems are severely constrained and provide incomplete samples of the signal. The

constraints can be due to limited sampling rates of sensors, the time required for

complete sampling, the number and the cost of desired sensors, or the power con-

sumption in battery-operated devices. Once the signal is fully sampled, conventional

data compression schemes indeed lessen the burden on transmission and storage re-

quirements. Compression schemes are usually lossy as they retain a small number of

transform coefficients and throw away the rest without causing a significant loss in

the perceptual quality of signal, which raises an important question: since we throw

away a large portion of the acquired data with little impact on the signal quality, is

it possible to recover the desired signal by acquiring reduced amount of data in the

first place? Compressive sensing theory suggests that under certain conditions it is

indeed possible [35, 37, 38, 55].

2.1 Sampling and compression

Classical sampling theory, largely based on the pioneering work of Whittaker, Nyquist,

and Shannon, views a signal as a member of a vector space in which the signal can

be represented as a linear combination of the basis elements of the ambient vector

space [103, 123, 145]. The coefficients in the linear combination constitute the samples

of the signal with respect to the given basis representation. For instance, bandlim-

ited, continuous-time signals belong to a vector space that admits uniformly-shifted

8

sinc functions as its basis, and the uniformly-spaced discrete samples, at or above

the Nyquist rate (i.e., twice the signal bandwidth), constitute coefficients for the sinc

basis functions [94]. The continuous-time signal can be reconstructed from discrete

samples by passing them through an ideal low-pass filter, which is equivalent to per-

forming a linear sinc interpolation. More general cases with less trivial acquisition and

reconstruction components can be found in [94, 136]. Nevertheless, to reconstruct an

arbitrary signal in a vector space, we require all the coefficients for the representative

basis.

Compression also plays a fundamental role in modern signal processing and also

relies on sparse representations of signals in different bases. The fundamental prin-

ciple behind any compression scheme is that most natural signals contain redundant

information, and they can be represented using a small number of coefficients in a

representation basis. For instance, JPEG compression standards represent images us-

ing a small number of discrete cosine or wavelet coefficients [130]; MPEG and H.264

standards represent video sequences using a reference frames and small residuals of

motion compensation [115]. Efficient (sparse) signal representation, therefore, plays

a central role in compression: a small subset of significant coefficients represents the

entire signal with very little or no loss in the signal quality.

Over the last two decades, a number of orthogonal bases and tight frames have

been designed for sparse representation of various signals of interest [31, 36, 50, 53,

141]. In addition to compression, sparse representation also plays a fundamental role

in signal denoising, estimation, analysis, and sampling [58, 89, 94, 104]. However, a

sparse representation model is non-linear as the significant coefficients change from

signal to signal. Therefore, we cannot directly sample the significant coefficients

without a prior knowledge of their locations.

9

2.2 Compressive sensing

Compressive sensing (CS) theory showed how compression can be combined with

sampling. In contrast with the conventional method of compression after sampling

the entire signal, CS provides a framework in which a structured, sparse signal

can be reliably reconstructed from a small number of linear, non-adaptive measure-

ments [32, 35, 37, 38, 55, 57]. The number of measurements that is required for the

signal reconstruction depends on the design of measurements and the sparse struc-

ture of the signal, but the number can be much lower than the Shannon-Nyquist

sampling limit [61, 133, 142]. However, the reconstruction process is non-linear and

requires solving an underdetermined system of equations. CS assumes a sparse or

low-dimensional model on the signals during reconstruction, which restricts the sig-

nal to a small subset of the vector space; for instance, a union of subspaces inside the

ambient vector space. A low-dimensional signal model limits the degrees of freedom

in a signal, hence makes it possible to recover the signal from a small number of

measurements [16, 24, 30, 87].

2.2.1 System model

Consider the following linear observation model:

y = Φx̄+ e, (2.1)

where Φ denotes an M × N measurement matrix, x̄ denotes the unknown signal of

interest, y denotes a set of measurements, and e denotes noise in the system. The

measurements in (2.1) can be viewed as generalized sampling, where the rows in Φ

represent the sampling functions. For example, shifted sinc functions generate con-

ventional Nyquist samples of x̄, or sinusoids with different frequencies yield Fourier

coefficients. In the CS framework, M � N and the system in (2.1) is highly under-

determined. Since Φ has an (N −M)-dimensional null-space, it is not possible to

recover an arbitrary true signal x̄ from the infinitely many possible solutions of the

10

system (2.1). However, the situation changes altogether if x̄ is sparse, or if it has

sparse representation in some basis; for instance, x̄ = Ψᾱ, where ᾱ is a sparse vector

and Ψ is the representation basis.

2.2.2 Sparsity and restricted isometry

Suppose Ψ = I and x̄ contains only S nonzero elements at locations indexed by the

support set Γ. We can estimate x̄ as

x̂ =


(ΦT

ΓΦΓ)−1ΦT
Γy on Γ

0 otherwise,

(2.2)

whenever ΦΓ is full-rank. ΦΓ denotes a matrix constructed from S columns in Φ at

locations Γ. Thus, a necessary condition to recover an S-sparse signal (even with

known support) is that M ≥ S. Furthermore, in order to recover an arbitrary S-

sparse signal, ΦΓ needs to be full rank for all possible supports Γ. The well-known

restricted isometry property (RIP) is commonly used to analyze recovery guarantees

for such a case when the support of signal is unknown. A matrix Φ satisfies RIP of

order 2S if there exists a constant δ2S < 1 such that

(1− δ2S)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ2S)‖x‖2
2, (2.3)

for all 2S-sparse vectors x [38]. A small RIP constant implies that every submatrix

ΦΓ is “near-orthogonal” or “near-isometric”—as the name suggests. If the RIP holds

for a given matrix Φ with a small constant δ2S, any S-sparse signal x can be stably

reconstructed from the underdetermined system in (2.1) [33, 39]. For instance, ma-

trices with i.i.d. random Gaussian or Bernoulli entries are known to satisfy the RIP

when M = O(S logN) [15, 35, 39]. The additional logN factor, in some sense, is the

cost we pay for not knowing the support of the signal in advance.

11

2.3 Sparse signal recovery

In the absence of noise, a natural way to find the sparsest vector x that satisfies

measurements in (2.1) is by solving the following optimization problem:

minimize
x

‖x‖0 subject to Φx = y, (2.4)

where ‖x‖0 is the so-called `0 quasi-norm, which provides the number of nonzero

elements in x. Unfortunately, (2.4) is computationally intractable and known to be

NP-hard [100]. An effective class of recovery problems relaxes the `0 norm with the

`1 norm. The well-known basis pursuit problem [46, 121] takes the following form:

minimize
x

‖x‖1 subject to Φx = y, (2.5)

where ‖x‖1 =
∑N

i=1 |xi| denotes the `1 norm of x. The optimization problem in

(2.5) can be recast as a linear program and solved using a number of efficient solvers

[26, 41, 102]. It is well known that if Φ satisfies RIP with a small constant, any

S-sparse signal can be exactly recovered by solving (2.5) [37, 38].

In practical settings, when the measurements in (2.1) usually contain noise, the

equality constraints can be replaced with a data-fidelity term. Two commonly used

convex programs for this purpose are 1) least absolute shrinkage and selection operator

(LASSO) [131] or basis pursuit denoising (BPDN) [46], and 2) the Dantzig Selector

(DS) [34]. The LASSO/BPDN solves

minimize
x

τ‖x‖1 +
1

2
‖Φx− y‖2

2, (2.6)

and the DS solves

minimize
x

‖x‖1 subject to ‖ΦT (Φx− y)‖∞ ≤ τ, (2.7)

where τ > 0 is a threshold parameter, which can be selected to control the tradeoff

between the sparsity of the solution and its fidelity to the measurements. In recent

12

years, a number of efficient schemes have been developed for solving these problems

[19, 20, 41, 59, 62, 137, 144, 150]. A number of performance guarantees are associated

with both (2.6) and (2.7) [3, 33, 34, 38, 56, 98]. Furthermore, a small RIP constant

provides robustness guarantees for the recovery of signals that are not exactly sparse

but can be well-approximated by a sparse signal [32, 33].

The optimization problems in (2.5), (2.6), and (2.7) assume that x is sparse.

However, we can easily incorporate the general case when x itself is not sparse but

it has a sparse representation in a basis Ψ; for example, ΨTx is sparse. The only

difference is that instead of ‖x‖1, we would use ‖ΨTx‖1 in the optimization problems

[40, 60].

In addition to the above mentioned `1 problems, a number of greedy and model-

based algorithms are also available for the sparse signal recovery [16, 25, 101, 109, 134].

2.3.1 Homotopy for LASSO

The dynamic `1 updating schemes we present in Part 1 of the thesis are based on

homotopy continuation. To familiarize the reader with homotopy principles, below we

present the well-known LASSO/LARS homotopy algorithm that solves the problem

in (2.6) [59, 106]. Similar homotopy algorithms also exist for (2.7) [10, 73].

The LASSO/LARS homotopy algorithm solves (2.6) for a desired value of τ by

tracing the entire solution path for a range of decreasing values of τ (i.e., any point on

the so-called homotopy path is a solution of (2.6) for a certain value of τ) [59, 106].

Starting with a large value of τ , LASSO homotopy shrinks τ toward its final value

in a sequence of computationally inexpensive steps. The fundamental insight is that

as τ changes, the solution of (2.6) follows a piecewise-linear path in which the length

and the direction of each segment is completely determined by the support and the

sign sequence of the solution on that segment. This fact can be derived by analyzing

the optimality conditions for (2.6), as given below in (2.8) [54, 64]. The support of

13

the solution changes only at certain critical values of τ , when either a new nonzero

element enters the support or an existing nonzero element shrinks to zero. These

critical values of τ are easy to calculate at any point along the homotopy path. For

every homotopy step, we jump from one critical value of τ to the next while updating

the support of the solution, until τ has been lowered to its desired value.

In every homotopy step, the update direction and the step-size for moving to a

smaller critical value of τ can be easily calculated using certain optimality conditions,

which can be derived using the subdifferential of the objective in (2.6) [26, 54, 64].

At any given value of τ , the solution x∗ for (2.6) must satisfy the following optimality

conditions:

ΦT
Γ(Φx∗ − y) = −τz (2.8a)

‖ΦT
Γc(Φx

∗ − y)‖∞ ≤ τ, (2.8b)

where Γ denotes the support1 of x∗, z denotes the sign sequence of x∗ on Γ, and ΦΓ

denotes a matrix with columns of Φ at indices in the set Γ.

Let us denote the objective function in (2.6) as f(x), which is convex but not

differentiable everywhere. A necessary condition for a vector x∗ to be a minimizer

of f(x) is that the subdifferential of f at x∗ must contain the zero vector, which is

denoted as 0 ∈ ∂f(x∗) [116]. If f is convex and differentiable, then its subdifferential

at x is same as the gradient. The subdifferential of a convex function at a point x,

where it is non-differentiable, is defined as the set of all subgradients of the function

at that point. A vector g ∈ RN is a subgradient of f : RN → R at x ∈ RN if for all

u ∈ RN ,

f(u) ≥ f(x) + gT (u− x), (2.9)

which means that the affine function (of u) f(x) +gT (u−x) remains below the graph

1We use the terms support and active set interchangeably for the index set of nonzero coefficients.

14

of f for any u [21, 26]. We calculate the subdifferential of f as

∂f(x) = τ∂‖x‖1 + ΦT (Φx− y), (2.10)

where ∂‖x‖1 denotes the subdifferential of the `1 norm that can be described as

∂‖x‖1 =

g ∈ RN

∣∣∣∣∣∣∣∣∣∣
gi = +1, xi > 0

gi = −1, xi < 0

gi ∈ [−1, 1], xi = 0

 . (2.11)

This implies that ∂‖x‖1 is uniquely defined for the nonzero entries in x as the sign

sequence, while it can have any value in [−1, 1] for the zero entries in x. Using

the subdifferential g = ∂‖x∗‖1 in (2.10), we can describe the optimality condition,

0 ∈ ∂f(x∗), for a vector x∗ as

τg + ΦT (Φx∗ − y) = 0, ‖g‖∞ ≤ 1, gTx∗ = ‖x∗‖1. (2.12)

Thus, a vector x∗ with support Γ and sign sequence z, yields the optimality conditions

described in (2.8).

The optimality conditions in (2.8) can be viewed as N constraints that the solu-

tion x∗ needs to satisfy with equality on the active set Γ and inequality elsewhere.

(The only exception is at the critical values of τ when the support changes and the

constraint on the incoming or the outgoing index holds with equality.) As we reduce

τ to τ − δ, for a small value of δ, the solution moves in a direction ∂x, which to

maintain optimality must obey

ΦT
Γ(Φx∗ − y) + δΦT

ΓΦ∂x = −(τ − δ)z (2.13a)

‖ΦT (Φx∗ − y)︸ ︷︷ ︸
p

+δΦTΦ∂x︸ ︷︷ ︸
d

‖∞ ≤ (τ − δ). (2.13b)

The update direction that keeps the solution optimal as we change δ can be written

as

∂x =


(ΦT

ΓΦΓ)−1z on Γ

0 otherwise.

(2.14)

15

We can move in direction ∂x until either one of the constraints in (2.13b) is violated,

indicating that we must add an element to the support Γ, or one of the nonzero

elements in x∗ shrinks to zero, indicating that we must remove an element from Γ.

The smallest step-size that causes one of these changes in the support can be easily

computed as δ∗ = min(δ+, δ−), where

δ+ = min
i∈Γc

(
τ − pi
1 + di

,
−τ − pi
−1 + di

)
+

(2.15a)

and δ− = min
i∈Γ

(
−x∗i
∂xi

)
+

, (2.15b)

and min(·)+ means that the minimum is taken over only positive arguments. δ+ is

the smallest step-size that causes an inactive constraint to become active at index

γ+, indicating that γ+ should enter the support, and δ− is the smallest step-size that

shrinks an existing element at index γ− to zero. The new critical value of τ becomes

τ − δ∗, the new signal estimate x∗ becomes x∗ + δ∗∂x, and the support and the

sign sequence change accordingly. At every homotopy step, we compute the update

direction and the step-size that cause one-element change in the support. We repeat

this procedure until τ has been lowered to its desired value.

The main computational cost of every homotopy step comes from computing ∂x

by solving an S × S system of equations in (2.14) (where S denotes the size of the

support Γ) and from computing the vector d in (2.8b), which is used to compute

the step-size δ in (2.15). Since we know the values of d on Γ by construction and

∂x is nonzero only on Γ, the cost for computing d is same as one application of an

M × N matrix. Moreover, since Γ changes by a single element at every homotopy

step, instead of solving the linear system in (2.14) from scratch, we can efficiently

compute ∂x using a rank-one update at every step [23, 66].

2.3.2 Homotopy for `1 updating

The homotopy method described above solves (2.6); the homotopy procedure starts

with a zero vector and builds the solution by reducing τ while adding or removing

16

an element in the support at every homotopy step. In Part 1 of this thesis, we

present a suite of homotopy algorithms that dynamically update solutions for `1-

norm minimization problems similar to (2.6); the homotopy procedure for that starts

with a nonzero (warm-start) vector, believed to be close to the desired solution, and

updates the solution in a sequence of similar homotopy steps. For instance, consider

the following optimization problem for which the solution at ε = 0 is known in

advance:

minimize τ‖x‖1 +
1

2
‖Φx− (1− ε)y − εỹ‖2

2. (2.16)

We fix τ and build the homotopy using ε. Note that by changing ε from 0 to 1 in

(2.16), we gradually replace y with ỹ. In its present form, (2.16) is equivalent to

(2.6) at ε = 0, and it can be viewed as a method for updating the solution of (2.6)

if the sparse signal changes slightly and modified measurements are received. We

demonstrate in the next few chapters that as ε changes, the solution of (2.16) also

follows a piecewise linear path that can be easily traced using homotopy steps similar

to those described in Section 2.3.1. We discuss details of the homotopy algorithm for

(2.16) and a few similar problems along with their applications in Chapters 3–11.

17

PART I

Dynamic `1 updating

CHAPTER III

DYNAMIC SIGNAL RECOVERY USING `1 HOMOTOPY

Most of the existing sparse recovery methods are static in nature in which we usu-

ally assume that the unknown signal is a fixed vector for which a fixed set of linear

measurements are available. To reconstruct the signal, we assume that the signal

has a sparse representation in a known signal transformation and solve an `1-norm

minimization problem, which encourages the solution to be sparse while maintaining

fidelity toward the measurements [34, 46]. In this chapter, we discuss dynamic updat-

ing of `1-norm minimization programs for sparse signal recovery problems in which

the unknown signal, linear measurements, the representation basis, or some other

system parameter may change over time. Our primary objective is to avoid solving

a new `1 problem from scratch any time a change occurs in the system; instead,

we want to utilize any available information about the signal dynamics to expedite

the recovery process. In this regard, we propose a general homotopy algorithm that

quickly updates the solution of an `1 problem as the system changes. Our proposed

homotopy algorithm accepts a warm-start vector, expected to be near the desired so-

lution, and updates the solution in a sequence of computationally inexpensive steps.

The solution path of our homotopy algorithm is piecewise linear, which can be traced

in a sequence of simple steps [59, 106, 131].

3.1 Problem formulation and motivation

Consider the following time-varying linear system:

yt = Φtxt + et, (3.1)

18

where xt is an unknown signal of interest, yt is a vector that contains measurements

of xt, Φt is a measurement matrix, and et is noise in the measurements. Suppose we

represent xt as Ψtαt and the equivalent system for (3.1) as

yt = ΦtΨtαt + et, (3.2)

where Ψt denotes a sparse representation matrix and αt denotes a sparse vector of

transform coefficients. We want to solve the following weighted `1-norm minimization

problem for a sparse estimate of αt:

minimize
αt

‖Wtαt‖1 +
1

2
‖ΦtΨtαt − yt‖2

2. (3.3)

The `1 term promotes sparsity in the estimated coefficients; Wt is a diagonal matrix

of positive weights that can be adapted to promote a certain sparse structure in the

solution [42, 152]; and the `2 term ensures that the solution remains close to the

measurements. The optimization problem in (3.3) is convex and can be solved using

a variety of solvers [18, 19, 26, 147, 148].

In dynamic `1 updating, we are interested in quickly updating the solution of the

`1 problem in (3.3) as the system parameters (yt,Φt,Ψt,Wt) change, independently

or simultaneously. For instance, suppose we have solved (3.3) for a given system and

one of the following two situations arises: 1) We add a new set of measurements to

the system, which implies addition of rows to Φt and yt. 2) The underlying signal

changes slightly and we receive a new set of measurements in the same system, which

implies changes in yt, while Φt remains the same. In both these cases, we want to

update the solution without solving the problem in (3.3) from scratch.

A more elaborate example in which all the system parameters change is as follows.

Suppose xt changes according to the following linear dynamic model:

xt+1 = Ftxt + ft, (3.4)

where Ft is a prediction matrix that couples xt and xt+1 and ft is the error in the

prediction, which we assume has a bounded `2 norm. We want to iteratively estimate

19

xt = Ψtαt for increasing t by jointly solving the current system of measurements in

(3.1) and the dynamic model in (3.4) using the following modified form of (3.3):

minimize
αt

‖Wtαt‖1 +
1

2
‖ΦtΨtαt − yt‖2

2 +
λt
2
‖x̂t −Ψtαt‖2

2, (3.5)

where λt > 0 denotes a regularization parameter and x̂t denotes a predicted value

of xt based on an estimate of xt−1 from the previous iteration (e.g., x̂t = Ft−1x̂t−1).

The problem in (3.5) can be viewed as a “one-step” `1-regularized Kalman filter as

it uses information about the previous signal estimate and the linear dynamics to

iteratively update the signal estimate [44, 45, 47, 78]. Note that before solving the

optimization problem, an estimate of αt can be predicted from x̂t and used as a warm-

start to expedite the solution of (3.5). We can also select the Wt using the available

estimate of the αt (in the same spirit as iterative reweighting [42]). Although the

system parameters (yt,Φt,Ψt,Wt) change at every iteration, as t changes, instead of

solving (3.5) from scratch, we want to utilize information from previous iterations to

expedite the recovery process.

Classical signal processing methods such as recursive least squares (RLS) and

the Kalman filter solve similar dynamic updating problems in the least-squares (LS)

framework. An attractive feature of the LS methods is that their solutions admit

closed form representations and recursive updates can be computed using a low-

rank update [70, 77, 78, 126]. However, in their standard form, the LS methods are

oblivious to the sparse structure in the signal. In dynamic `1 updating, our motivation

is to develop a methodology similar to the RLS and Kalman updates for updating

the solutions of the `1 problems. Using the homotopy updates, we can sequentially

add and remove multiple measurements in the system, update the weights in the `1

term, and update the solution in a sequence of a small number of computationally

inexpensive homotopy steps. Since the homotopy algorithm solves an `1 problem, its

updating scheme is not as simple as that in the RLS and the Kalman filter; but it

has the same recursive spirit and updates the solution by reducing the problem into

20

a series of low-rank updates.

3.2 `1-homotopy: A unified homotopy algorithm

We present a versatile homotopy algorithm that uses a known (warm-start) vector

as a starting point and builds a homotopy towards the desired solution of the `1

problem in (3.3). The algorithm is not restricted to a specific `1 updating problem,

and it can be adopted in different scenarios with a simple initialization step. For

instance, tracking changes in a time-varying signal, adding or removing sequential

measurements, updating the weights, or making arbitrary changes in the system ma-

trix. Detailed discussion and experiments for different dynamic `1 updating problems

are discussed in the subsequent chapters of Part 1, where we either use the homo-

topy algorithm presented in this section or algorithms that are designed using similar

homotopy principles.

Suppose y is a vector that obeys the following linear model: y = Φx̄ + e, where x̄

is a sparse, unknown signal of interest, Φ is an M×N system matrix, and e is a noise

vector. We want to solve the following `1-norm minimization problem to recover x̄:

minimize
x

‖Wx‖1 +
1

2
‖Φx− y‖2

2, (3.6)

where W is a diagonal matrix that contains positive weights w on its diagonal.

Instead of solving (3.6) from scratch, we want to expedite the process by using some

prior knowledge about the solution of (3.6). We assume that we have a sparse vector,

x̂, that is close to the original solution of (3.6) and that has support1 Γ̂ and sign

sequence ẑ. Our proposed homotopy algorithm can be initialized with an arbitrary

vector x̂, given the corresponding matrix ΦT
Γ̂
ΦΓ̂ is invertible; however, the update

will be quick if x̂ is close to the final solution.

Homotopy methods provide a general framework to solve an optimization program

by continuously transforming it into a related problem for which the solution is either

1We use the terms support and active set interchangeably for the index set of nonzero coefficients.

21

available or easy to compute. Starting from an available solution, a series of simple

problems are solved along the so-called homotopy path towards the final solution of the

original problem [59, 106, 138]. The progression along the homotopy path is controlled

by the homotopy parameter, which usually varies between 0 and 1, corresponding to

the two end points of the homotopy path.

We build the homotopy formulation for (3.6), using ε ∈ [0, 1] as the homotopy

parameter, as follows. We treat the given warm-start vector x̂ as a starting point and

solve the following optimization problem:

minimize
x

‖Wx‖1 +
1

2
‖Φx− y‖2

2 + (1− ε)uTx (3.7)

by changing ε from 0 to 1. We define u as

u
def
= −W ẑ−ΦT (Φx̂− y), (3.8)

where ẑ can be any vector that is defined as sign(x̂) on Γ̂ and strictly smaller than

one elsewhere. Using the definition of u in (3.8) and the conditions in (3.10) below,

we can establish that x̂ is the optimal solution of (3.7) at ε = 0. As ε changes from

0 to 1, the optimization problem in (3.7) gradually transforms into the one in (3.6),

and the solution of (3.7) follows a piece-wise linear homotopy path from x̂ toward the

solution of (3.6). To demonstrate these facts and derive the homotopy algorithm, we

analyze the optimality conditions for (3.7) below.

The optimality conditions for (3.7) can be derived by setting the subdifferential

of its objective function to zero [21, 26]. We can describe the conditions that a vector

x∗ needs to satisfy to be an optimal solution as

Wg + ΦT (Φx∗ − y) + (1− ε)u = 0, ‖g‖∞ ≤ 1, gTx∗ = ‖x∗‖1, (3.9)

where g = ∂‖x∗‖1 denotes the subdifferential of the `1 norm of x∗ (see our discussion

in Section 2.3.1 for further details) [54, 116]. This implies that for any given value of

22

ε ∈ [0, 1], the solution x∗ for (3.7) must satisfy the following optimality conditions:

φTi (Φx∗ − y) + (1− ε)ui = −wizi for all i ∈ Γ (3.10a)

|φTi (Φx∗ − y) + (1− ε)ui| ≤ wi for all i ∈ Γc, (3.10b)

where φi denotes ith column of Φ, Γ is the support of x∗, and z is its sign sequence. The

optimality conditions in (3.10) can be viewed asN constraints on φTi (Φx−y)+(1−ε)ui

that the solution x∗ needs to satisfy with equality (in terms of the magnitude and the

sign) on the active set Γ and strict inequality (in terms of the magnitude) elsewhere.

The only exception is at the critical values of ε where the support changes and the

constraint on the incoming or the outgoing index holds with equality. Equivalently,

the locations of the active constraints in (3.10) determine the support of x∗, Γ, and

their signs determine the signs of x∗, z, which in our formulation are opposite to the

signs of the active constraints. Note that, the definition of u in (3.8) ensures that x̂

satisfies the optimality conditions in (3.10) at ε = 0; hence, it is a valid initial solution.

It is also evident from (3.10a) that at any value of ε the solution x∗ is completely

described by the support Γ and the sign sequence z (assuming that (ΦT
ΓΦΓ)−1 exists).

The support changes only at certain critical values of ε, when either a new element

enters the support or an existing nonzero element shrinks to zero. These critical

values of ε are easy to calculate at any point along the homotopy path, and the entire

path (parameterized by ε) can be traced in a sequence of computationally inexpensive

homotopy steps.

For every homotopy step we jump from one critical value of ε to the next while

updating the support of the solution, until ε is equal to 1. As we increase ε by a small

value δ, the solution moves in a direction ∂x, which to maintain optimality must obey

φTi (Φx∗ − y) + (1− ε)ui + δ(φTi Φ∂x− ui) = −wizi for all i ∈ Γ (3.11a)

|φTi (Φx∗ − y) + (1− ε)ui︸ ︷︷ ︸
pi

+δ (φTi Φ∂x− ui)︸ ︷︷ ︸
di

| ≤ wi for all i ∈ Γc. (3.11b)

23

The update direction that keeps the solution optimal as we change δ can be written

as

∂x =


(ΦT

ΓΦΓ)−1uΓ on Γ

0 otherwise.

(3.12)

We can move in direction ∂x until either one of the constraints in (3.11b) is violated,

indicating that we must add an element to the support Γ, or one of the nonzero

elements in x∗ shrinks to zero, indicating that we must remove an element from Γ.

The smallest step-size that causes one of these changes in the support can be easily

computed as δ∗ = min(δ+, δ−), where2

δ+ = min
i∈Γc

(
wi − pi

di
,
−wi − pi

di

)
+

(3.13a)

and δ− = min
i∈Γ

(
−x∗i
∂xi

)
+

, (3.13b)

and min(·)+ means that the minimum is taken over only positive arguments. δ+ is

the smallest step-size that causes an inactive constraint to become active at index

γ+, indicating that γ+ should enter the support and zγ+ should be opposite to the

sign of the active constraint at γ+, and δ− is the smallest step-size that shrinks an

existing element at index γ− to zero, indicating that γ− should leave the support.

The new critical value of ε becomes ε + δ∗ and the new signal estimate x∗ becomes

x∗+ δ∗∂x; the support and the sign sequence are updated accordingly. If γ+ is added

to the support, at the next iteration we check whether the value of ∂xγ+ has the same

sign as zγ+ ; if the signs mismatch, we immediately remove γ+ from the support and

recompute the update direction ∂x.

At every step along the homotopy path, we compute the update direction, the

step-size, and the consequent one-element change in the support. We repeat this

2To include the positivity constraint in the optimization problem (3.6), we initialize the homotopy

with a non-negative (feasible) warm-start vector and define δ+ = mini∈Γc

(
−wi−pi

di

)
+

. See Chapter 9

for details.

24

Algorithm 1 `1-Homotopy

Input: Φ, y, W, x̂, and u (optional: inverse or decomposition factors of ΦT
Γ̂
ΦΓ̂)

Output: x∗

1: Initialize: ε = 0, x∗ ← x̂
2: Repeat:
3: Compute ∂x in (3.12) . Update direction
4: Compute p and d in (3.11b)
5: Compute δ∗ = min(δ+, δ−) in (3.13) . Step size
6: if ε+ δ∗ > 1 then
7: δ∗ ← 1− ε . Last iteration
8: x∗ ← x∗ + δ∗∂x . Final solution
9: break

10: end if
11: x∗ ← x∗ + δ∗∂x . Update the solution
12: ε← ε+ δ∗ . Update the homotopy parameter
13: if δ∗ = δ− then
14: Γ← Γ\γ− . Remove an element from the support
15: else
16: Γ← Γ ∪ γ+ . Add a new element to the support
17: end if
18: until ε = 1

procedure until ε is equal to 1. The pseudocode outlining the homotopy procedure is

presented in Algorithm 1.

The main computational cost of every homotopy step comes from computing ∂x

by solving an S × S system of equations in (3.12) (where S denotes the size of Γ)

and from computing the vector d in (3.10b) that is used to compute the step-size

δ in (3.13). Since we know the values of d on Γ by construction and ∂x is nonzero

only on Γ, the cost for computing d is same as one application of an M ×N matrix.

Moreover, since Γ changes by a single element at every homotopy step, instead of

solving the linear system in (3.12) from scratch, we can efficiently compute ∂x using

a rank-one update at every step:

� Update matrix inverse: We can derive a rank-one updating scheme using the

matrix inversion lemma and explicitly update the inverse matrix (ΦT
ΓΦΓ)−1,

which has an equivalent cost of performing one matrix-vector product with an

25

M × S and an S × S matrix each and adding a rank-one matrix to (ΦT
ΓΦΓ)−1.

The update direction ∂x can be recursively computed with a vector addition.

The total cost for rank-one update is approximately MS + 2S2 flops.

� Update matrix factorization: Updating the inverse of matrix often suffers from

numerical stability issues, especially when S becomes closer to M (i.e, the num-

ber of columns in ΦΓ becomes closer to the number of rows). In general, a more

stable approach is to update the Cholesky factorization of ΦT
ΓΦΓ (or the QR

factorization of ΦΓ) as the support changes [66, Chapter 12], [23, Chapter 3].

The computational cost for updating Cholesky factors and ∂x involves nearly

MS + 3S2 flops.

As such, the computational cost of a homotopy step is close to the cost of one appli-

cation of each Φ and ΦT (that is, close to MN +MS + 3S2 +O(N) flops, assuming

S elements in the support). If the inverse or factors of ΦT
Γ̂
ΦΓ̂ are not readily avail-

able during initialization, then updating or computing that would incur an additional

one-time cost.

3.3 Discussion

The homotopy algorithm presented in Algorithm 1 extends and unifies previous work

by us and others on similar homotopy problems [6, 8, 9, 12, 14, 65, 149]: The algo-

rithm we presented above is not restricted to a particular updating problem, and with

a simple initialization (i.e., u), the same algorithm can be used to update the solu-

tion for arbitrary changes in the `1-problem of the form (3.3). For instance, changes

in the measurements (yt) as the signal (xt) changes with a fixed measurement ma-

trix [8, 14], which is presented in Chapter 4; adding or removing single or multiple

measurements [6, 9, 14, 65], which is presented in Chapter 5; changes in the weights

(Wt) [12], which is presented in Chapter 6; or arbitrary changes in the measurement

26

matrix (Φt) or the representation matrix (Ψt) [9, 149], which is presented in Chap-

ters 7 and 8. Unlike previous approaches, Algorithm 1 does not impose any restriction

on the warm-start vector to be a solution of an `1 problem; as it can accommodate

an arbitrary vector to initialize the homotopy update. Of course, the update will be

quicker when the initialization (warm-start) vector is close the final solution.

To demonstrate that Algorithm 1 can be easily used to update (3.3) with arbitrary

changes, we discuss two examples below. Additional examples can be found in the

next few chapters.

1. Suppose we have solved (3.3) (for the system yt = ΦtΨtαt + et), and we have a

sparse estimate for αt in the form of α̂t. Then we receive a new set of measurements

yt+1 = Φt+1Ψtαt+1 + et+1, for which we expect that αt+1 remains close to αt.

Therefore, we provide x̂ ← α̂t as a warm-start vector in Algorithm 1 along with

system matrix Φ ← Φt+1Ψt+1, measurement vector y ← yt+1, (possibly updated)

weights W← Wt+1, and u as defined in (3.8). We also need to provide the inverse

or decomposition factors of the Gram matrix ΦT
Γ̂
ΦΓ̂ for the initialization, which

can either be easily updated using the existing inverse or factors of ΦtΨt (if the

two systems are related to each other), or it needs to be computed from scratch

once.

2. Suppose we want to solve (3.5) for αt. We want to use α̂t = ΨT
t x̂t as a warm-

start vector in Algorithm 1. We provide warm-start vector x̂← α̂t, system matrix

Φ ←

 ΦtΨt

√
λtΨt

, measurement vector y ←

 yt
√
λtx̂t

, weights W ← Wt, and u as

defined in (3.8). Similarly, we have to provide the inverse or decomposition factors

of the Gram matrix ΦT
Γ̂
ΦΓ̂, which can be computed using a low-rank update for

this example.

27

CHAPTER IV

TIME-VARYING SPARSE SIGNALS

In this chapter we consider the problem of estimating a time-varying sparse signal

from a series of linear measurements. We assume that the signal changes only slightly

between consecutive measurements so that the reconstructions will be closely related.

This type of problem can arise in various situations where we have to estimate closely

related sparse signals. For example, in real-time magnetic resonance imaging we want

to reconstruct a series of closely related frames from samples in the frequency domain

[88]. Another application is channel equalization in communications, where we con-

tinuously estimate a time varying (and often times sparse) channel impulse response

[51, 83]. Other applications may involve video surveillance or object tracking where

we want to update the estimate at regular intervals. The algorithm and experiments

presented in this chapter have appeared in [14].

4.1 Problem formulation

Suppose we are given a set of measurements yt = Φxt + et, where the measurement

matrix is fixed over time and xt is a time-varying sparse vector. We solve the following

`1 problem to compute a sparse estimate for xt:

minimize
x

τ‖x‖1 +
1

2
‖Φx− yt‖2

2, (4.1)

where τ > 0 is a regularization parameter. The problem in (4.1) is equivalent to the

one in (3.3) in that all the weights are set to τ . Let us denote the estimate of xt as

x̂t. Now assume that xt changes slightly to xt+1 (e.g., support remains almost the

same), and we receive the new set of measurements: yt+1 = Φxt+1 + et+1. Our task

28

is to compute the solution of the following updated `1 problem:

minimize
x

τ‖x‖1 +
1

2
‖Φx− yt+1‖2

2. (4.2)

Instead of solving the new `1 problem from scratch, we use the available estimate

from previous iteration, x̂t, in a homotopy algorithm to quickly compute the solution

for (4.2). Although we can formulate the homotopy for (4.2) using Algorithm 1 in

Section 3.2, here we state the homotopy formulation that we used in our original

work [8, 14] on this problem.

4.1.1 Homotopy formulation

Let us write the homotopy formulation for (4.2) as follows.

minimize τ‖x‖1 +
1

2
‖Φx− (1− ε)yt − εyt+1‖2

2, (4.3)

where ε is the homotopy parameter. As we increase ε from 0 to 1, we gradually include

the new measurements into the system and remove the old ones; the problem in (4.3)

transforms from (4.1) to (4.2); and its solution moves from x̂t to the desired solution,

say x̂t+1. The homotopy algorithm similarly breaks down the solution update, in a

systematic and efficient way, into a small number of linear steps. Each step consists

of a rank-one update and a small number of matrix-vector multiplications.

Following the similar optimality criteria described in Section 3.2, the solution x∗

for (4.3) at a given value of ε must obey the following optimality conditions:

ΦT
Γ(Φx∗ − (1− ε)yt − εyt+1) = −τz (4.4a)

‖ΦT
Γc(Φx

∗ − (1− ε)yt − εyt+1)‖∞ ≤ τ, (4.4b)

where Γ denotes the support of x∗ and z denotes the sign sequence of x∗ on Γ. We

notice from (4.4a) that the solution to (4.3) follows a piecewise linear path as ε varies;

the critical points in this path occur when an element is either added to or removed

from the solution x∗.

29

For every homotopy step we jump from one critical value of ε to the next while

updating the support and the sign sequence of the solution, until ε is equal to 1. As

we increase ε to ε + δ for an infinitesimal δ > 0, the solution moves in the direction

∂x, which to maintain optimality must obey

ΦT
Γ(Φx∗ − (1− ε)yt − εyt+1) + δΦT

ΓΦ∂x− δΦT
Γ(yt+1 − yt) = −τz. (4.5)

Thus, the update direction can be written as

∂x =


(ΦT

ΓΦΓ)−1ΦT
Γ(yt+1 − yt), on Γ,

0, otherwise.

(4.6)

We move along the update direction ∂x, by increasing the step size δ, until one of

the two things happens: one of the entries in x∗ + δ∂x shrinks to zero or one of the

constraints in (4.4b) becomes active (equal to τ). We update the support and sign at

such critical point, and calculate new update direction. We repeat this process until

ε = 1.

The main computational cost at every homotopy step comes from solving a |Γ| ×

|Γ| system of equations to compute the direction in (4.6), and few matrix-vector

multiplications to compute the step size. Since the support changes by a single

element at every homotopy step, the update direction can be computed using rank-

one update methods. Therefore, the computational cost of each step is equivalent to

a few matrix-vector multiplications.

4.2 Numerical experiments

The algorithm is most effective when the support of the solution does not change too

much from instance to instance.

We performed a number of experiments to evaluate the performance of homotopy

updating against different solvers. The results for the recovery of different time-

varying sparse signals are presented in Table 4.1. In each of our experiments, we

30

started with a sparse signal xt ∈ RN and its M measurements according to the model

yt = Φxt + et. We first solve (4.1) for a given value of τ and denote its solution

as x̂t. Then we perturbed the signal xt to generate xt+1 and generated a new set

of M measurements as yt+1 = Φxt+1 + et+1. We solved (4.3) using the homotopy

update; the results are presented under Dynamic `1. We compared the dynamic

updating scheme with three popular solvers: LASSO, which solves the standard

LASSO/BPDN homotopy for (4.2) without a warm start [11, 59]; GPSR-BB, which

solves gradient projection for sparse reconstruction [62], using x̂t as a warm-start;

and FPC AS, which solves fixed point continuation method with active set selection

[144], using x̂t as a warm-start.

To gauge how the difference in support affects the speed of the homotopy up-

date, we used a synthetic signal in our first set of experiments. We generated xt

by selecting S locations at random and assigned them ±1 values with equal prob-

ability. We created xt+1 by perturbing xt as follows. We added Sn new entries at

random locations with their values selected from i.i.d. N (0, 1) distribution, where Sn

was selected uniformly from [0, S/20]; in addition to this, we perturbed all nonzero

entries with i.i.d. N (0, 0.01) distributed numbers. We selected entries in Φ from

i.i.d. N (0, 1/M) distribution, and entries in e from i.i.d. N (0, 0.01). The experi-

ments were performed on a standard desktop PC for different values of τ = λ‖ΦTy‖∞

with λ ∈ {0.5, 0.1, 0.05, 0.01}, and we recorded the average number of matrix-vector

multiplications for Φ and ΦT and average computation time over 500 independent

trials.

Table 4.1 also contains results for three other experiments with the following de-

scriptions.

Blocks: We recovered a series of 200 piecewise constant signals of length N = 2048

from M = 1024 measurements. We started with the Blocks signal from WaveLab [29],

and every time we perturbed the previous signal by changing the heights of the flat

31

−2

0

2

B
lo

c
k
s

−5

0

5

10

15

H
a

a
r

w
a

v
e

le
t

−50

0

50

100

150

P
ie

c
e

w
is

e
 p

o
ly

n
o

m
ia

l

−200

0

200

400

D
a

u
b

e
c
h

ie
s
−

8
 w

a
v
e

le
t

Figure 4.1: Snapshots of Blocks and Piecewise polynomial signals along with their wavelet
coefficients.

regions by multiplying them independently with a random number, drawn uniformly

between 0.8 and 1.2. We used Haar wavelet transform of the signals to create the xt.

As the signal changes, the signs and locations of the coefficients in xt change as well.

An example of the Blocks signal and its wavelet coefficients is shown in Figure 4.1.

Piecewise polynomial: We used piecewise polynomial (cubic) signal and repre-

sented it using the Daubechies-8 wavelet transform. We perturbed the signal by

adding a small Gaussian random variable to the polynomial coefficients. An example

of the Piecewise polynomial signal and its wavelet coefficients is also shown in Fig-

ure 4.1.

Slices of the House image: We used the 256 column slices of the House image,

shown in Figure 4.2, as our sequence of signals. We used the Haar wavelet transform

to compute sparse vectors xt. As the singularities move slightly from slice to slice,

more of the support in the wavelet domain changes, making this a more challenging

data set than the previous examples.

We observed that dynamic `1 updating compares favorably against the three other

solvers in all these experiments.

32

0 50 100 150 200 250

−0.1

−0.05

0

0.05

0.1

0.15

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.2: An image of house (256x256): Lower images represent two consecutive slices
from this image (on the right) and their respective wavelet transform coefficients (on the
left). Note the small difference between consecutive slices.

Table 4.1: Comparison of the dynamic `1 updating for time-varying sparse signals with
standard LASSO homotopy, warm-started GPSR-BB, and warm-started FPC AS. Results
are reported as left: the average number of products with ΦT and Φ ; right: average

computation time in seconds. τ
def
= λ‖ΦT y‖∞.

Signal λ Dynamic `1 LASSO GPSR-BB FPC AS

N = 1024, 0.5 11.8 ; 0.03 42.1 ; 0.10 15.3 ; 0.03 31.3 ; 0.06
M = 512, 0.1 12.9 ; 0.06 154.5 ; 0.50 54.4 ; 0.01 103.4 ; 0.13
S = M/5, 0.05 14.6 ; 0.06 162 ; 0.52 58.2 ; 0.10 102.4 ; 0.14
±1 spikes 0.01 23.7 ; 0.13 235 ; 0.92 104.5 ; 0.18 148.7 ; 0.18

Blocks 0.01 2.7 ; 0.03 76.8 ; 0.49 17 ; 0.13 53.5 ; 0.20

Pcwpoly 0.01 13.8 ; 0.15 150.2 ; 1.10 26.1 ; 0.21 66.9 ; 0.25

House 0.005 44.7 ; 0.02 76.8 ; 0.03 220.5 ; 0.03 147 ; 0.06

33

CHAPTER V

SEQUENTIAL MEASUREMENTS OF FIXED SIGNALS

In this chapter we consider the problem of adding sequential measurements of a fixed

signal into the system and dynamically updating the solution of the `1 problem.

Adding new measurements to the `1 problem will change the solution, but instead

of solving a new problem from scratch, the homotopy method can quickly update

the solution in a small number of steps. The recursive least squares filter performs

equivalent tasks in least-squares settings, where instead of solving the entire system

of equations every time new measurements are added, the solution can be recursively

updated using a low-rank update. Although the homotopy method we use for dynamic

`1 updating does not provide update in one step, it breaks the updating procedure

into a sequence of rank-one updates.

5.1 Problem formulation

Suppose we are given a set of measurements yt = Φtx̄ + et, where the sparse signal

x̄ remains fixed over time. We solve the following `1 problem to compute a sparse

estimate for x̄:

minimize
x

τ‖x‖1 +
1

2
‖Φtx− yt‖2

2, (5.1)

where τ > 0 is a regularization parameter. The problem in (5.1) is equivalent to the

one in (3.3) in that all the weights are set to τ . Let us denote the estimate of x̄ as x̂.

We receive a new set of measurements: yt+1 = Φt+1x̄+ et+1. Our task is to compute

the solution of the following updated `1 problem:

minimize
x

τ‖x‖1 +
1

2
‖Φtx− yt‖2

2 +
1

2
‖Φt+1x− yt+1‖2

2. (5.2)

Instead of solving the new `1 problem from scratch, we use the estimate available

34

from the previous iteration, x̂, in our homotopy algorithm to quickly compute the

solution for (5.2). We write the homotopy problem for (5.2) in the form of (3.7) as

minimize
x

τ‖x‖1 +
1

2
‖Φtx− yt‖2

2 +
1

2
‖Φt+1x− yt+1‖2

2 + (1− ε)uTx. (5.3)

We solve (5.3) using Algorithm 1 described in Section 3.2, where we assigned Φ ← Φt

Φt+1

, y←

 yt

yt+1

, W← τ (equal weights), and u← −τ ẑ −ΦT (Φx̂− y) using x̂

as the warm-start vector with sign sequence ẑ and support Γ̂.

5.1.1 Previous work

In our previous work [9, 14], we used the following homotopy formulations for this

problem:

minimize
x

τ‖x‖1 +
1

2
(‖Φtx− yt‖2

2 + ε‖Φt+1x− yt+1‖2
2). (5.4)

where ε is the homotopy parameter. A similar version of the homotopy algorithm

was independently proposed in [65]. However, the homotopy updates for (5.4) allows

one new measurement at a time. A more versatile homotopy scheme that can add

multiple measurements simultaneously was presented in [9]:

minimize
x

τ‖x‖1 +
1

2
(‖Φtx− yt‖2

2 + ‖Φt+1x− (1− ε)Φt+1x̂− εyt+1‖2
2), (5.5)

which is similar to the homotopy formulation in (4.3). Note that the new term does

not affect the objective at ε = 0, and x̂ remains a valid solution of (5.5). As ε

is increased to 1, the solution of (5.5) reaches the desired solution of (5.2). The

homotopy algorithm for (5.5) is identical to the homotopy algorithm for dynamic

updating of time-varying signals, discussed in Section 4.1. However, none of these

two algorithms accommodate arbitrary changes in the system matrices. On the other

hand, the homotopy formulation in (3.7) allows arbitrary changes in the system.

35

5.2 Numerical experiments

Simulation results comparing the computational cost of updating the solution with

P additional measurements are presented in Table 5.1. We selected the entries in

M ×N matrix Φt and P ×N matrix Φt+1 from i.i.d. N (0, 1/(M + P)) distribution,

and entries in et and et+1 from N (0, 0.01). Sparse signal x̄ was generated by selecting

S = M/5 locations at random and assigning them ±1 values with equal probability.

We performed 50 experiments with N = 1024,M = 512, at different values of τ =

λ‖ΦTy‖∞, using different values of P . We recorded average number of applications of

Φ and its adjoint. The results are summarized in Table 5.1 under Dynamic `1, and

compared against the standard LASSO/BPDN homotopy LASSO without a warm

start, GPSR-BB with the warm start [62], and FPC AS with the warm start [144].

We observed that dynamic `1 updating performed consistently better than the

three other solvers in all these experiments. The average number of homotopy steps

required for the update varies with the number of nonzero entries in the solution. For

large values of τ , the solution has a small number of non-zero entries and the update

requires 2–7 homotopy steps. For smaller values of τ , the solution has many more

non-zero terms and the number of homotopy steps required for the update increases;

for example, at τ = 0.01‖ΦTy‖∞ an average 8 homotopy steps were required to add

one new measurement.

36

Table 5.1: Comparison of the dynamic `1 updating for P sequential measurements with
standard LASSO homotopy, warm-started GPSR, and warm-started FPC AS. Results are
reported as left: the average number of products with ΦT and Φ ; right: average compu-

tation time in seconds. τ
def
= λ‖ΦTy‖∞.

P λ Dynamic `1 LASSO GPSR-BB FPC AS

1

0.5 2.3 ; 0.004 41.9 ; 0.066 11.9 ; 0.012 15.9 ; 0.018
0.1 4.8 ; 0.010 161.4 ; 0.240 42.6 ; 0.037 50.9 ; 0.039
0.05 4.6 ; 0.010 164.6 ; 0.238 38.8 ; 0.034 97.2 ; 0.074
0.01 8.1 ; 0.021 235 ; 0.386 55.5 ; 0.048 78.4 ; 0.059

5

0.5 5.9 ; 0.008 42.0 ; 0.065 14.2 ; 0.013 15.9 ; 0.018
0.1 9.7 ; 0.018 154.6 ; 0.216 46.4 ; 0.037 47.1 ; 0.034
0.05 10.9 ; 0.020 163.7 ; 0.231 48 ; 0.039 99 ; 0.071
0.01 20.7 ; 0.045 230.7 ; 0.358 66.6 ; 0.055 78 ; 0.056

10

0.5 7.5 ; 0.011 44.7 ; 0.074 15 ; 0.015 16.3 ; 0.018
0.1 15.2 ; 0.028 157.5 ; 0.224 53.1 ; 0.044 47.9 ; 0.036
0.05 16.4 ; 0.030 165.4 ; 0.237 52.1 ; 0.043 97.9 ; 0.070
0.01 30.1 ; 0.071 242.5 ; 0.406 75.4 ; 0.0625 81.3 ; 0.061

37

CHAPTER VI

ITERATIVE AND ADAPTIVE WEIGHTED `1

To recover a sparse signal from an underdetermined system, we often solve a con-

strained `1-norm minimization problem. In many cases, the signal sparsity and

the recovery performance can be further improved by replacing the `1 norm with

a “weighted” `1 norm [42, 81, 152]. Without any prior information about nonzero

elements of the signal, the procedure for selecting weights is iterative in nature. Com-

mon approaches update the weights at every iteration using the solution of a weighted

`1 problem from the previous iteration. In this chapter, we present two homotopy-

based algorithms for efficiently solving reweighted `1 problems. First, we present an

algorithm that quickly updates the solution of a weighted `1 problem as the weights

change. Since the solution changes only slightly with small changes in the weights,

we develop a homotopy algorithm that replaces the old weights with the new ones

in a small number of computationally inexpensive steps. Second, we propose an al-

gorithm that solves a weighted `1 problem by adaptively selecting the weights while

estimating the signal. This algorithm integrates the reweighting into every step along

the homotopy path by changing the weights according to the changes in the solution

and its support, allowing us to achieve a high quality signal reconstruction by solving

a single homotopy problem. We compare the performance of both algorithms, in

terms of reconstruction accuracy and computational complexity, against state-of-the-

art solvers and show that our methods have smaller computational cost. In addition,

we demonstrate that the adaptive selection of the weights inside the homotopy often

yields reconstructions of higher quality. The algorithm and experiments presented in

this chapter have been submitted for publication [12].

38

6.1 Introduction

Consider the following linear system:

y = Φx̄+ e, (6.1)

where x̄ ∈ RN is an unknown sparse vector that is measured through an M × N

matrix Φ, y is the measurement vector, and e denotes noise. We want to solve the

following weighted `1-norm minimization problem to estimate x̄:

minimize
x

‖Wx‖1 +
1

2
‖Φx− y‖2

2, (6.2)

where W is a diagonal matrix that contains positive weights w > 0 at its diagonal.

We can adjust w in (6.2) to selectively penalize different coefficients in the solution.

To promote the same sparsity structure in the solution that is present in the origi-

nal signal, we can select w such that the weights have small values on the nonzero

locations of the signal and significantly larger values elsewhere [45, 47, 63]. Since the

locations and amplitudes of the nonzero coefficients of the original signal are unknown

a priori, the critical task of selecting the weights is performed iteratively. Common

approaches for such “iterative reweighting” re-compute weights at every iteration us-

ing the solution of (6.2) at the previous iteration. Suppose x̂ denotes the solution of

(6.2) for a given set of weights. For the next iteration, we compute the wi as

wi =
τ

|x̂i|+ ε
, (6.3)

for i = 1, . . . , N , using an appropriate choice of positive values for parameters τ

and ε. We use these updated weights in (6.2) to re-compute the signal estimate,

which we then use in (6.3) to update the weights for the next iteration. The major

computational cost of every iteration in such a reweighting scheme arises from solving

(6.2), for which a number of solvers are available [18–20, 137, 147, 148].

In this chapter, we present two homotopy-based algorithms for efficiently solving

reweighted `1-norm minimization problems. In a typical homotopy algorithm for an `1

39

problem, as the homotopy parameter changes, the solution moves along a piecewise-

linear path, and each segment on this homotopy path is traced with a computationally

inexpensive homotopy step. The major computational cost for every homotopy step

involves one full matrix-vector multiplication and one rank-one update of the inverse

of a small matrix. The standard LASSO homotopy solves (6.2) when all the weights

are set to the same value, say τ [14, 59, 106] (further details on LASSO homotopy are

also presented in Section 2.3.1). By comparison, (6.2) has N parameters in the form

of wi, and both the homotopy algorithms we present in this chapter change the wi in

such a way that their respective solutions follow piecewise-linear paths in sequences

of inexpensive homotopy steps.

First, we present an algorithm that quickly updates the solution of (6.2) as the

weights change in the iterative reweighting framework. Suppose we have the solution

of (6.2) for a given set of weights w, and we wish to update the weights to w̃. We

develop a homotopy program that updates the solution of (6.2) by replacing the old

weights (w) with the new ones (w̃). Since the solution of (6.2) changes only slightly

with small changes in the weights, the homotopy procedure uses an existing solution

as the starting point and updates the solution in a small number of inexpensive

homotopy steps.

Second, we propose a new homotopy algorithm that performs an internal “adaptive

reweighting” after every homotopy step. Adaptive reweighting is a natural combina-

tion of the standard homotopy and reweighting—instead of solving the `1 program

in (6.2) multiple times with different weights, it adjusts the weights (using the same

principles as iterative reweighted `1) at every homotopy step. Our algorithm yields a

solution for a weighted `1 problem of the form (6.2) for which the final values of wi

are not assigned a priori, but instead are adaptively selected inside the algorithm. In

our proposed homotopy algorithm, we follow a solution path for (6.2) by adaptively

reducing each wi, while updating the support of the signal estimate by one element

40

at every step. In contrast with the standard LASSO homotopy, which assumes all the

wi to have same value, here we update each wi independently. After every homotopy

step, we adjust the weights so that w on the support of the available signal estimate

shrinks at a faster rate, toward smaller values (e.g., of the form in (6.3)), while w

elsewhere shrink at a slower rate, toward a predefined threshold (τ > 0). In contrast

with the iterative reweighting, which solves (6.2) for a fixed set of weights and updates

the weights after every reweighting iteration, here we update the weights after every

homotopy step. This allows us to recover a high-quality signal by solving a single

homotopy problem, instead of solving (6.2) multiple times via iterative reweighting

(i.e., updating w after solving (6.2)). We have also observed that such an adaptive

reweighting tends to provide better quality of reconstruction compared to the stan-

dard method of iterative reweighting. In addition to assigning smaller weights to the

active indices, this adaptive reweighting serves another purpose: it encourages active

elements to remain nonzero, which in turn reduces the total number of homotopy

steps required for solving the entire problem.

Our proposed adaptive reweighting method bears some resemblance to a variable

selection method recently presented in [113], which adjusts the level of shrinkage at

each step (equivalent to reducing the wi toward zero) so as to optimize the selection

of the next variable. However, the procedure we adopt for the selection of wi in this

work is more flexible, and it offers an explicit control over the values of wi, which we

exploit to embed a reweighted `1-norm regularization inside the homotopy.

6.2 Iterative reweighting via homotopy

In this section, we present a homotopy algorithm for iterative reweighting that quickly

updates the solution of (6.2) as the weights change. Suppose we have solved (6.2)

for a given set of weights in W to get an estimate x̂, and now we wish to solve the

41

following modified problem:

minimize
x

‖W̃x‖1 +
1

2
‖Φx− y‖2

2, (6.4)

where the W̃ contains new weights w̃ in its diagonal. To incorporate changes in

the weights (i.e., replace the wi with the w̃i) and quickly compute the new solu-

tion of (6.2), we can use the homotopy formulation and the algorithm described in

Section 3.2. The homotopy formulation for that takes the following form:

minimize
x

‖W̃ x‖1 +
1

2
‖Φx− y‖2

2 + (1− ε)uTx, (6.5)

where u
def
= −W̃ ẑ − ΦT (Φx̂ − y) is as described in (3.8), x̂ denotes the warm-start

vector and ẑ denotes its sign sequence. However, in our original work [12], we used

the following homotopy formulation for this problem:

minimize
x

‖((1− ε)W + εW̃)x‖1 +
1

2
‖Φx− y‖2

2, (6.6)

where ε denotes the homotopy parameter that we change from zero to one to phase

in the new weights and phase out the old ones. As we increase ε, the solution of (6.6)

follows a homotopy path from the solution of (6.2) to that of (6.4). We show below

that the path the solution takes is also piecewise linear with respect to ε, making every

homotopy step computationally inexpensive. A pseudocode outlining the important

steps is presented in Algorithm 2.

At any value of ε, the solution x∗ must obey the following optimality conditions:

φTi (Φx∗ − y) = −((1− ε)wi + εw̃i)zi, for all i ∈ Γ, (6.7a)

and |φTi (Φx∗ − y)| ≤ (1− ε)wi + εw̃i, for all i ∈ Γc, (6.7b)

where φi denotes ith column of Φ. As we increase ε to ε + δ, for some small δ, the

solution moves in a direction ∂x and the optimality conditions change as

ΦT
Γ(Φx∗ − y) + δΦT

ΓΦ∂x = −((1− ε)WΓ + εW̃Γ)zΓ + δ(WΓ − W̃Γ)zΓ (6.8a)

42

Algorithm 2 Iterative reweighting via homotopy

Input: Φ, y, x̂, w, and w̃
Output: x∗

1: Initialize: ε = 0, x∗ ← x̂
2: Repeat:
3: Compute ∂x in (6.9) . Update direction
4: Compute p, d, q, and s in (6.8b)
5: Compute δ∗= min(δ+, δ−) . Step size
6: if ε+ δ∗ > 1 then
7: δ∗ ← 1− ε . Last iteration
8: x∗ ← x∗ + δ∗∂x . Final solution
9: break

10: end if
11: x∗ ← x∗ + δ∗∂x . Update the solution
12: ε← ε+ δ∗∂x . Update the homotopy parameter
13: if δ∗ = δ− then
14: Γ← Γ\γ− . Remove an element from the support
15: else
16: Γ← Γ ∪ γ+ . Add a new element to the support
17: end if
18: until ε = 1

|φTi (Φx∗ − y)︸ ︷︷ ︸
pi

+δ φTi Φ∂x︸ ︷︷ ︸
di

| ≤ (1− ε)wi + εw̃i︸ ︷︷ ︸
qi

+δ (w̃i − wi)︸ ︷︷ ︸
si

, (6.8b)

where WΓ and W̃Γ denote |Γ|×|Γ| diagonal matrices with their diagonal entries being

the values of w and w̃ on Γ, respectively. The update direction is specified by the

new optimality conditions (6.8a) as

∂x =


(ΦT

ΓΦΓ)−1(WΓ − W̃Γ)zΓ on Γ

0 on Γc.

(6.9)

As we increase δ, the solution moves in the direction ∂x until either a new element

enters the support of the solution (when a constraint in (6.8b) becomes active) or

an existing element shrinks to zero. The stepsize that takes the solution to such a

critical value of ε can be computed as δ∗ = min(δ+, δ−), where

δ+ = min
i∈Γc

(
qi − pi
−si + di

,
−qi − pi
si + di

)
+

(6.10a)

43

δ− = min
i∈Γ

(
−x∗i
∂xi

)
+

. (6.10b)

δ+ denotes the smallest step-size that causes a constraint in (6.8b) to become active,

indicating the entrance of a new element at index γ+ in the support, whereas δ−

denotes the smallest step-size that shrinks an existing element at index γ− to zero.

The new critical value of ε becomes ε+ δ∗, the signal estimate x∗ becomes x∗+ δ∗∂x,

where its support and sign sequence are updated accordingly. At every homotopy

step, we jump from one critical value of ε to the next while updating the support of

the solution, until ε = 1.

The main computational cost of every homotopy step comes from solving a |Γ|×|Γ|

system of equations to compute ∂x in (6.9) and one matrix-vector multiplication to

compute the di in (6.10). Since Γ changes by a single element at every homotopy

step, the update direction can be computed using a rank-one update. As such, the

computational cost of each homotopy step is close to one matrix-vector multiplication

with Φ and one with ΦT . We demonstrate with experiments in Section 6.4 that as the

wi change, our proposed homotopy algorithm updates the solution in a small number

of homotopy steps, and the total cost for updating the weights is just a small fraction

of the cost of solving (6.2) from scratch.

6.3 Adaptive reweighting via homotopy

In this section, we present a homotopy algorithm that solves a weighted `1-norm

minimization problem of the form (6.2) by adaptively selecting the weights wi. The

motivation for this algorithm is that instead of solving (6.2) for a given set of wi and

updating the wi after every reweighting iteration, we can perform reweighting at every

homotopy step by updating the wi as the signal estimate evolves. Recall that in the

standard LASSO homotopy we build the solution by adding or removing one element

in the support while shrinking a single homotopy parameter (see Section 2.3.1 for

details on LASSO homotopy). By comparison, each wi in (6.2) can act as a separate

44

homotopy parameter, and we can attempt to achieve desired values of wi by adaptively

shrinking them at every homotopy step.

In adaptive reweighting, we trace a solution path for (6.2) by adaptively reducing

the wi while updating the solution and its support in a sequence of inexpensive

homotopy steps. At every homotopy step, we start with a solution of (6.2) for certain

values of wi. We encourage the algorithm to focus on the set of active indices in the

solution (i.e., the support of the solution) and reduce the wi so that they decrease at

a faster rate and achieve smaller values on the active set than the wi on the inactive

set. Suppose, using certain criterion, we select the w̃i as the desired values of the

weights. As we change the wi toward the w̃i, the solution moves in a certain direction

until either the wi become equal to the w̃i or the support of the solution changes by

one element. By taking into account any change in the support, we revise the values

of w̃i for the next homotopy step. We repeat this procedure until each wi is reduced

below a certain predefined threshold τ > 0.

In summary, we solve a single homotopy problem that builds the solution of a

weighted `1 problem of the form (6.2) by adjusting the wi according to the changes in

the support of the solution. A pseudocode with a high-level description is presented

in Algorithm 3. Details regarding the weight selection, the update direction, and the

step size and support selection are discussed below.

6.3.1 Weight selection criteria

Suppose we want to shrink the wi in (6.2) toward a preset threshold τ , and by

construction, we want the wi to have smaller values on the support of the solution

(e.g., of the form (6.3)). At every homotopy step, we divide the indices into an active

and an inactive set. We can follow a number of heuristics to select the desired values

of the weights (w̃i) so that the wi reduce at a faster rate on the active set than on

the inactive set.

45

Algorithm 3 Adaptive reweighting via homotopy

Input: Φ, y and τ
Output: x∗, w

1: Initialize: x∗ ← 0, wi ← maxi |φTi y| for all i, Γ← arg maxi |φTi y|
2: Repeat:
3: Select w̃i . Desired values for the weights
4: Compute ∂x in (6.13) . Update direction
5: Compute δ∗= min(δ+, δ−) . Step size
6: x∗ ← x∗ + δ∗∂x . Update the solution
7: wi ← wi + δ∗(w̃i − wi) . Update wi
8: if δ∗ = δ− then
9: Γ← Γ\γ− . Remove an element from the support

10: else
11: γ+ = arg maxi∈Γc |φTi (Φx∗ − y)| . (Option 2 only) Select new element

12: Γ← Γ ∪ γ+ . Add a new element to the support
13: end if
14: wi ← maxj |φTj (Φx∗ − y)| for all i ∈ Γc . (Optional) Update wi on the

inactive set
15: until maxi (wi) ≤ τ

Initialization: We initialize all the weights with a large value (e.g., wi = maxi |φTi y|

for all i) for which the solution is a zero vector. The only element in the active set

correspond to arg maxi |φTi y|, where φi denotes ith column in Φ.

Weights on the active set: We can select the w̃i on the active set in a variety of

ways. For instance, we can select each w̃i as a fraction of the present value of the

corresponding wi as w̃i ← wi/β, for some β > 1, or as a fraction of the maximum value

of the wi on the active set as w̃i ← maxi∈Γwi/β. The former will reduce each wi on

the active set at the same rate, while the latter will reduce each wi to the same value

as well. To introduce reweighting of the form in (6.3), we can change the wi on the

support using the solution from the previous homotopy step as w̃i ← min (τ, τ/β|x∗i |),

for some β > 1.

Weights on the inactive set: We can assign the w̃i on the inactive set a single

value that is either equal to the maximum value of w̃i on the active set or equal to τ ,

whichever is the larger.

46

50 100 150 200 250

10
−1

10
0

10
1

step 1

step 11

step 21

step 31

step 41

step 51

step 61

(a) w̃i ←
maxi∈Γ wi

2

50 100 150 200 250

10
−3

10
−2

10
−1

10
0

10
1

step 1

step 11

step 21

step 31

step 41

step 51
step 61

(b) w̃i ← min

(
τ,

τ

β|x∗i |

) 50 100 150 200 250

10
−3

10
−2

10
−1

10
0

10
1

step 1

step 11

step 21

step 31

step 41

step 51
step 61

(c) a hybrid of (a) and (b)

Figure 6.1: Illustrations of variations (on a log-scale) in the wi on the sets of active and
inactive indices at different homotopy steps. Subfigures (a), (b), and (c) correspond to three
different choices for the w̃i. Left part of each plot (with the lower values of wi) corresponds
to the active set of indices in the order in which they entered the support and the right part
(with larger values of the wi) corresponds to the inactive set of the solution at every step.

In Figure 6.1, we present three examples to illustrate the evolution of the wi on

the active and the inactive set at various homotopy steps. These examples were con-

structed with different choices of w̃i during the recovery a Blocks signal of length

256 from 85 noisy Gaussian measurements according to the experimental setup de-

scribed in Section 6.4. We plotted the wi at different homotopy steps in such a way

that the left part of each plot corresponds to the active set and the right part to the

inactive set of the solution. As the homotopy progresses, the support size increases

and all the wi decrease, but the wi on the active set become distinctly smaller than

the rest. In Figure 6.1a we selected w̃i ← maxi∈Γwi/2 at every step; in Figure 6.1b

we selected w̃i ← min (τ, τ/β|x∗i |) at every step, with certain values of τ and β; and

in Figure 6.1c we selected w̃i ← maxi∈Γwi/2 for first few homotopy steps and then

we selected w̃i ← τ/β|x∗i |. In our experiments in Section 6.4, we selected weights

according to the scheme illustrated in Figure 6.1b.

6.3.2 Update direction

To compute the update direction in which the solution moves as we change the weights

wi toward the w̃i, we use the same methodology that we used for (6.6) in Section 6.2.

47

For any given values of the wi, a solution x∗ for (6.2) satisfies the following optimality

conditions:

φTi (Φx∗ − y) = −wizi, for all i ∈ Γ, (6.11a)

and |φTi (Φx∗ − y)| ≤ wi, for all i ∈ Γc, (6.11b)

where Γ denotes the support of x∗ and z denotes the sign sequence of x∗ on Γ. If we

change wi toward w̃i along a straight line, (1 − δ)wi + δw̃i, the solution moves in a

direction ∂x, which to maintain optimality must obey

ΦT
Γ(Φx∗ − y) + δΦT

ΓΦ∂x = −Wz + δ(WΓ − W̃Γ)z, (6.12a)

|φTi (Φx∗ − y)︸ ︷︷ ︸
pi

+δ φTi Φ∂x︸ ︷︷ ︸
di

| ≤ wi︸︷︷︸
qi

+δ (w̃i − wi)︸ ︷︷ ︸
si

, (6.12b)

where WΓ and W̃Γ denote |Γ| × |Γ| diagonal matrices constructed with the respective

values of old (wi) and new (w̃i) weights on Γ. Subtracting (6.11a) from (6.12a) yields

the following expression for the update direction ∂x:

∂x =


(ΦT

ΓΦΓ)−1(WΓ − W̃Γ)z on Γ

0 on Γc.

(6.13)

6.3.3 Step size and support selection

As we increase δ from 0 to 1, x∗ moves along the update direction ∂x as x∗ + δ∂x

and the wi change toward w̃i as wi + δ(w̃i − wi). At certain value of δ ∈ (0, 1), an

existing element in x∗ may shrink to zero, and we must remove that element from the

support. Alternatively, an inactive constraint in (6.12b) may become active, and to

maintain the optimality of the solution, we can choose one of the following options:

1) either include the index of the active constraint in the support or 2) artificially

increase the value of wi at that index. The stepsize and the support selection rule

for the first option is same as we discussed before—compute δ∗ = min(δ+, δ−), using

definitions of δ+ and δ− in (6.10), and update the support accordingly; a selection

48

rule for the second option, which we use in our experiments in Section 6.4 as well, is

discussed below. The two additional operations for the second option are indicated

using dashed boxes in Algorithm 2, where Line 11 is not executed in the first case

and Line 14 is optional.

The optimality conditions (6.11b) and (6.12b) suggest that as long as a strict

inequality is maintained for an index i in the inactive set, we can change the corre-

sponding weight to an arbitrary value without affecting the solution. Since the wi

are not fixed a priori in this scheme, we have the flexibility to disregard any violation

of the inequality constraints and adjust the wi so that the solution remains optimal.

Under this setting, we can compute the optimal stepsize δ∗ and identify a change in

the support of the signal as follows. Suppose δ− causes an element at index γ− ∈ Γ in

x∗ to shrink to zero. If δ− < 1, we must remove γ− from the support and set δ∗ = δ−.

If δ− > 1, which implies that the wi has changed to the w̃i on Γ, we set δ∗ = δ+ = 1

and search for a new element γ+ to add to the support. We set δ∗ = min (δ−, 1) and

update x∗ ← x∗ + δ∗∂x and wi ← wi + δ∗(w̃i − wi). If δ− > 1, we select the new

element γ+ that corresponds to the inactive constraint with largest magnitude, which

can be determined as

γ+ = arg max
i∈Γc

|φTi (Φx∗ − y)|, (6.14)

and set wγ+ = |φTγ+(Φx∗ − y)|.

We repeat the procedure of selecting w̃i, computing the update direction and the

stepsize, and updating the solution and its support at every homotopy step, until a

termination criterion is satisfied (e.g. wi ≤ τ for all i).

The main computational cost at every homotopy step comes from solving a |Γ|×|Γ|

system of equations in (6.13) for computing ∂x and one matrix-vector multiplication

whenever we need to find γ+ in (6.14). Since Γ changes by a single element at every

homotopy step, the update direction can be efficiently computed using a rank-one

update. As such, the computational cost of every step is equivalent one matrix-vector

49

multiplication with Φ and one with ΦT .

6.4 Numerical experiments

We present some experiments to demonstrate the performance of our proposed al-

gorithms: (1) iterative reweighting via homotopy (Algorithm 2), which we will call

IRW-H and (2) adaptive reweighting via homotopy (Algorithm 3), which we will call

ARW-H. We evaluate the performances of ARW-H and IRW-H in terms of the com-

putational cost and the reconstruction accuracy. We show that, in comparison with

iterative reweighting schemes, solving (6.2) using ARW-H yields significantly higher

quality signal reconstruction, at a computational cost that is comparable to solving

(6.2) once from scratch. Furthermore, we show that using IRW-H we can quickly

update the weights in (6.2) at a small computational expense. To compare ARW-H

and IRW-H against existing `1 solvers, we also present results for the sparse signal

recovery using iterative reweighting for three state-of-the-art solvers1: YALL1 [148],

SpaRSA [147], and SPGL1 [137] in which we used old solutions as a “warm start” at

every iteration of reweighting. We show that IRW-H outperforms YALL1, SpaRSA,

and SPGL1 in terms of the computational cost for iterative reweighting, while ARW-

H yields better overall performance in terms of both the computational cost and the

reconstruction accuracy.

6.4.1 Experiment setup

We compared the performances of the algorithms above for the recovery of two types

of sparse signals from noisy, random measurements that were simulated according to

the model in (6.1). We generated sparse signals by applying wavelet transforms on the

modified forms of “Blocks” and “HeaviSine” signals from the Wavelab toolbox [29]

as described below.

1We selected these solvers for comparison because we found these to be the fastest and sufficiently

accurate with a warm start among the commonly used `1 solvers [1, 62, 68].

50

i. Blocks: We generated a piecewise-constant signal of length N by randomly

dividing the interval [1, N] into 11 disjoint regions. Setting the first region to

zero, we iteratively assigned a random value to every region by adding an integer

chosen uniformly in the range of [−5, 5] to the value from the previous region.

We applied Haar wavelet transform on the piecewise-constant signal to generate

a sparse signal x̄. An example of such a piecewise-constant signal and its Haar

wavelet transform is presented in Figure 6.2a. Because of the piecewise constant

structure of these signals, the resulting Haar wavelet transforms will have only a

small number of nonzero coefficients that depend on the number of discontinuities

and the finest wavelet scale. Since we have fixed the number of discontinuities,

the ratio of the number of nonzero elements to the length of the signal becomes

smaller as the length of the signal (N) increases.

ii. HeaviSine: We generated a sinusoidal signal with nearly two cycles and two

jumps at random locations. First, we generated a sinusoidal signal of length

N for which we selected the amplitude in the range of [4, 6] and the number of

cycles in the range [2, 2.5] uniformly at random. Then, we divided the signal into

three non-overlapping regions and added a different Gaussian random variable

to each region. We applied Daubechies 4 wavelet transform on the resulting

signal to generate the sparse signal x̄. An example of such a sinusoidal signal

with jumps and its Daubechies 4 wavelet transform is presented in Figure 6.2b.

In this type of signals, most of the wavelet coefficients in x̄ will not be exactly

zero, but if sorted in the decreasing order of magnitude, the coefficients quickly

decay to extremely small values. Hence, this type of signals can be classified as

near-sparse or compressible.

In every experiment, we generated an M × N measurement matrix Φ with its en-

tries drawn independently according toN (0, 1/
√
M) distribution and added Gaussian

noise vector e to generate the measurement vector as y = Φx̄ + e. We selected each

51

−2

0

2

B
lo

c
k
s

−5

0

5

10

15

H
a
a
r

w
a
v
e
le

t

(a) Blocks

−6

−4

−2

0

2

4

H
e
a
v
iS

in
e

−10

0

10

20

30

D
a
u
b
e
c
h
ie

s
−

4
 w

a
v
e
le

t

(b) HeaviSine

Figure 6.2: (a) An example of piecewise-constant (blocks) signal and its sparse represen-
tation using Haar wavelets. (b) An example of perturbed HeaviSine signal and its sparse
representation using Daubechies-4 wavelets.

entry in e as i.i.d. N (0, σ2), where the variance σ2 was selected to set the expected

SNR with respect to the measurements Φx̄ at 40 dB. We reconstructed the solution

x̂ using all the algorithms according to the procedures described below.

In our experiments, we fixed the parameter τ = σ
√

logN , where σ denotes the

standard deviation of the measurement noise. Although the weights can be tuned

according to the signal structure, measurement matrix, and noise level, we did not

make such an attempt in our comparison. Instead, we adopted a general rule for

selecting weights that provided good overall performance for all the solvers, in all of

our experiments. We set up the algorithms in the following manner.

i. ARW-H : We solved a weighted `1-norm minimization problem of the form (6.2)

following the procedure outlined in Algorithm 3, in which the exact values for

the wi are not known a priori as they are selected adaptively. In line 3 of Al-

gorithm 3, we selected w̃i ← min

(
τ,

τ

β|x∗i |

)
using β ←M

‖x∗‖2
2

‖x∗‖2
1

at every step,

where x∗ denotes the solution from the previous homotopy step. We selected

this value of β because it helps in shrinking the wi to smaller values when M is

large and to larger values when the solution is dense. (We are using the ratio of

the `1 to the `2 norm as a proxy for the support size here.) The main compu-

tational cost at every step of ARW-H involves one matrix-vector multiplication

52

for identifying a change in the support and a rank-one update for computing the

update direction. We used the matrix inversion lemma-based scheme to perform

the rank-one updates. MATLAB code is available in `1-homotopy package at

http://users.ece.gatech.edu/∼sasif/homotopy.

ii. IRW-H: We solved (6.2) via iterative reweighting in which we updated the solu-

tion at every reweighting iteration according to the procedure outlined in Algo-

rithm 2. For the first iteration, we used standard LASSO homotopy algorithm [11]

to solve (6.2) with wi = τ for all i. Afterwards, at every reweighting iteration,

we updated the wi as

wi ←
τ

β|x̂i|+ ε
, (6.15)

where x̂ denotes the solution from previous reweighting iteration and β ≥ 1 and

ε > 0 denote two parameters that can be used to tune the weights according

to the problem. In our experiments, we fixed ε = 1 and updated β ← M
‖x̂‖2

2

‖x̂‖2
1

at every reweighting iteration. The main computational cost at every step of

IRW-H also involves one matrix-vector multiplication and a rank-one update of a

small matrix. We used matrix inversion lemma-based scheme to perform rank-one

updates.

iii. YALL1: YALL1 is a first-order algorithm that uses an alternating direction

minimization method for solving various `1 problems, see [148] for further details.

We iteratively solved (6.2) using weighted-`1/`2 solver in the YALL1 package.

For the initial solution, we solved (6.2) with w = τ using YALL1. At every

subsequent reweighting iteration, we used previous YALL1 solution to renew the

weights according to (6.15) and solved (6.2) by providing the old solution as

a warm-start to YALL1. We fixed the tolerance parameter to 10−4 in all the

experiments. The main computational cost of every step in the YALL1 solver

comes from applications of Φ and ΦT . We used MATLAB package for YALL1

53

available at http://yall1.blogs.rice.edu/.

iv. SpaRSA : SpaRSA is also a first-order method that uses a fast variant of iterative

shrinkage and thresholding for solving various `1-regularized problems, see [147]

for further details. Similar to IRW-H and YALL1, we iteratively solved (6.2)

using SpaRSA, while updating weights using the old solution in (6.15) and using

the old solution as a warm-start at every reweighting iteration. We used the

SpaRSA code with default adaptive continuation procedure in the Safeguard

mode using the duality gap-based termination criterion for which we fixed the

tolerance parameter to 10−4 and modified the code to accommodate weights in

the evaluation. The main computational cost for every step in the SpaRSA solver

also involves applications of Φ and ΦT . We used MATLAB package for SpaRSA

available at http://lx.it.pt/∼mtf/SpaRSA/.

v. SPGL1: SPGL1 solves an equivalent constrained form of (6.2) by employing a

root-finding algorithm [137]. We solved the following problem using SPGL1:

minimize
x

N∑
i=1

wi|xi| subject to ‖Φx− y‖2 ≤ λ, (6.16)

in which we used λ = σ
√
M . For the initial solution, we solved (6.16) using

wi = 1 for all i. At every subsequent reweighting iteration, we used the previous

SPGL1 solution to renew the weights according to (6.15) (using τ = 1) and solved

(6.16) using the old solution as a warm start. We solved SPGL1 using default

parameters with optimality tolerance set at 10−4. The computational cost of

every step in SPGL1 is also dominated by matrix-vector multiplications. We used

MATLAB package for SPGL1 available at http://www.cs.ubc.ca/labs/scl/spgl1.

To summarize, ARW-H solves (6.2) by adaptively selecting the values of wi, while

IRW-H, YALL1, and SpaRSA iteratively solve (6.2) and SPGL1 iteratively solves

(6.16), using updated values of wi at every reweighting iteration.

54

We used MATLAB implementations of all the algorithms and performed all the

experiments on a standard desktop computer. We used a single computational thread

for all the experiments, which involved recovery of a sparse signal from a given set of

measurements using all the candidate algorithms. In every experiment, we recorded

three quantities for each algorithm: 1) the quality of reconstructed signal in terms of

the signal-to-error ratio in dB, defined as

SER = 20 log10

‖x̄‖2

‖x̄− x̂‖2

,

where x̄ and x̂ denote the original and the reconstructed signal, respectively, 2) the

number of matrix-vector products with Φ and ΦT , and 3) the execution time in

MATLAB.

6.4.2 Results

We compared performances of ARW-H, IRW-H, YALL1, SpaRSA, and SPGL1 for

the recovery of randomly perturbed Blocks and HeaviSine signals from random, noisy

measurements. We performed 100 independent trials for each of the following combi-

nations ofN andM : N = [256, 512, 1024] andM = [N/2, N/2.5, N/3, N/3.5, N/4].

In each experiment, we recovered a solution x̂ from simulated noisy, random mea-

surements using all the algorithms, according to the procedures described above, and

recorded the corresponding SER, the number of matrix-vector products, and MAT-

LAB runtime. The results, averaged over all the trials, for each combination of M

and N are presented in Figures 6.3, 6.5, 6.7 (for Blocks signals) and Figures 6.4, 6.6,

6.8 (for HeaviSine signals).

Comparison of SERs for the solutions of all the algorithms at different values of

N and M is presented in Figure 6.3 (for Blocks signals) and Figure 6.4 (for HeaviSine

signals). Three plots in the first row depict SERs for the solutions after first iteration

of all the algorithms. Since ARW-H solves a weighted `1-norm formulation (as in

(6.2)) via adaptive reweighting, its performance is superior to all the other algorithms,

55

which solve unweighted `1-norm problems in their first iteration. Since SPGL1 solves

the `1 problem in (6.16), its performance is slightly different compared to IRW-H,

YALL1, and SpaRSA, all of which solve (6.2) and should provide identical solutions

if they converge properly. The plots in the second row present SERs for the solutions

after five reweighting iterations of all the algorithms except ARW-H, which was solved

only once. As we can see that the solutions of ARW-H display the best SERs in all

these experiments. Although SERs for the solutions of IRW-H, YALL1, SpaRSA, and

SPGL1 improve with iterative reweighting, in some cases there is a significant gap

between their SERs and that of ARW-H.

Comparison of the computational cost of all the algorithms in terms of the number

of matrix-vector multiplications is presented in Figure 6.5 (for Blocks signals) and

Figure 6.6 (for HeaviSine signals). We counted an application of each Φ and ΦT as

one count of AtA. For the homotopy algorithms, we approximated the cost of one

step as one application of ΦTΦ. Three plots in the first row present the count of

ΦTΦ applications that each algorithm used for computing the initial solution. Second

row depicts the count of ΦTΦ applications summed over five reweighting iterations in

each of the algorithms. Since we solved ARW-H just once, the count for ARW-H is

zero and does not appear in the second row. Third row presents total count of ΦTΦ

applications, which is the sum of the counts in the first and the second row. We can

see in the second row that, compared to YALL1, SPGL1, and SpaRSA, IRW-H used

a distinctly smaller number of matrix-vector products for updating the solution as

the weights change in iterative reweighting. The final count in the third row shows

that ARW-H consumed the least number of total ΦTΦ applications in all the cases.

Comparison of MATLAB runtime for all the algorithms is presented in Figure 6.7

(for Blocks signals) and Figure 6.8 (for HeaviSine signals). The first row presents

runtime that each algorithm utilized for computing the initial solution, the second

row presents execution time for five reweighting iterations, and the third row presents

56

10

15

20

25

30

35

40

In
it
ia

l
S

E
R

 i
n

 d
B

10

15

20

25

30

35

40

F
in

a
l
S

E
R

 i
n

 d
B

N
,M

25
6,

12
8

25
6,

10
2

25
6,

85

25
6,

73

25
6,

64

ARW−H IRW−H YALL1 SpaRSA SPGL1

15

20

25

30

35

40

45

15

20

25

30

35

40

45

N
,M

51
2,

25
6

51
2,

20
5

51
2,

17
1

51
2,

14
6

51
2,

12
8

ARW−H IRW−H YALL1 SpaRSA SPGL1

30

35

40

45

30

35

40

45

N
,M

10
24

,5
12

10
24

,4
10

10
24

,3
41

10
24

,2
93

10
24

,2
56

ARW−H IRW−H YALL1 SpaRSA SPGL1

Figure 6.3: Comparison of SER for the recovery of sparse signals that were constructed by
taking Haar wavelet transform of randomly perturbed “Blocks” signals and measured with
M × N Gaussian matrices in the presence of Gaussian measurement noise at 40 dB SNR.
ARW-H solves adaptive-reweighted `1 problem once, while other methods solve unweighted
`1 problem in their first iteration and perform five reweighted iterations afterwards. (First
row) SER for the solution after first iteration. (Second row) SER for solutions after five
reweighting iterations (SER for ARW-H is copied from the top row)

total time consumed by each of the recovery algorithms. As we can see in the second

row that, compared to YALL1, SPGL1, and SpaRSA, IRW-H consumed distinctly

lesser time for updating solutions in iterative reweighting. In the third row, we see

small difference in the total runtime for IRW-H, SpaRSA, and YALL1, where IRW-H

and SpaRSA display comparable performance. Nevertheless, in all the experiments,

the total runtime for ARW-H is the smallest among all the algorithms.

A brief summary of the results for our experiments is as follows. We observed that

57

10

15

20

25

30

In
it
ia

l
S

E
R

 i
n

 d
B

10

15

20

25

30

F
in

a
l
S

E
R

 i
n

 d
B

N
,M

25
6,

12
8

25
6,

10
2

25
6,

85

25
6,

73

25
6,

64

ARW−H IRW−H YALL1 SpaRSA SPGL1

20

25

30

35

20

25

30

35

N
,M

51
2,

25
6

51
2,

20
5

51
2,

17
1

51
2,

14
6

51
2,

12
8

ARW−H IRW−H YALL1 SpaRSA SPGL1

30

35

40

30

35

40

N
,M

10
24

,5
12

10
24

,4
10

10
24

,3
41

10
24

,2
93

10
24

,2
56

ARW−H IRW−H YALL1 SpaRSA SPGL1

Figure 6.4: Comparison of SER for the recovery of near-sparse signals that were con-
structed by taking Daubechies 4 wavelet transform of randomly perturbed HeaviSine sig-
nals and measured with M × N Gaussian matrices in the presence of Gaussian noise at
40 dB SNR. ARW-H solves adaptive-reweighted `1 problem once, while other methods solve
unweighted `1 problem in their first iteration and perform five reweighted iterations after-
wards. (First row) SER for the solution after first iteration. (Second row) SER for
solutions after five reweighting iterations (SER for ARW-H is copied from the top row)

the adaptive reweighting scheme (ARW-H) recovered signals with better SERs com-

pared to the iterative reweighting schemes (IRW-H, SpaRSA, YALL1, and SPGL1),

and it does so by solving a single homotopy problem at the expense of a small amount

of computational cost and time. Among the iterative reweighting schemes, IRW-H

quickly updated the solutions during iterative reweighting at the expense of marginal

computational cost and time, which are distinctly smaller than the respective costs

and times for SpaRSA, YALL1, and SPGL1; although SpaRSA and YALL1 with

warm-start provided competitive results for longer signals.

58

100

200

300

400
In

it
ia

liz
a

ti
o

n

0

500

1000

1500

T
o

ta
l
A

tA
 c

o
u

n
t

N
,M

25
6,

12
8

25
6,

10
2

25
6,

85

25
6,

73

25
6,

64

0

500

1000

1500

It
e

ra
ti
v
e

 r
e

w
e

ig
h

ti
n

g

ARW−H IRW−H YALL1 SpaRSA SPGL1

100

200

300

400

0

500

1000

1500

N
,M

51
2,

25
6

51
2,

20
5

51
2,

17
1

51
2,

14
6

51
2,

12
8

0

500

1000

ARW−H IRW−H YALL1 SpaRSA SPGL1

50

100

150

200

250

200

400

600

N
,M

10
24

,5
12

10
24

,4
10

10
24

,3
41

10
24

,2
93

10
24

,2
56

0

100

200

300

400

ARW−H IRW−H YALL1 SpaRSA SPGL1

Figure 6.5: Comparison of the number of matrix-vector products for the recovery of
Blocks signals. ARW-H solves adaptive-reweighted `1 problem once, while other methods
solve unweighted `1 problem in their first iteration and perform five reweighted iterations
afterwards. (First row) Count for the first iteration only. (Second row) Count for all the
reweighting iterations (ARW-H does not appear because its count is zero). (Third row)
Count for all the iterations.

6.5 Discussion

We presented two homotopy algorithms that can efficiently solve reweighted `1 prob-

lems. In Section 6.2, we presented an algorithm for updating the solution of (6.2) as

the wi change. We demonstrated with experiments that, in reweighting iterations, our

proposed algorithm quickly updates the solution at a small computational expense. In

Section 6.3, we presented a homotopy algorithm that adaptively selects weights inside

59

100

200

300

400

500

In
it
ia

liz
a

ti
o

n

0

500

1000

1500

2000

T
o

ta
l
A

tA
 c

o
u

n
t

N
,M

25
6,

12
8

25
6,

10
2

25
6,

85

25
6,

73

25
6,

64

0

500

1000

1500

It
e

ra
ti
v
e

 r
e

w
e

ig
h

ti
n

g

ARW−H IRW−H YALL1 SpaRSA SPGL1

100

200

300

400

0

500

1000

1500

N
,M

51
2,

25
6

51
2,

20
5

51
2,

17
1

51
2,

14
6

51
2,

12
8

0

500

1000

ARW−H IRW−H YALL1 SpaRSA SPGL1

50

100

150

200

250

300

200

400

600

800

N
,M

10
24

,5
12

10
24

,4
10

10
24

,3
41

10
24

,2
93

10
24

,2
56

100

200

300

400

500

ARW−H IRW−H YALL1 SpaRSA SPGL1

Figure 6.6: Comparison of the number of matrix-vector products for the recovery of
HeaviSine signals. ARW-H solves adaptive-reweighted `1 problem once, while other methods
solve unweighted `1 problem in their first iteration and perform five reweighted iterations
afterwards. (First row) Count for the first iteration only. (Second row) Count for all the
reweighting iterations (ARW-H does not appear because its count is zero). (Third row)
Count for all the iterations.

a single homotopy program. We demonstrated with experiments that our proposed

adaptive reweighting method outperforms iterative reweighting methods in terms of

the reconstruction quality and the computational cost.

We would like to mention that an adaptive reweighting scheme, similar to the

60

0.02

0.03

0.04

0.05

0.06

0.07

In
it
ia

liz
a
ti
o
n

0

0.1

0.2

0.3

T
o
ta

l
ru

n
ti
m

e
 (

s
e
c
.)

N
,M

25
6,

12
8

25
6,

10
2

25
6,

85

25
6,

73

25
6,

64

0

0.05

0.1

0.15

0.2

0.25

It
e
ra

ti
v
e
 r

e
w

e
ig

h
ti
n
g

ARW−H IRW−H YALL1 SpaRSA SPGL1

0.02

0.04

0.06

0

0.1

0.2

0.3

N
,M

51
2,

25
6

51
2,

20
5

51
2,

17
1

51
2,

14
6

51
2,

12
8

0

0.1

0.2

0.3

ARW−H IRW−H YALL1 SpaRSA SPGL1

0.02

0.04

0.06

0.08

0.1

0.2

0.3

N
,M

10
24

,5
12

10
24

,4
10

10
24

,3
41

10
24

,2
93

10
24

,2
56

0

0.05

0.1

0.15

0.2

0.25

ARW−H IRW−H YALL1 SpaRSA SPGL1

Figure 6.7: Comparison of MATLAB runtime for the recovery of Blocks signals. ARW-
H solves adaptive-reweighted `1 problem once, while other methods solve unweighted `1
problem in their first iteration and perform five reweighted iterations afterwards. (First
row) Time for the first iteration. (Second row) Time for all the reweighted iterations.
(Third row) Total runtime.

one we presented for homotopy, can also be embedded inside iterative shrinkage-

thresholding algorithms [18, 22, 52, 68, 147]. A recent paper [96] has also em-

ployed a similar principle of reweighting inside SPGL1. Standard iterative shrinkage-

thresholding algorithms solve the program in (6.2) by solving the following shrinkage

problem at every inner iteration:

minimize
x

L

2
‖x− u‖2

2 +
∑

wi|xi|, (6.17)

61

0.02

0.03

0.04

0.05

0.06

0.07
In

it
ia

liz
a
ti
o
n

0

0.1

0.2

0.3

T
o
ta

l
ru

n
ti
m

e
 (

s
e
c
.)

N
,M

25
6,

12
8

25
6,

10
2

25
6,

85

25
6,

73

25
6,

64

0

0.05

0.1

0.15

0.2

0.25

It
e
ra

ti
v
e
 r

e
w

e
ig

h
ti
n
g

ARW−H IRW−H YALL1 SpaRSA SPGL1

0.02

0.04

0.06

0.1

0.2

0.3

N
,M

51
2,

25
6

51
2,

20
5

51
2,

17
1

51
2,

14
6

51
2,

12
8

0

0.1

0.2

0.3

ARW−H IRW−H YALL1 SpaRSA SPGL1

0.02

0.04

0.06

0.08

0.1

0.1

0.2

0.3

0.4

N
,M

10
24

,5
12

10
24

,4
10

10
24

,3
41

10
24

,2
93

10
24

,2
56

0.1

0.2

0.3

ARW−H IRW−H YALL1 SpaRSA SPGL1

Figure 6.8: Comparison of MATLAB runtime for the recovery of HeaviSine signals. (First
row) Time for the first iteration. ARW-H solves adaptive-reweighted `1 problem once,
while other methods solve unweighted `1 problem in their first iteration and perform five
reweighted iterations afterwards. (Second row) Time for all the reweighted iterations.
(Third row) Total runtime.

where u = xk−1 − 1
L

ΦT (Φxk−1 − y) denotes a vector that is generated using a so-

lution xk−1 from a previous iteration and L determines the stepsize. The solution

of (6.17) involves a simple soft-thresholding of the entries in u with respect to the

wi/L (i.e., xi = soft(ui, wi/L), where soft(u, α) ≡ sign(u) max{|u| − α, 0} defines the

soft-thresholding/shrinkage function). To embed adaptive reweighting inside such

shrinkage algorithms, instead of using a fixed set of wi for soft-thresholding in (6.17)

62

at every iteration, we can adaptively select the wi according to the changes in the

solution.

To examine our suggestion, we added an adaptive reweighting scheme in the source

code of SpaRSA. SpaRSA offers a feature for adaptive continuation in which it starts

the shrinkage parameter τ with a large value and decreases it towards the desired

value after every few iterations. We added an extra line in the code that uses the

available solution x̂ to update each wi as min (τ, τ/β|x̂i|) whenever τ changes. We

gauged the performance of this modified method by using it for the recovery of gray-

scale images from compressive measurements. The problem formulation following the

model in (6.1) is as follows. We generated a sparse signal x̄ of length N by applying a

Daubechies 9/7 biorthogonal wavelet transform [48, 94] with odd-symmetric extension

on an image, selected Φ as a subsampled noiselet transform [49], and added Gaussian

noise e in the measurements by selecting each entry in e as i.i.d. N (0, σ2).

In Figure 6.9 we present results averaged over 10 experiments that we performed

for the recovery of three 256 × 256 images from M = 30, 000 noiselet measurements

in the presence of noise at 40 dB SNR using SpaRSA in three different ways. The

first column presents the original 256 × 256 images. The second column presents

small portions of the reconstructed images. We reconstructed the images by solving

the standard `1 problem in (3.3) using τ = σ
√

logN . The peak signal-to-noise ratio

(PSNR) for the entire reconstructed image is presented in each caption along with

the total count for the number of applications of ΦTΦ (in parentheses) averaged over

10 experiments. The third column presents portions of the reconstructed images af-

ter three reweighting iterations using the warm-start and weight selection procedure

employed in the experiments in Section 6.4. The last column presents portions of

the reconstructed images by solving the modified version of SpaRSA in which we ini-

tialized the SpaRSA code by setting all the weights to a same value, and after every

continuation iteration we modified the values of weights according to the available

63

solution. We observe that SpaRSA with this adaptive reweighting modification yields

better performance in terms of PSNR over the other two methods, while its compu-

tational cost is significantly smaller than the cost of iterative reweighting (in column

2).

We have presented these results as a proof-of-concept, and we anticipate that

adding a simple adaptive reweighting scheme within existing iterative shrinkage al-

gorithms can potentially enhance their performance in many scenarios without any

additional cost; however, a detailed study in this regard is beyond the scope of this

chapter.

64

(a) Barbara (b) PSNR: 29.05 dB —
(55)

(c) PSNR: 29.18 dB —
(209)

(d) PSNR: 29.68 dB —
(85)

(e) Boats (f) PSNR: 29.23 dB —
(49)

(g) PSNR: 30.00 dB —
(173)

(h) PSNR: 30.28 dB —
(72)

(i) Cameraman (j) PSNR: 29.82 dB —
(52)

(k) PSNR: 30.27 dB —
(193)

(l) PSNR: 30.77 dB —
(78)

Figure 6.9: Results for the recovery of 256× 256 images from M = 30, 000 noiselet mea-
surements in the presence of Gaussian noise at 40dB SNR, using Daubechies 9/7 biorthog-
onal wavelet transform with odd-symmetric extensions as the sparse representation. (Col-
umn 1) Original images. (Column 2) Portions of the images (inside the orange box)
reconstructed by solving (3.3) using SpaRSA. (Column 3) Reconstruction after three
reweighting iterations. (Column 4) Adaptive reweighting by updating the wi after every
continuation step in SpaRSA. The caption under each subimage shows the PSNR over the
entire reconstructed image and a count for the number of applications of ΦTΦ (in paren-
theses) averaged over 10 experiments.

65

CHAPTER VII

SPARSE RECOVERY FROM STREAMING SYSTEMS

In this chapter we discuss the problem of estimating a sparse, time-varying signal

from streaming measurements. Most of the existing sparse recovery methods assume

a static system in which the unknown signal is a finite-length vector for which a fixed

set of linear measurements and a representation basis are available and an `1-norm

minimization program is solved for the signal reconstruction. However, the same

representation and reconstruction framework is not readily applicable in a stream-

ing system in which the unknown signal varies over time and has no clear beginning

and end. Instead of measuring the entire signal or processing the entire set of mea-

surements at once, these tasks are performed sequentially over short, shifting time

intervals. A streaming framework for the reconstruction is particularly desired when

dividing a streaming signal into disjoint, finite-length blocks and processing each block

independently is either infeasible or inefficient.

We consider a streaming system in which measurements of a time-varying signal

are recorded over short, possibly overlapping, intervals. We iteratively process a small

number of measurements over a sliding, active interval and solve a weighted `1-norm

minimization problem for estimating sparse coefficients. For the sparse represen-

tation of the time-varying signals, instead of using block transforms, we use lapped

orthogonal transforms. Since we estimate overlapping portions of the streaming signal

while adding and removing measurements, instead of solving a new `1 program from

scratch at every iteration, we use an available signal estimate as the starting point

(warm-start) in a homotopy formulation and update the solution in a small number

of computationally inexpensive homotopy steps. We demonstrate the performance of

66

our proposed streaming recovery algorithm for various time-varying signals.

7.1 Introduction

We consider the following time-varying linear observation model for a discrete-time

signal x[n]:

yt = Φtxt + et, (7.1)

where xt is a vector that represents x[n] over an interval of time, yt is a vector

that contains measurements of xt, Φt is a measurement matrix, and et is noise in the

measurements. We use the subscript t to indicate that the system in (7.1) represents a

small part of an infinite-dimensional streaming system, in which for any t, xt precedes

xt+1 in x[n] and the two may overlap. If we treat the xt independent from the rest of

the streaming signal (x[n]), we can solve (7.1) as a stand-alone system for every t as

follows. Suppose we can represent each xt as Ψtαt, where Ψt denotes a representation

matrix (e.g., a discrete cosine or a wavelet transform) for which αt is a sparse vector

of transform coefficients. We write the equivalent system for (7.1) as

yt = ΦtΨtαt + et, (7.2)

and solve the following weighted `1-norm minimization problem for a sparse estimate

of αt:

minimize
αt

‖Wtαt‖1 +
1

2
‖ΦtΨtαt − yt‖2

2. (7.3)

The `1 term promotes sparsity in the estimated coefficients; Wt is a diagonal matrix

of positive weights that can be adapted to promote a certain sparse structure in the

solution [42, 152]; and the `2 term ensures that the solution remains close to the

measurements.

The method described above represents and reconstructs the signal blocks (xt)

independently, which is natural if both the measurement system in (7.1) and the

representation system in (7.2) are block-diagonal; that is, the xt are non-overlapping

67

Measurement matrices SignalMeasurements Error

ac
ti

ve
 in

te
rv

al

(a) Overlapping measurements of a signal.

LOT
coefficients

LOT representation basesSignalLOT
windows

ac
ti

ve
 in

te
rv

al

(b) LOT-based representation of a signal.

Figure 7.1: Illustration of an overlapping measurement system (a) and a lapped orthogo-
nal transform (LOT)-based representation system (b). Boxed regions represent the system
over the active interval. Subscripts l and r indicate the left and the right border of the
active interval.

in (7.1) and each xt is represented as a sparse vector using a block transform in (7.2).

However, estimating the xt independently is not optimal if the streaming system for

(7.1) or (7.2) is not block diagonal, which can happen if Φt, Ψt, or both of them overlap

across the xt. An illustration of such an overlapping measurement and representation

system is presented in Figure 7.1. Figure 7.1a depicts a measurement system in

which the Φt overlap (the xt, which are not labeled in the figure, are the overlapping

portions of x[n] that constitute the yt). Figure 7.1b depicts a representation of x[n]

using lapped orthogonal transform (LOT) bases [94, 95] in which the Ψt overlap (and

multiple Ψtαt may add up to constitute a portion of x[n]).

In this chapter we present `1-norm minimization based algorithms for the sparse

recovery of smooth, time-varying signals from streaming measurements in (7.1) us-

ing sparse representation bases with compact but overlapping supports. We assume

that the sets of measurements are sequentially recorded over short, shifting (possibly

overlapping) intervals of the streaming signal. Instead of estimating each block (xt)

independently, we iteratively estimate the signal (x[n]) over small, sliding intervals,

which allows us to link together the blocks that share information. At every iteration,

68

we build a system model that describes the measurements and the sparse coefficients

of the streaming signal over an active interval (one such example is depicted in Fig-

ure 7.1). We estimate the sparse coefficients for the signal over the active interval by

solving a weighted `1-norm minimization problem. Before solving the optimization

problem, an estimate of the signal over the active interval is either available from the

previous iteration or it can be predicted. We use the available signal estimate to aide

the recovery process in two ways: We update the Wt using available estimates of the

αt (in the same spirit as iterative reweighting [42]), and we use the available estimates

of the αt as a starting point to expedite the solution of the `1 problem. In particular,

we focus on the `1 homotopy for dynamic updating of the recovery problem as the

underlying signal and the measurements change.

The chapter is organized as follows. We discuss signal representation in Section 7.2

and the recovery framework for the streaming system in Section 7.3. We present

experimental results to demonstrate the performance of our algorithms, in terms

of the quality of reconstructed signals and the computational cost of the recovery

algorithm, in Section 7.4.

7.2 Signal representation in compactly supported bases

We will represent a discrete-time signal x[n] as

x[n] =
∑
p∈Z

∑
0≤k<lp

αp,kψp,k[n], (7.4)

where the set of functions ψp,k forms an orthogonal basis of `2(Z) and the αp,k =

〈ψp,k, x〉 denote the corresponding basis coefficients that we expect to be sparse or

compressible. For a fixed p ∈ Z, {ψp,k}k denotes a set of orthogonal basis vectors that

have a compact support over an interval Ip. The supports of the ψp,k and the ψp′,k

(i.e., Ip and Ip′) may overlap if p 6= p′. An example of such a signal representation

using lapped orthogonal bases is depicted in Figure 7.1b, where a Ψp denotes the

69

basis functions in {ψp,k}k supported on Ip, an αp denotes the respective {αp,k}k, and

the overlapping windows denote the intervals Ip.

A lapped orthogonal transform (LOT) decomposes a signal into orthogonal com-

ponents with compact, overlapping supports [95]. Orthogonality between the com-

ponents in the overlapping regions is maintained due to projections with opposite

(i.e., even and odd) symmetries. LOT basis functions can be designed using modified

cosine-IV basis functions that are multiplied by smooth, overlapping windows. The

advantage of using the LOT instead of a simple block-based discrete cosine or Fourier

transform is that block-based transforms use rectangular windows to divide a signal

into disjoint blocks and that can introduce artificial discontinuities at the boundaries

of the blocks and ruin the sparsity [94].

A discrete LOT basis can be designed as follows. Divide the support of the signal

into consecutive, overlapping intervals Ip = [ap − ηp, ap+1 + ηp+1], where {ap}p∈Z is a

sequence of half integers (i.e., ap + 1/2 ∈ Z) and {ηp}p∈Z is a sequence of transition

width parameters such that lp
def
= ap+1 − ap ≥ ηp + ηp+1. The LOT basis function, ψp,k

in (7.4), for every p, k is defined as

ψp,k[n] = gp[n]

√
2

lp
cos

[
π

(
k +

1

2

)
n− ap
lp

]
, (7.5)

which is a translated and dilated cosine-IV basis function, multiplied by a smooth

window gp that is supported on Ip. For a careful choice of gp, coupled with the even

and the odd symmetries of cosine-IV basis functions with respect to ap and ap+1,

respectively, the set of functions ψp,k forms an orthonormal basis of `2(Z) (see [94,

Sec. 8.4] for further details).

To compute the LOT coefficients of x[n] over an arbitrary interval Π, we assume a

partition of Π into appropriate LOT subintervals Ip. Figure 7.2a depicts an example

with such a partition of a time interval using LOT windows and the decomposition of a

linear chirp signal into overlapping components using LOT bases and their respective

coefficients. Since the set of functions {ψp,k}k defines an orthogonal basis for a LOT

70

subspace on respective Ip, the corresponding LOT projection of x[n] can be written

as

x̃p[n] =

lp−1∑
k=0

〈x, ψp,k〉︸ ︷︷ ︸
αp,k

ψp,k[n], (7.6)

where x̃p[n] is supported on Ip. We can represent the restriction of x̃p[n] on Ip as

Ψpαp, where Ψp is a synthesis matrix whose kth column consists of ψp,k[n] restricted

to Ip and αp is an lp-length vector of LOT coefficients that consists of {αp,k}k for

0 ≤ k < lp. Note that the x̃p[n] are the overlapping, orthogonal components of x[n],

and to synthesize x[n] over Π, we have to add all the x̃p[n] that overlap Π. Referring

to Figure 7.1b, x̄ denotes x[n] over the active interval Π, ᾱ denotes a vector that

contains all the αp that contribute to x̄, stacked on top of one another, Ψ̄ contains

the corresponding Ψp (in part or full) at appropriate columns and rows, and the

columns of Ψp and Ψp+1 overlap in 2ηp+1 rows.

Another example of an orthogonal basis that can be naturally separated into

overlapping, compact intervals is the wavelet transform. A wavelet transform de-

composes a signal into orthogonal components with compact, overlapping supports

at different resolutions in time and frequency [94, 141]. The scaling and wavelet

functions used for this purpose overlap one another while maintaining orthogonality.

Although commonly used filter-bank implementations assume that the finite-length

signals are symmetrically or periodically extended during convolution, which yields a

block-based wavelet transform, we can write wavelet bases in terms of shifted, dilated

wavelet and scaling functions that overlap across adjacent blocks. Figure 7.2b de-

picts an example of the decomposition of a piece-wise smooth signal into overlapping

components using wavelet bases and their respective coefficients.

7.3 Sparse recovery from overlapping systems

In a streaming system, we iteratively estimate sparse coefficients of the signal over an

active, sliding interval. We describe a system for the measurements and the sparse

71

(a) LOT projections and coefficients. (i)
A discrete-time linear chirp signal (x[n]).
(ii) LOT windows over different intervals
(Ip); distance between dotted lines around
ap represent ηp. (iii–v) LOT projections
x̃[n] over respective intervals. (vi) Sparse
coefficients (αp,k).

(b) Wavelet projections and coefficients.
(i) A piecewise smooth signal (x[n]). (ii)
A subset of scaling and wavelet functions
at the coarsest scale. Dotted lines denoteIp.
(iii–v) Wavelet projections x̃[n] over respec-
tive intervals. (vi) Sparse coefficients (αp,k).

Figure 7.2: Signal decomposition in (a) LOT and (b) wavelet bases.

representation of the signal over the active interval and solve a weighted `1-norm

minimization problem for estimating the sparse coefficients. At every iteration of

the streaming recovery process, we shift the active interval by removing a few oldest

measurements and adding a few new ones in the system. Estimates of the sparse

coefficients and the signal portion that leave the active interval are committed to

the output. The length of the active interval determines the delay, memory, and

computational complexity of the system.

7.3.1 System model

Consider the linear system in (7.1): yt = Φtxt + et, where xt denotes a portion of x[n]

over a short interval and the consecutive xt may also overlap. We denote x[n] over

the active interval Π as x̄ and assume that x̄ consists of a small number of xt. We

describe the equivalent system for x̄ in the following compact form:

ȳ = Φ̄x̄ + ē, (7.7)

72

where ȳ denotes a vector that contains yt for the xt that belong to x̄, Φ̄ denotes a

matrix that contains the corresponding Φt, and ē denotes the noise vector. At every

iteration of the streaming recovery algorithm, we shift Π by removing the oldest yt

in the system and adding a new one and update the system in (7.7) accordingly. An

example of such a measurement system in depicted in Figure 7.1a, where the active

system is represented in a boxed region. To represent the signal x̄ using the model in

(7.4), we use the following compact form:

x̄ = Ψ̄ᾱ, (7.8)

where ᾱ contains the αp,k that synthesize x̄ and the synthesis matrix Ψ̄ contains the

corresponding ψp,k restricted to Π as its columns. An example of such a representation

system in depicted in Figure 7.1b. Using lapped orthogonal bases for the signal

representation in (7.8), we describe the system in (7.7) for the active interval Π in

the following equivalent form:

ȳ = Φ̄Ψ̄ᾱ + ē. (7.9)

Note that even when Φ̄ is a block diagonal matrix, the system in (7.9) cannot be

separated into independent blocks if Ψ̄ has overlapping columns.

One important consideration in our system is the design of Ψ̄ with respect to

the decomposition of Π into overlapping intervals Ip. Our motivation is to have as

few unknown coefficients in ᾱ as possible. Note that if an interval Ip overlaps with

Π (partially or fully), we have to include its corresponding coefficient vector αp of

length lp into ᾱ. Since we can divide the interior of Π in an arbitrary fashion, the

special consideration is only for the Ip that partially overlap with Π on its left and

right borders.

On the right end of Π, we align the right-most interval, say Ir, such that it partially

overlaps with Π but the interval after that, say Ir+1, lies completely outside Π. In

such a case ᾱ would contain αr but not αr+1. Such a relationship between the active

73

interval (Π) and the subintervals (Ip) is depicted in Figure 7.1b, where we adjusted

the right-most interval such that the overlapping region on its right side lies outside

the active interval Π.

On the left end of Π, we align the left-most interval, say Il, such that it is fully

included in Π. However, in such a setting Il−1 will partially overlap with Π and the

corresponding coefficient vector αl−1 of length ll−1 will be included in ᾱ. Suppose

we have committed the estimate of αl−1 to the output, and we want to remove it

from the system in (7.9). If the system in (7.9) were block-diagonal, we could simply

update the system by removing αl−1 from ᾱ and the corresponding rows from ȳ and

Φ̄Ψ̄. But if the system in (7.9) has overlapping rows, where the rows are coupled

with more than one set of variables, instead of removing the rows, we remove the

columns. Thus, removing αl−1 is equivalent to removing the first ll−1 coefficients

from the vector ᾱ, removing the first ll−1 columns from the matrix Φ̄Ψ̄ in (7.9), and

modifying the measurement vector ȳ accordingly. To do this we divide x̄ into two

components as

x̄ = Ψ̄ᾱ =

[
Ψ̆ Ψ̃

]ᾰ
α̃

 = Ψ̆ᾰ + Ψ̃α̃, (7.10)

where we divided Ψ̄ into two matrices Ψ̆ and Ψ̃ and ᾱ into the corresponding vectors

ᾰ and α̃. An example of such a decomposition is depicted in Figure 7.3b. To remove

αl−1 from the system in (7.9), we can modify ȳ as follows. Since we only have an

estimate of αl−1, which we denote as α̂l−1, we remove its expected contribution from

the system by modifying ȳ as

ỹ
def
= ȳ − Φ̄Ψ̆ᾰ, (7.11)

where we use Ψ̆ to denote the first ll−1 columns in Ψ̄, which contains a part of Ψl−1,

and ᾰ to denote α̂l−1. We write the resultant, modified form of the system in (7.9) as

ỹ = Φ̄Ψ̃α̃ + ẽ, (7.12)

74

Overlapping system matrix Sparse
vector

Error

(a)

Divide the system into two parts

(b)

Figure 7.3: Illustration of the system used for the signal reconstruction. (a) System over
the active interval. (b) System divided into two parts so that ᾰ can be removed.

where ẽ denotes the combined error in the system and α̃ denotes the unknown vector

of coefficients that we estimate by solving a weighted `1-norm minimization problem.

7.3.2 Recovery problem

To estimate α̃ from the system in (7.12), we solve the following optimization problem:

minimize
α

‖Wα‖1 +
1

2
‖Φ̄Ψ̃α− ỹ‖2

2, (7.13)

where W is a diagonal matrix that consists of positive weights. We select the weights

using prior knowledge about the estimate of α̃ from the previous streaming iteration.

Let us denote α̂ as our prior estimate of α̃. Since there is a significant overlap between

the active intervals at the present and the previous iterations, we expect α̂ to be very

close to the solution of (7.13). We compute ith diagonal entry in W as

wi ←
τ

β|α̂i|+ 1
, (7.14)

where τ > 0 and β >> 1 are two parameters that can be used to tune the weights

according to the problem. Instead of solving (7.13) from scratch, we can speed up

the recovery process by providing α̂ as a warm-start (initialization) vector to an

appropriate solver [19, 62, 144, 147].

In the dynamic `1 updating framework, described in Chapter 3, we use the homo-

topy algorithm in Algorithm 1 to dynamically update the solution of (7.13). Similar

75

to the homotopy formulation in (3.7), we use the available estimate α̂ as a warm start

and solve (7.13) at every streaming iteration using the following homotopy program:

minimize
α

‖Wα‖1 +
1

2
‖Φ̄Ψ̃α− ỹ‖2

2 + (1− ε)uTα, (7.15)

by changing ε from 0 to 1. We provide the following parameters to Algorithm 1:

the warm-start vector α̂, the system matrix Φ ← Φ̄Ψ̃, and the measurement vector

y← ỹ. We define u as

u
def
= −W ẑ− (Φ̄Ψ̃)T (Φ̄Ψ̃α̂− ỹ), (7.16)

where ẑ can be any vector that is defined as sign(α̂) on the support (nonzero indices)

of α̂ and strictly smaller than one elsewhere.

We compute α̂ using the signal estimate from the previous streaming iteration

and the available set of measurements. Since we have an estimate of x̄ for the part of

Π that is common between the current and the previous iteration, our main task is

to predict the signal values that are new to the system. Let us denote the available

signal estimate for x̄ as x̂. We can assign values to the new locations in x̂ using zero

padding, periodic extension, or symmetric extension, and compute α̂ from x̂ = Ψ̄α̂. In

our experiments, first we update x̂ by symmetric signal extension onto new locations

and identify a candidate support for the new coefficients in α̂; then we calculate

magnitudes of the new coefficients by solving a least-squares problem, restricted to

the chosen support, using the corresponding measurements in (7.9); and finally we

truncate extremely small values of the least-squares solution and update α̂.

7.4 Numerical experiments

We present experiments for the recovery of smooth, time-varying signals from stream-

ing, compressive measurements in (7.1), where we use LOT bases for sparse signal

representation. We evaluate the performance of our proposed recovery algorithm

for two signals at different compression factors. We compare the performance of

76

`1-homotopy algorithm against two state-of-the-art `1 solvers and demonstrate that

`1-homotopy requires significantly lesser computational operations and time.

7.4.1 Experiment setup

In these experiments, we used the following two discrete-time signals, x[n], from the

Wavelab toolbox [29], that have sparse representations in LOT bases: 1) LinChirp,

which is a critically sampled sinusoidal chirp signal and its frequency increases linearly

from zero to one-half of the sampling frequency. 2) MishMash, which is a summation

of a quadratic and a linear chirp with increasing frequencies and a sinusoidal signal.

For both the signals, we generated 215 samples and prepended them with N = 256

zeros. Snapshots of LinChirp and MishMash and their LOT coefficients are presented

in Figure 7.4a and Figure 7.5a, respectively. We estimated sparse LOT coefficients

of these signals from streaming, compressive measurements using the system model

and the recovery procedure outlined in Section 7.3.

We selected the parameters for compressive measurements and the signal repre-

sentation as follows.

Compressive measurements: To simulate streaming, compressive measurements of a

given time-varying signal, x[n], at a compression rate R, we followed the model in

(7.1): yt = Φtxt + et. We used non-overlapping xt of length N to generate a set of

M = N/R measurements in yt. We generated entries in Φt independently at random

as ±1/
√
M with equal probability. We added Gaussian noise in the measurements by

selecting every entry in et according to N (0, σ2) distribution. We selected the vari-

ance σ2 such that the expected SNR with respect to the measurements Φtxt becomes

35 dB.

Signal representation: To represent x[n] using LOT bases, according to (7.4), we se-

lected the overlapping intervals, Ip, of the same length N + 2ηp = 2N , where we fixed

ηp = N/2, ap = pN + 1/2, and lp = N for all p ∈ Z. We divided x[n] into overlapping

77

intervals, Ip, and computed LOT coefficients, αp, corresponding to every Ip.

At every streaming iteration, we built the system in (7.12) for P = 5 consecutive

xt in x̄. We updated the system in (7.7), from the previous iteration, by shifting

the active interval, removing old measurements, and adding new measurements. We

computed ỹ in (7.11), committed a portion of α̂ to the output. The combined system

in (7.12), corresponding to the unknown vector x̄ of length PN , thus, consists of

a measurement vector ỹ of length PM , a block diagonal PM × PN measurement

matrix Φ̄, a PN × PN LOT representation matrix Ψ̃ in which adjacent pairs of

columns overlap in N rows, the unknown LOT coefficient vector α̃ of length PN ,

and a noise vector ẽ. An example of such a system in depicted in Figure 7.3. We

predicted the new coefficients in α̂, updated the weights W, and solved (7.13) using

α̂ as a warm-start. We updated the weights according to (7.14) using β = M
‖α̂‖22
‖α̂‖21

and

τ = max{10−2‖ΦTy‖∞, σ
√

log(PN)}, where Φ and y denote the system matrix and

the measurement vector in (7.13), respectively, and σ denotes the standard deviation

of the measurement noise. For the first streaming iteration, we initialized α as zero

and solved (7.13) as an iterative reweighted `1 problem, starting with W = τ , using

five reweighting iterations [12, 42].

We solved (7.13) using our proposed `1-homotopy algorithm and two state-of-the-

art `1 solvers: YALL1 [148] and SpaRSA [147], with identical initialization (warm-

start) and weight selection schemes. Further description of these algorithms is as

follows.

i. `1-homotopy: We solved (7.15) following the procedure outlined in Algorithm 1.

The main computational cost at every step of `1-homotopy involves one matrix-

vector multiplication for identifying a change in the support and a rank-one up-

date for computing the update direction. We used the matrix inversion lemma-

based scheme to perform the rank-one updates. MATLAB code for the `1-

homotopy package is available at http://users.ece.gatech.edu/∼sasif/homotopy.

78

ii. YALL1: YALL1 is a first-order algorithm that uses an alternating direction min-

imization method for solving various `1 problems, see [148] for further details.

We solved (7.13) using weighted-`1/`2 solver in YALL1 package by selecting the

initialization vector and weights according to the procedure described in Sec-

tion 7.3.2. At every streaming iteration, we used the previous YALL1 solution

to predict the initialization vector and the weights according to (7.14). We fixed

the tolerance parameter to 10−4 in all the experiments. The main computational

cost of every step in the YALL1 solver comes from applications of the system

matrix in (7.13) and its adjoint. MATLAB package for YALL1 is available at

http://yall1.blogs.rice.edu/.

iii. SpaRSA: SpaRSA is also a first-order method that uses a fast variant of iterative

shrinkage and thresholding for solving various `1-regularized problems, see [147]

for further details. Similar to YALL1, we solved (7.13) using SpaRSA at every

streaming iteration by selecting the initialization vector and the weights from the

solution of the previous iteration. We used the SpaRSA code with the default

adaptive continuation procedure in the Safeguard mode using the duality gap-

based termination criterion for which we fixed the tolerance parameter to 10−4

and modified the code to accommodate weights in the evaluation. The main

computational cost for every step in the SpaRSA solver also involves applications

of the system matrix in (7.13) and its adjoint. MATLAB package for SpaRSA is

available at http://lx.it.pt/∼mtf/SpaRSA/.

To summarize, `1-homotopy solves the homotopy formulation of (7.13), given in

(7.15), while YALL1 and SpaRSA solve (7.13) using a warm-start vector for the

initialization.

We used MATLAB implementations of all the algorithms and performed all the

experiments on a standard laptop computer. We used a single computational thread

for all the experiments, which involved the recovery of a sparse signal from a given set

79

of streaming measurements using all the candidate algorithms. In every experiment,

we recorded three quantities for each algorithm: 1) the quality of the reconstructed

signal in terms of the signal-to-error ratio (SER) in dB, defined as

SER = −10 log10

‖x− x̂‖2
2

‖x‖2
2

,

where x and x̂ denote the original and the reconstructed streaming signal, respectively,

2) the number of matrix-vector products with the system matrix in (7.13) and its

adjoint, and 3) the execution time in MATLAB.

7.4.2 Results

We compared performances of the `1-homotopy, YALL1, and SpaRSA for the recovery

of LinChirp and MishMash signals from streaming, compressive measurements. We

performed 5 independent trials for the recovery of the streaming signal from random,

streaming measurements at different values of the compression factor R. The results,

averaged over all the trials are presented in Figures 7.4–7.5.

Figure 7.4 presents results for experiments with LinChirp signal. Figure 7.4a

presents a snapshot of the LinChirp signal, its LOT coefficients, and the reconstruc-

tion error at R = 4. Three plots in Figure 7.4b present results for the three solvers:

`1-homotopy (∗), SpaRSA (�), and YALL1 (◦). The left plot in Figure 7.4b compares

the SER for the three solvers. Since all of them solve the same convex program,

SERs for the reconstructed signals are almost identical. To gauge the advantage of

the LOT-based reconstruction over a block transform-based reconstruction, we re-

peated the same experiments by replacing the LOT bases with the DCT bases for

the signal representation (results shown as ×). We can see a significant degradation

(more than 20 dB loss in the SER) in the results for the DCT-based representation

as compared to the results for the LOT-based representation. The middle plot in

Figure 7.4b compares the computational cost of all the algorithms in terms of the

total number of matrix-vector multiplications used in the signal reconstruction. We

80

2 4 6 8 10

−1

−0.5

0

0.5

1

Original signal (zoom in)

time index (p)
20 40 60 80 100 120

−0.05

0

0.05

Reconstruction error (R=4)

time index (p)

Time−frequency LOT coefficients

fr
e
q
u
e
n
c
y
 i
n
d
e
x
 (

k
)

time index (p)

20 40 60 80 100 120

50

100

150

200

250

−10

−5

0

5

Reconstruction error (LOT coefficients)

fr
e
q
u
e
n
c
y
 i
n
d
e
x
 (

k
)

time index (p)

20 40 60 80 100 120

50

100

150

200

250

0

0.1

0.2

0.3

0.4

0.5

(a) Snapshot of LinChirp signal, LOT coefficients, and errors in the reconstruction. Top
left: Signal x[n] (zoomed in over first 2560 samples). Bottom left: LOT coefficients αp.
Top right: Error in the reconstructed signal at R = 4. Bottom right: Error in the
reconstructed LOT coefficients

2 4 6 8

10

15

20

25

30

35

40

R
e
c
o
n
s
tr

u
c
te

d
 s

ig
n
a
l
to

 e
rr

o
r

ra
ti
o
 i
n
 d

B

R

2 4 6 8

0

1

2

3

4

5

6

7

8

9

x 10
4

T
o
ta

l
A

tA
 c

o
u
n
t

R
2 4 6 8

0

10

20

30

40

50

60

70

80

90

100
T

o
ta

l
ru

n
ti
m

e
 (

s
e
c
.)

R
l1homotopy SpaRSA YALL1 DCT

(b) Results for the recovery of LinChirp signal from random, compressive measurements
in the presence of noise at 35dB SNR. Left: SER at different R. Middle: Approximate
count of matrix-vector multiplications. Right: Matlab execution time in seconds.

Figure 7.4: Experiments on the LinChirp signal reconstruction from streaming, com-
pressed measurements using LOT representation.

81

2 4 6 8 10

−3

−2

−1

0

1

2

3

Original signal (zoom in)

time index (p)
20 40 60 80 100 120

−0.4

−0.2

0

0.2

0.4

Reconstruction error (R=4)

time index (p)

Time−frequency LOT coefficients

fr
e
q
u
e
n
c
y
 i
n
d
e
x
 (

k
)

time index (p)

20 40 60 80 100 120

50

100

150

200

250

−15

−10

−5

0

5

10

15

Reconstruction error (LOT coefficients)

fr
e
q
u
e
n
c
y
 i
n
d
e
x
 (

k
)

time index (p)

20 40 60 80 100 120

50

100

150

200

250

0

0.2

0.4

0.6

0.8

(a) Snapshot of MishMash signal, LOT coefficients, and errors in the reconstruction. Top
left: Signal x[n] (zoomed in over first 2560 samples). Bottom left: LOT coefficients αp.
Top right: Error in the reconstructed signal at R = 4. Bottom right: Error in the
reconstructed LOT coefficients

2 4 6 8
0

5

10

15

20

25

30

35

R
e
c
o
n
s
tr

u
c
te

d
 s

ig
n
a
l
to

 e
rr

o
r

ra
ti
o
 i
n
 d

B

R

2 4 6 8

0

2

4

6

8

10

12

x 10
4

T
o
ta

l
A

tA
 c

o
u
n
t

R
2 4 6 8

0

20

40

60

80

100

120

T
o
ta

l
ru

n
ti
m

e
 (

s
e
c
.)

R
l1homotopy SpaRSA YALL1 DCT

(b) Results for the recovery of MishMash signal from random, compressive measurements
in the presence of noise at 35dB SNR. Left: SER at different R. Middle: Approximate
count of matrix-vector multiplications. Right: Matlab execution time in seconds.

Figure 7.5: Experiments on the MishMash signal reconstruction from streaming, com-
pressed measurements using LOT representation.

82

counted an application of the system matrix in (7.13) and its adjoint in as one count

in AtA. For the homotopy algorithms, we approximated the cost of one step as one

application of AtA. We can see that, out of the three solvers, `1-homotopy required

the least number of AtA count in all the cases. The right plot in Figure 7.4b compares

the MATLAB execution time for each solver. We can see that, compared to YALL1

and SpaRSA, `1-homotopy consumed distinctly lesser time for the reconstruction.

Figures 7.5 presents similar results for experiments with MishMash signal. Fig-

ure 7.5a presents a snapshot of the MishMash signal, its LOT coefficients, and recon-

struction error at R = 4. Three plots in Figure 7.5b compare performance of the

three solvers. In these plots we see similar results that the reconstruction error for

(7.13) using all the solvers is almost identical, but `1-homotopy performs significantly

better in terms of the computational cost and execution time.

A brief summary of the results for our experiments is as follows. We observed that

the signals reconstructed using the LOT-based representation had significantly better

quality compared to those reconstructed using the DCT-based signal representation.

The computational cost and execution time for `1-homotopy is significantly smaller

than that for SpaRSA and YALL1.

83

CHAPTER VIII

SPARSE RECOVERY FROM DYNAMICAL SYSTEMS

In this chapter we discuss the problem of estimating a sparse, time-varying signal

from streaming measurements when the signal varies according to a linear dynamic

model. We describe the signal using a discrete-time linear dynamical system in which

measurements of the signal are recorded at regular time intervals. Given the linear

dynamical system and the sparse representation basis of the signal, we sequentially

estimate the signal over a sliding interval by solving an optimization problem that

balances fidelity to the measurements, the linear dynamic model (both measured by

the standard `2 norm), and the sparsity of signal in the representation basis (measured

using the `1 norm). Since we iteratively estimate overlapping portions of the signal

while adding and removing measurements, instead of solving a new optimization pro-

gram at every iteration, we use an available signal estimate as a starting point in a

homotopy formulation and update the solution in a small number of computation-

ally inexpensive homotopy steps. We demonstrate the performance of our proposed

recovery algorithm for various time-varying signals.

8.1 Introduction

We consider the following linear dynamical system for a discrete-time signal x[n]:

yt = Φtxt + et, (8.1a)

xt+1 = Ftxt + ft, (8.1b)

where xt is a vector that denotes the state of x[n] at time index t, yt is a vector that

contains measurements of xt, Φt is a measurement matrix, and et is the noise in the

measurements; Ft is a prediction matrix that couples consecutive, non-overlapping

84

xt and xt+1 and ft is the error in the prediction, which we assume has a bounded `2

norm.

The Kalman filter is a classical signal estimation method that solves the system

in (8.1) in the least-squares framework [78, 126]. Given a sequence of measurements

y1, . . . , yP , and starting from an initial estimate x̂0 of the signal at time t = 0, we can

estimate x1, . . . , xP by solving the following optimization program

minimize
x1,...,xP

P∑
p=1

‖Φpxp − yp‖2
2 + λp‖Fp−1xp−1 − xp‖2

2. (8.2)

The λp above are regularization parameters that can be tuned based on our relative

confidence in the measurement and prediction errors—if the error vectors et and wt are

independent and identically distributed Gaussian noise vectors, then optimal choices

of these parameters are based on the variances of the entries in the noise vectors.

The Kalman filter owes its status as one of the pillars of statistical signal processing

to the fact that the solution to (8.2) can be computed recursively. Say we have

solved (8.2) after P time steps, and denote the estimate of xP at this point as x̂P |P .

Then given a new set of measurements yP+1, we can efficiently update the estimate

x̂P+1|P+1 of the new current state given only the previous estimate x̂P |P and the signal

covariance matrix [70, 79]. Computational cost for the solution update is dominated

by a low-rank update of the covariance matrix. Estimates for previous values of xt

for t < P + 1 can be updated by working backwards (“smoothing”), with each step

requiring a similar low-rank computation. However, the standard Kalman filter is

oblivious to a sparse structure in the signal.

To leverage the sparse structure of the signal in its estimation, we add an `1-norm

regularization term to the Kalman filter optimization program in (8.2) as follows.

Suppose xt can be represented as xt = Ψtαt, where αt is a sparse vector and Ψt is a

sparse representation basis. We write the modified optimization problem as

minimize
α1,...,αP

P∑
p=1

‖Wpαp‖1 +
1

2
‖ΦpΨpαp − yp‖2

2 +
λp
2
‖Fp−1Ψp−1αp−1 −Ψpαp‖2

2, (8.3)

85

where the `1 term promotes sparsity in the estimated coefficients; Wp is a diagonal

matrix of positive weights that can be adapted to promote a certain sparse structure

in the solution [42, 152]; and the `2 terms ensure fidelity of the solution to the system

in (8.1). Our recovery algorithm maintains the optimal solution over a sliding active

interval of time instances, and yields the jointly optimal solution given the measure-

ments inside the active interval and the estimate from the last frame out, which in

this case is the initial estimate x̂0.

Recently, several methods have been proposed to incorporate signal dynamics

into the sparse signal estimation framework [2, 4, 5, 43, 44, 139, 151]. The method

in [139] identifies the support of the signal by solving an `1 problem and modifies the

Kalman filter to estimate the signal on the identified support; [43] embeds additional

steps within the original Kalman filter algorithm for promoting a sparse solution;

[151] uses a belief propagation algorithm to identify the support and update the

signal estimate; [44] compares different types of sparse dynamics by solving an `1

problem for one signal block; [4] assumes that the prediction error is sparse and

jointly estimates multiple signal blocks using a homotopy algorithm; and [2] solves a

group-sparse `1 problem for a highly restrictive signal model in which the locations

of nonzero components of the signal do not change.

In this chapter, we consider a general dynamic model in (8.1) and solve the problem

in (8.3) over a sliding interval. Our emphasis is on an efficient updating scheme for

moving from one solution to the next as new measurements are added and old ones

are removed. Before solving the optimization problem, an estimate of the signal over

the active interval is either available from the previous iteration or it can be predicted.

We use the available signal estimate to aide the recovery process in two ways: We

update the Wt using available estimates of the αt (in the same spirit as iterative

reweighting [42]), and we use the available estimates of the αt as a starting point to

expedite the solution of the `1 problem.

86

We present the sparse recovery problem in Section 8.2 and experimental results

to demonstrate the performance of our algorithms, in terms of the quality of recon-

structed signals and the computational cost of the recovery algorithm, in Section 8.3.

8.2 Sparse recovery with dynamic model

The recovery procedure for (8.3) is similar to the one described in Section 7.3, with

the exception that here we have appended the linear dynamic model in (8.1b) to the

system and updated the optimization problem accordingly. At every streaming iter-

ation, we estimate sparse coefficients of the signal over an active, sliding interval. We

solve the weighted `1-norm minimization problem in (8.3) to estimate the sparse co-

efficients for the signal over the active interval. After every iteration of the streaming

recovery process, we shift the active interval by removing a few oldest measurements

and adding a few new ones in the system. Estimates of the sparse coefficients and

the signal portion that leave the active interval are committed to the output.

8.2.1 System model

Consider the linear dynamic system in (8.1), which describes linear measurements of

the xt and the dependencies between the consecutive xt. At every streaming iteration,

we denote x[n] over the active interval Π as x̄ and assume that x̄ consists of a small

number of xt. We describe the system of measurements for x̄ in the following compact

form:

ȳ = Φ̄x̄ + ē, (8.4)

where ȳ denotes a vector that contains yt for the xt that belong to x̄, Φ̄ denotes a

matrix that contains the corresponding Φt, and ē denotes the noise vector. At every

iteration of the streaming recovery algorithm, we shift Π by removing the oldest yt

in the system and adding a new one and update the system in (8.4) accordingly.

We describe a combined system of prediction equations for the xt that belong to x̄

as follows. Suppose x̄ contains xl, . . . , xr, and an estimate of xl−1, which was removed

87

from x̄ and committed to the output, is given as x̂l−1. We rearrange the equations in

(8.1b) for t = l as −Fl−1x̂l−1 = −xl +fl−1 and for the rest of t as 0 = Ftxt−xt+1 +ft.

We stack these equations on top of one another to write the following compact form:

q̄ = F̄x̄ + f̄ . (8.5)

F̄ denotes a banded matrix that consists of negative identity matrices in the main

diagonal and Fl, . . . , Fr below the diagonal; f̄ denotes the combined prediction error;

q̄ denotes a vector that contains −Fl−1x̂l−1 followed by zeros.

Combining the systems in (8.4) and (8.5) with the sparse representation (x̄ = Ψ̄ᾱ),

we write the modified system over the active interval Π asȳ

q̄

 =

Φ̄

F̄

 Ψ̄ᾱ +

ē

f̄

 . (8.6)

As we discussed in Section 7.3.1 that using (7.10) we can remove those components of

ᾱ from the system that are committed to the output. Following the same procedure,

if we want to remove a vector αl−1 that belongs to ᾱ from the system, we decompose

Ψ̄ᾱ into two components; Ψ̃α̃ + Ψ̆ᾰ, where ᾰ denotes the vector that we want to

remove from the system, and modify the system in (8.6) asỹ

q̃

 def
=

ȳ

q̄

−
Φ̄

F̄

 Ψ̆ᾰ, (8.7)

where ᾰ denotes α̂l−1 that is the estimate of αl−1 and Ψ̆ denotes the columns in Ψ̄

that correspond to the locations of αl−1 in ᾱ. We represent the modified form of the

system as ỹ

q̃

 =

Φ̄

F̄

 Ψ̃α̃ +

ẽ

f̃

 . (8.8)

88

8.2.2 Recovery problem

To estimate α̃ from the system in (8.8), we solve the following optimization problem:

minimize
α

‖Wα‖1 +
1

2
‖Φ̄Ψ̃α− ỹ‖2

2 +
λ

2
‖F̄Ψ̃α− q̃‖2

2, (8.9)

where W is a diagonal matrix that consists of positive weights and λ > 0 is a reg-

ularization parameter that controls the effect of the dynamic model on the solution.

We select the weights using a prior estimate of α̃, which we denote as α̂. Estimate of

a significant portion of α̂ is known from the previous streaming iteration, and only a

small portion is new to the system. We predict the incoming portion of the signal, say

xr, using the prediction matrix in (8.1b) and the signal estimate from the previous

iteration as x̂r|r−1
def
= Fr−1x̂r−1. We update the coefficients in α̂ accordingly and set

very small coefficients in α̂ to zero. We computed ith diagonal entry in W as

wi ←
τ

β|α̂i|+ 1
, (8.10)

where τ > 0 and β >> 1 are two parameters that can be used to tune the weights

according to the problem.

Instead of solving (8.9) from scratch, we use the available estimate α̂ as a warm-

start. In the dynamic `1 updating framework, described in Chapter 3, we use the

following homotopy formulation to solve (8.9):

minimize
α

‖Wα‖1 +
1

2
‖Φ̄Ψ̃α− ỹ‖2

2 +
λ

2
‖F̄Ψ̃α− q̃‖2

2 + (1− ε)uTα, (8.11)

by changing ε from 0 to 1 in Algorithm 1, using the warm-start vector α̂, the system

matrix Φ←

 Φ̄Ψ̃
√
λF̄Ψ̃

, and the measurement vector y←

 ỹ
√
λq̃

. We define u as

u
def
= −W ẑ− (Φ̄Ψ̃)T (Φ̄Ψ̃α̂− ỹ)− λ (F̄Ψ̃)T (F̄Ψ̃α̂− q̃), (8.12)

where ẑ is defined as before.

89

8.3 Numerical experiments

We present experiments for the recovery of time-varying signals using the linear dy-

namic model in (8.1) and using wavelet transforms for the sparse signal representation.

We evaluate the performance of our proposed recovery algorithm for two signals at

different compression factors. We compare the performance of the `1-homotopy algo-

rithm against a state-of-the-art `1 solver and demonstrate that `1-homotopy requires

significantly lesser computational operations and time.

8.3.1 Experiment setup

In these experiments, we simulated time-varying signal x[n] according to the linear

dynamic model defined in (8.1b): xt+1 = Ftxt + ft. We generated a seed signal of

length N = 256, which we will denote as x0. Starting with x0, we generated a sequence

of signal instances xt for t = 1, 2, . . . as follows. For each t we generated xt+1 by

applying a non-integer, left-circular shift εt ∼ uniform(0.5, 1.5) to xt (i.e., xt+1[n] =

xt[(n + εt)modN], where εt is drawn uniformly, at random from interval [0.5, 1.5]).

We computed values of xt over non-integer locations using linear interpolation. For

defining the dynamic model, we assumed that the individual shifts (εt) are unknown

and only their average value is known, which is one in our experiments. Therefore,

we defined Ft, for all t, as a matrix that applies left-circular shift of one, whereas ft

accounts for the prediction error in the model because of the unaccounted component

of the shift εt. We used the following two signals from the Wavelab toolbox [29] as x0:

1) HeaviSine, which is a summation of a sinusoidal and a rectangular signal and 2)

Piece-Regular, which is a piecewise smooth signal. HeaviSine and Piece-Regular

signals along with examples of their shifted copies are presented in Figure 8.1a and

Figure 8.2a, respectively. We concatenated the xt for t = 1, 2, . . . , 128 to build the

time-varying signal x[n] of length 215. We estimated sparse wavelet coefficients of x[n]

from streaming, compressive measurements using the system model and the recovery

90

procedure outlined in Section 8.2.

We selected the compressive measurements and the signal representation as fol-

lows.

Compressive measurements: We simulated streaming, compressive measurements of

x[n] according to (8.1a), using the following procedure: For a desired compression

rate R, we generated yt with M = N/R measurements of non-overlapping xt, gen-

erated entries in Φt as ±1/
√
M with equal probability, and added Gaussian noise in

the measurements such that the expected SNR becomes 35 dB.

Signal representation: We represented x[n] using block-based wavelet bases. We used

Daubechies-8 orthogonal wavelets [53] for the signal representation with five levels

of decomposition. We divided x[n] into non-overlapping components, xt, of length

N and computed wavelet coefficients, αt, using circular convolution in the wavelet

analysis filter bank. We used five levels of wavelet decomposition.

At every streaming iteration, we built the system in (8.8) for P = 3 consecutive

xt in x̄. We updated the system in (8.6), from the previous iteration, by shifting

the active interval, removing old measurements, and adding new measurements. We

computed ỹ and q̃ in (8.7) and committed a portion of α̂ to the output. The combined

system in (8.8), corresponding to the unknown vector x̄ of length PN , thus, consists

of measurement vectors ỹ, q̃ of length PM and PN , respectively, a block diagonal

PM×PN measurement matrix Φ̄, a banded PN×PN prediction matrix F̄, a block-

diagonal PN ×PN representation matrix Ψ̃, the unknown wavelet coefficient vector

α̃ of length PN , and error vectors ẽ, f̃ . We predicted values of the new coefficients

in α̂, updated the weights W, and solved (8.9) using α̂ as a warm-start. We selected

λ = 1/2 and updated the weights according to (8.10) using β = M
‖α̂‖22
‖α̂‖21

and τ =

max{10−2‖ΦTy‖∞, σ
√

log(PN)}, where Φ and y denote the system matrix and the

measurements in (8.9), respectively, and σ denotes the standard deviation of the

measurement noise. We truncated the values in α̂ that are smaller than τ/
√

log(PN)

91

to zero. For the first streaming iteration, we initialized x̂l−1 as x0 and α as zero. We

solved (8.9) as an iterative reweighted `1 problem, starting with W = τ , using five

reweighting iterations [12, 42].

We solved (8.9) using our proposed `1-homotopy algorithm in Algorithm 1 (which

in fact solves (8.11)) and SpaRSA, with identical initialization (warm-start) and

weight selection scheme. Since YALL1 only works with under-determined systems,

we did not use that in these experiments.

We used MATLAB implementations of all the algorithms and performed all the

experiments on a standard laptop computer. In every experiment, we recorded three

quantities for each algorithm: 1) the quality of reconstructed signal in terms of the

signal-to-error ratio (SER) in dB, defined as

SER = −10 log10

‖x− x̂‖2
2

‖x‖2
2

,

where x and x̂ denote the original and the reconstructed signal, respectively, 2) the

number of matrix-vector products with the system matrix in (8.9) and its adjoint,

and 3) the execution time in MATLAB.

8.3.2 Results

We compared the performance of `1-homotopy and SpaRSA for the recovery of

HeaviSine and Piece-Regular signals from streaming, compressive measurements.

We performed 5 independent trials at different values of the compression factor R.

In each experiment, we estimated the time-varying signal using all the algorithms,

according to the procedures described above, and recorded the corresponding signal-

to-error ratios, the number of matrix-vector products, and MATLAB runtime. The

results, averaged over all the trials, are presented in Figures 8.1–8.2.

Figure 8.1 presents results for experiments with HeaviSine signal. Figure 8.1a,

top-left image presents the HeaviSine signal, where pth column represents xp. Next

to the image, we have plotted three examples for x1, x20, x60 as three colored lines.

92

Original signal

time index (p)

ti
m

e
 i
n
d
e
x
 (

n
)

20 40 60 80 100 120

50

100

150

200

250
−5 0 5

examples

Reconstructed signal

time index (p)

ti
m

e
 i
n
d
e
x
 (

n
)

20 40 60 80 100 120

50

100

150

200

250
−5 0 5

examples

time index (p)

Reconstruction error

20 40 60 80 100 120

50

100

150

200

250
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

20 40 60 80 100 120

24

26

28

30

32

34

36

Comparison between L1 and LS

S
E

R
 i
n
 d

b

time index (p)

L1

LS

(a) Snapshot of the original and the reconstructed signal, error in the reconstruction, and
the comparison of `1- and `2-regularized reconstructions. Top left: HeaviSine signal x[n]
drawn as an image; pth column represents xp; x1, x20 and x60 are plotted on the right.
Bottom left: Reconstructed signal at R = 4. Top right: Error in the reconstructed
signal. Bottom right: Comparison between SERs for the solution of the `1-regularized
problem in (8.9) (solid-blue line, labeled L1) and the solution of the `2-regularized (Kalman
filter smoothing) problem in (8.13) (broken-black line, labeled LS).

2 4 6 8

22

24

26

28

30

32

34

R
e
c
o
n
s
tr

u
c
te

d
 s

ig
n
a
l
to

 e
rr

o
r

ra
ti
o
 i
n
 d

B

R

2 4 6 8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o
ta

l
A

tA
 c

o
u
n
t

R
2 4 6 8

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
o
ta

l
ru

n
ti
m

e
 (

s
e
c
.)

R
l1homotopy SpaRSA LS−Kalman DWT

(b) Results for the recovery of HeaviSine signal from random, compressive measurements
in the presence of noise at 35dB SNR. Left: SER at different compression rate R. Middle:
Approximate count of matrix-vector multiplications. Right: Matlab execution time in
seconds.

Figure 8.1: Experiments on the time-varying HeaviSine signal reconstruction from
streaming, compressed measurements in a dynamical system.

93

Original signal

time index (p)

ti
m

e
 i
n
d
e
x
 (

n
)

20 40 60 80 100 120

50

100

150

200

250
−20 0 20 40

examples

Reconstructed signal

time index (p)

ti
m

e
 i
n
d
e
x
 (

n
)

20 40 60 80 100 120

50

100

150

200

250
−20 0 20 40

examples

time index (p)

Reconstruction error

20 40 60 80 100 120

50

100

150

200

250

−0.05

0

0.05

0.1

20 40 60 80 100 120

15

20

25

30

35

Comparison between L1 and LS

S
E

R
 i
n
 d

b

time index (p)

L1

LS

(a) Snapshot of the original and the reconstructed signal, error in the reconstruction, and
the comparison of `1- and `2-regularized reconstructions. Top left: Piece-Regular signal
x[n] drawn as an image; pth column represents xp; x1, x20 and x60 are plotted on the right.
Bottom left: Reconstructed signal at R = 4. Top right: Error in the reconstructed
signal. Bottom right: Comparison between SERs for the solution of the `1-regularized
problem in (8.9) (solid-blue line, labeled L1) and the solution of the `2-regularized (Kalman
filter smoothing) problem in (8.13) (broken-black line, labeled LS).

2 4 6 8

0

5

10

15

20

25

30

35

R
e
c
o
n
s
tr

u
c
te

d
 s

ig
n
a
l
to

 e
rr

o
r

ra
ti
o
 i
n
 d

B

R

2 4 6 8

0

1000

2000

3000

4000

5000

6000

7000

8000

T
o
ta

l
A

tA
 c

o
u
n
t

R
2 4 6 8

1

2

3

4

5

6

7

T
o
ta

l
ru

n
ti
m

e
 (

s
e
c
.)

R
l1homotopy SpaRSA LS−Kalman DWT

(b) Results for the recovery of Piece-Regular signal from random, compressive mea-
surements in the presence of noise at 35dB SNR. Left: Signal to error ratio at different
compression rate R. Middle: Approximate count of matrix-vector multiplications. Right:
Matlab execution time in seconds.

Figure 8.2: Experiments on the time-varying Piece-Regular signal reconstruction from
streaming, compressed measurements in a dynamical system.

94

Bottom-left image is the reconstructed signal at R = 4 along with the examples of the

reconstructed xp on its right. Top-right image represents errors in the reconstruction.

Bottom-right plot presents a comparison between the SER for the solution of the `1-

regularized problem in (8.9) and the solution of the following `2-regularized (Kalman

filtering and smoothing) problem using the systems in (8.4) and (8.5):

minimize
x

(xp − x̂p|p−1)TP−1
p|p−1(xp − x̂p|p−1) + λ‖F̃x‖2

2 + ‖Φ̄x− ȳ‖2
2, (8.13)

where x denotes a vector that consists of xp, . . . , xp+P−1, F̃ denotes a submatrix of

F̄ (without its first N rows), and Pp|p−1 denotes the error covariance matrix for the

Kalman filter estimate x̂p|p−1 given all the previous measurements [78, 126]. Three

plots in Figure 8.1b compare performances of the `1-homotopy (∗) and SpaRSA (�).

The left plot in Figure 8.1b compares the SER for the two solvers. Since both of them

solve the same convex program, SERs in reconstructed signals are almost identical.

To demonstrate the advantage of our proposed recovery framework (8.9), we present

results for the solution of two related recovery problems, for identical signal and

measurement settings: 1) Kalman filtering and smoothing problem (8.13) (labeled

as LS-Kalman and plotted as ◦), which does not take into account the sparsity of

the signal. As the results indicate, the Kalman filter estimate is not as good as the

one for the `1-regularized problem in (8.9). 2) Weighted `1-regularized problem in

(8.9) without the dynamic model, which is equivalent to solving (8.9) with λ = 0,

and it exploits only the sparse representation of each xp in wavelets (results labeled

as DWT and plotted as ×). We observed a significant degradation in the signals

reconstructed without the dynamic model; the results are indeed inferior to the LS-

Kalman. The middle plot in Figure 8.1b compares the computational cost of all

the algorithms in terms of the total number of matrix-vector multiplications used

in the signal reconstruction. We counted one application of the system matrix and

its adjoint as one count of AtA, where we approximated the cost of one step in `1

homotopy as one application of ΦTΦ. The right plot in Figure 8.1b compares the

95

MATLAB execution time for each solver. We observed that `1-homotopy consumed

distinctly fewer matrix-vector multiplications and lesser computation time for the

signal reconstruction.

Figures 8.2 presents similar results for experiments with Piece-Regular signal.

Figure 8.2a presents a snapshot of the Piece-Regular signal, its reconstruction at

R = 4 using (8.9), the error in the reconstruction, and a comparison between the

reconstruction of (8.9) and (8.13). Three plots in Figure 8.2b compare performance

of the two solvers. In these plots we see similar results that the reconstruction error

for (8.9) using both `1-homotopy and SpaRSA is almost identical, but `1-homotopy

performs significantly better in terms of computational cost and execution time. For

the DWT experiments with Piece-Regular signal, we solved a non-weighted version

of (8.9), where we fixed the value of W as τ .

A brief summary of the results for our experiments is as follows. We observed that

combining a linear dynamic model with the `1-norm regularization for the sparse sig-

nal reconstruction provided a much better signal reconstruction compared to the

Kalman filter or the `1-regularized problem without the dynamic model. The com-

putational cost and execution time for `1-homotopy is significantly smaller than that

for SpaRSA. Average number of homotopy steps for updating the solution at every

iteration ranges from 3 to 10, and average time for an update ranges from 5 to 13

milliseconds.

96

CHAPTER IX

NON-NEGATIVE `1 HOMOTOPY

In this chapter, we discuss how a simple change in the `1-homotopy algorithm pre-

sented in Chapter 3 allows us to solve a positivity-constrained formulation of the

`1-norm minimization program in (3.6). As we explain below, the only change occurs

in the definition of δ+ in (9.10) such that only the elements with positive sign enter

the signal support.

Suppose y is a vector that obeys the following linear model: y = Φx̄ + e, where

x̄ is a sparse signal of interest that has non-negative values, Φ is an M × N system

matrix, and e is a noise vector. We want to solve the following `1-norm minimization

program with a positivity constraint on the estimate x̄:

minimize
x

‖Wx‖1 +
1

2
‖Φx− y‖2

2 subject to x � 0, (9.1)

where W denotes a diagonal matrix that contains positive weights w in its diagonal

and � denotes an element-wise inequality. Instead of solving (9.1) from scratch,

we want to use a non-negative warm-start vector x̂ (with support Γ̂) and solve the

following homotopy program:

minimize
x

‖Wx‖1 +
1

2
‖Φx− y‖2

2 + (1− ε)uTx subject to x � 0. (9.2)

We define u as before:

u
def
= −W ẑ−ΦT (Φx̂− y), (9.3)

where ẑ can be any vector that is defined as sign(x̂) = 1 on Γ̂ and strictly smaller than

one elsewhere. As ε changes from 0 to 1, the optimization problem in (9.2) gradually

transforms into the one in (9.1), and the solution of (9.2) follows a piece-wise linear

homotopy path from x̂ toward the solution of (9.1). The homotopy procedure for

97

solving (9.2) is identical to the one described in Algorithm 1 with the only difference

that δ+ is selected to ensure that any new element that is added to x∗ has positive

sign.

To demonstrate these facts and derive the homotopy algorithm, we analyze the

optimality conditions for (9.2). We write (9.2) in the following equivalent standard

form:

minimize
x

1TWx +
1

2
‖Φx− y‖2

2 + (1− ε)uTx subject to − x � 0. (9.4)

where 1 is a vector of all ones. We can write the Lagrangian function for the objective

in (9.4) as

L(x, λ) = 1TWx +
1

2
‖Φx− y‖2

2 + (1− ε)uTx− λTx, (9.5)

where λ ∈ RN is the Lagrange dual vector associated with the inequality constraints

−x � 0 and λ � 0. The problem in (9.4) satisfies the strong duality conditions,

and any optimal primal-dual solution pair (x∗, λ∗) must satisfy the following Karush-

Kuhn-Tucker (KKT) conditions [26]:

∇xL = W1 + ΦT (Φx∗ − y) + (1− ε)u− λ∗ = 0, (9.6a)

−x∗ � 0, (9.6b)

λ∗ � 0, (9.6c)

x∗iλ
∗
i = 0, i = 1, . . . , N. (9.6d)

The first equation is the stationarity condition, which states that the gradient of

the Lagrangian function with respect to x must vanish at the optimal solution; the

second and the third inequality corresponds to the primal and the dual feasibility,

respectively; and the fourth one is the so-called complementary slackness condition,

which states that if a primal constraint is active at index i such that x∗i > 0, then the

corresponding λ∗i = 0, and if λ∗i > 0, then the corresponding x∗i = 0.

The KKT conditions imply that, for any given value of ε ∈ [0, 1], a vector x∗

(with support Γ) is an optimal solution of (9.2) if it satisfies the following optimality

98

conditions:

φTi (Φx∗ − y) + (1− ε)ui + wi = 0 for all i ∈ Γ (9.7a)

φTi (Φx∗ − y) + (1− ε)ui + wi ≥ 0 for all i ∈ Γc, (9.7b)

where φi denotes ith column of Φ. Note that we used the stationarity condition

(i.e, ∇xL = 0) with the complementary slackness condition (i.e., λ∗Γ = 0) in (9.7a)

and with the dual feasibility condition (i.e., λ∗ � 0) in (9.7b). In contrast with the

optimality conditions in (3.10) (i.e., without the positivity constraints), the conditions

in (9.7) impose one-sided constraints on φTi (Φx−y)+(1− ε)ui—only on the smallest

negative value and not on the absolute value.

As we increase ε by a small value δ, the solution moves in a direction ∂x, which

to maintain optimality must obey

φTi (Φx∗ − y) + (1− ε)ui + δ(φTi Φ∂x− ui) = −wi for all i ∈ Γ (9.8a)

φTi (Φx∗ − y) + (1− ε)ui︸ ︷︷ ︸
pi

+δ (φTi Φ∂x− ui)︸ ︷︷ ︸
di

≥ −wi for all i ∈ Γc, (9.8b)

The update direction that keeps the solution optimal as we change δ is the same as

in (3.12):

∂x =


(ΦT

ΓΦΓ)−1uΓ on Γ

0 otherwise.

(9.9)

We can move in direction ∂x until either one of the constraints in (9.8b) is violated,

indicating that we must add an element to the support Γ, or one of the nonzero

elements in x∗ shrinks to zero, indicating that we must remove an element from Γ.

The smallest step-size that causes one of these changes in the support can be easily

computed as δ∗ = min(δ+, δ−), where

δ+ = min
i∈Γc

(
−wi − pi

di

)
+

(9.10a)

and δ− = min
i∈Γ

(
−x∗i
∂xi

)
+

, (9.10b)

99

and min(·)+ means that the minimum is taken over only positive arguments. Note

that the definition of δ+ is the only difference between the homotopy algorithm here

and the one in Chapter 3. δ+ is the smallest step-size that causes an inactive constraint

to become active at index γ+, indicating that γ+ should enter the support, and δ− is

the smallest step-size that shrinks an existing element at index γ− to zero, indicating

that γ− should leave the support. The new critical value of ε becomes ε + δ∗ and

the new signal estimate x∗ becomes x∗+ δ∗∂x, and its support and sign sequence are

updated accordingly. If γ+ is added to the support, we check whether the value of

∂xγ+ is positive at the next iteration; if ∂xγ+ is negative, we immediately remove γ+

from the support and recompute the update direction ∂x.

At every step along the homotopy path, we compute the update direction, the

step-size, and the consequent one-element change in the support. We repeat this

procedure until ε is equal to 1.

100

CHAPTER X

THE DANTZIG SELECTOR `1 HOMOTOPY

In this chapter, we present a homotopy algorithm similar to the one discussed in

Chapter 3 that can dynamically update the `1 program for the Dantzig selector as

the system parameters change. The Dantzig selector (DS) is an `1-norm minimization

program with near-optimal performance guarantees for the recovery of sparse signals

from linear, incoherent measurements in the presence of noise [34]. Suppose y is

a vector that obeys the following linear model: y = Φx̄ + e, where x̄ is a sparse,

unknown signal of interest, Φ is an M × N system matrix, and e is a noise vector.

The DS solves the following `1-norm minimization problem to estimate x̄:

minimize
x

‖x‖1 subject to ‖ΦT (Φx− y)‖∞ ≤ τ, (10.1)

where τ denotes a regularization parameter. This is a convex optimization problem

that can be recast into a linear program for real data and solved using an appropriate

solver [20, 26, 41]. Homotopy algorithms for solving (10.1) have also been proposed in

[7, 10, 73] and an equivalence between the LASSO and the Dantzig selector homotopy

has also been discussed in [3].

10.1 Primal-dual formulation

In [10], we proposed the primal-dual pursuit homotopy algorithm for solving (10.1),

which uses both the primal and the dual formulation of (10.1) and the strong duality

between their objectives. In this section, we discuss a homotopy algorithm for solving

the following modified form of the standard DS program in (10.1):

minimize
x

‖Wx‖1 subject to |ΦT (Φx− y)| � q, (10.2)

101

where W denotes a diagonal matrix that contains positive weights w, q denotes a

vector with a set of positive regularization parameters, and � denotes an element-wise

inequality. Instead of solving (10.3) from scratch, we want to expedite the process

by using some prior knowledge about the solution of (10.3), and for that we develop

a homotopy-based dynamic updating algorithm similar to the one discussed in Algo-

rithm 1. To design the homotopy algorithm, we will also need the dual formulation

of (10.2), which we state here without derivation:

maximize
λ

− λTΦTy − ‖Qλ‖1 subject to |ΦTΦλ| � w, (10.3)

where λ ∈ RN is the dual optimization variable and Q is a diagonal matrix that

contains q in its diagonal.

We use a given warm-start primal-dual pair x̂, λ̂ as a starting point and solve a

primal-dual pair of homotopy programs for the DS in (10.2) and (10.3). We formulate

the homotopy program for the primal problem as

minimize
x

‖Wx‖1 + (1− ε)uTx subject to |ΦT (Φx− y) + (1− ε)v| � q, (10.4)

for which the dual program can be written as

maximize
λ

−λT (ΦTy−(1−ε)v)−‖Qλ‖1 subject to |ΦTΦλ+(1−ε)u| � w. (10.5)

We define u and v such that the warm-start vectors x̂, λ̂ (with respective supports

Γ̂x, Γ̂λ) are optimal solutions for the problems in (10.4) and (10.5) at ε = 0. Using

the optimality conditions for (10.4) and (10.5), discussed in (10.15) below, we define

such u,v as

u
def
= −W ẑx −ΦTΦλ̂, (10.6a)

v
def
= Q ẑλ −ΦT (Φx̂− y), (10.6b)

where ẑx, ẑλ can be any vectors that are defined as sign(x̂), sign(λ̂) on Γ̂x, Γ̂λ, respec-

tively, and strictly smaller than one elsewhere. As ε changes from 0 to 1, the opti-

mization problems in (10.4) and (10.5) gradually transform into the ones in (10.2)

102

and (10.3), and the solutions of (10.4), (10.5) follow piece-wise linear homotopy paths

(with sharp discontinuities at critical values of ε) from x̂, λ̂ toward the solutions of

(10.4), (10.5). To demonstrate these facts and derive the homotopy algorithm, we dis-

cuss below a derivation of the dual formulation in (10.5) and the optimality conditions

that any primal-dual solution pair must satisfy.

10.1.1 Dual problem derivation

To derive the dual problem for (10.4), we first recast it into the following linear

program:

minimize
x,s

1T s + (1− ε)uTx subject to Wx � s, (10.7)

−Wx � s,

ΦT (Φx− y) + (1− ε)v � q,

−ΦT (Φx− y)− (1− ε)v � q.

The Lagrangian function for this problem can be written as

L(x, s, λ+, λ−, η+, η−) = 1T s + (1− ε)uTx + ηT+(Wx− s) + ηT−(−Wx− s) (10.8)

+λT+(ΦT (Φx− y) + (1− ε)v − q) + λT−(−ΦT (Φx− y)− (1− ε)v − q),

the Lagrange dual function can be written as

g(λ+, λ−, η+, η−) = inf
x,s

L(x, s, λ+, λ−, η+, η−), (10.9)

and the Lagrange dual problem can be written as

maximize
λ+,λ−,η+,η−

g(λ+, λ−, η+, η−) subject to λ+ � 0, λ− � 0, η+ � 0, η− � 0, (10.10)

where λ+, λ−, η+, η− are the dual variables associated with the inequality constraints

in (10.7) [26, Ch. 5]. To compute the Lagrange dual function, we minimize L over

x, s by setting its gradient to zero as follows.

∇x,sL =

(1− ε)u + Wη+ −Wη− + ΦTΦλ+ −ΦTΦλ−

1− η+ − η−

 = 0, (10.11)

103

which provides us with a set of additional feasibility conditions. The dual problem

can now be written as

maximize
λ+,λ−,η+,η−

(λ+ − λ−)T (−ΦTy + (1− ε)v)− (λ+ + λ−)Tq (10.12)

subject to ΦTΦ(λ+ − λ−) + (1− ε)u = −W(η+ − η−),

η+ + η− = 1,

λ+ � 0, λ− � 0, η+ � 0, η− � 0.

To represent the dual problem in (10.12) in the form described in (10.5), we first define

two variables λ
def
= λ+ − λ− and η

def
= η+ − η−, which are unconstrained in sign. Since

η+, η− are constrained to be non-negative, we write the equivalent form of the second

equality constraint as ‖η‖∞ ≤ 1. Finally, we eliminate η by writing all the constraints

in (10.12) as the following set of inequality constraints: |ΦTΦλ+(1−ε)u| � w, which

leaves λ as the only dual optimization vector. The second term in the objective of

(10.12) can be written in the following equivalent form: (λ+ + λ−)Tq ≡ ‖Qλ‖1. This

is because λ+, λ− are dual variables associated with two complementary inequality

constraints in (10.7), and they are nonzero only for the active primal constraints (due

to complementary slackness), λ+ and λ− cannot be nonzero for the same index as

long as all the entries in q are nonzero.

10.1.2 Optimality conditions

To derive the optimality conditions, we use the strong duality between the objectives

in the primal and dual problems in (10.4) and (10.5). Any primal-dual solution pair

x∗, λ∗ should satisfy the following equality:

‖Wx∗‖1 + 〈x∗, (1− ε)u〉 = −〈λ∗,ΦTy − (1− ε)v〉 − ‖Qλ∗‖1, (10.13)

which can be equivalently written as

‖Wx∗‖1 + ‖Qλ∗‖1 = −〈x∗, (1− ε)u〉 − 〈λ∗,ΦTy − (1− ε)v〉+ 〈λ∗,ΦTΦx∗ −ΦTΦx∗〉

104

= −〈x∗,ΦTΦλ∗ + (1− ε)u〉+ 〈λ∗,ΦT (Φx∗ − y) + (1− ε)v〉.

(10.14)

The complementary slackness condition implies that only those elements in x∗ would

be nonzero for which the corresponding dual constraints are active (i.e., hold with

equality); similarly, only those elements in λ∗ would be nonzero for which the corre-

sponding primal constraints are active. Thus, using (10.14) and the primal and dual

feasibility conditions in (10.4) and (10.5), respectively, we get the following optimality

conditions that any primal-dual solution pair x∗, λ∗ must satisfy at any given value

of ε:

ΦT (Φx∗ − y) + (1− ε)v = Qzλ (10.15a)

|φTi (Φx∗ − y) + (1− ε)vi| ≤ qi for all i ∈ Γcλ, (10.15b)

ΦTΦλ∗ + (1− ε)u = −Wzx (10.15c)

|φTi Φλ∗ + (1− ε)ui| ≤ wi for all i ∈ Γcx, (10.15d)

where φi denotes ith column of Φ, Γx,Γλ denote the supports of x∗, λ∗, and zx, zλ are

vectors that are same as signs of primal-dual vectors on their respective supports and

strictly smaller than one elsewhere. The conditions in (10.15a) are the constraints that

the primal solution x∗ satisfies with equality over the support of the dual solution λ∗

and strict inequality elsewhere, whereas the conditions in (10.15c) are the constraints

that the dual solution λ∗ satisfies with equality on the support of the primal solution

x∗ and strict inequality elsewhere. Equivalently, active primal constraints determine

the support and the sign sequence for the dual solution and the dual active constraints

determine the support and the sign sequence of the primal solution. Note that,

the definitions of u,v in (10.6) ensure that the primal-dual warm-start pair x̂, λ̂

satisfies the optimality conditions in (10.15) at ε = 0; hence, they are valid initial

solutions. It is also evident from (10.15) that at any value of ε the solution pair x∗, λ∗ is

completely described by the supports Γx,Γλ and the sign sequences zx, zλ (assuming

105

that (ΦT
Γλ

ΦΓx)
−1 exists). The supports of the primal and the dual vector change

only at certain critical values of ε, when either a new element enters the support or

an existing nonzero element shrinks to zero. These critical values of ε are easy to

calculate at any point along the homotopy path, and the entire path (parameterized

by ε) can be traced in a sequence of computationally inexpensive homotopy steps.

10.2 Primal-dual `1-homotopy

Every step in the homotopy algorithm for the primal-dual formulation consists of two

phases. In the first phase, we increase ε while updating both the primal and the dual

solutions, until there is a change in the support of either one of them, which indicates

the critical value of ε. In the second phase, we fix ε and update either the primal or

the dual vector, depending on the change in the support during the first phase, so

that the size of the primal and the dual support remains the same. We repeat this

procedure until ε is equal to 1. A pseudocode outlining the homotopy procedure is

presented in Algorithm 4.

10.2.1 Phase 1

In the first phase of every homotopy step, as we increase ε by a small value δ, the

primal-dual solutions move in directions ∂x, ∂λ, which to maintain optimality must

satisfy the following conditions:

ΦT (Φx∗ − y) + (1− ε)v + δ(ΦTΦ∂x− v) = Qzλ (10.16a)

|φTi (Φx∗ − y) + (1− ε)vi︸ ︷︷ ︸
pi

+δ (φTi Φ∂x− vi)︸ ︷︷ ︸
di

| ≤ qi for all i ∈ Γcλ, (10.16b)

ΦTΦλ∗ + (1− ε)u + δ(ΦTΦ∂λ− u) = −Wzx (10.16c)

|φTi Φλ∗ + (1− ε)ui︸ ︷︷ ︸
αi

+δ (φTi Φ∂λ− ui)︸ ︷︷ ︸
βi

| ≤ wi for all i ∈ Γcx, (10.16d)

106

The update directions that keep the primal-dual solution pair optimal as we change

δ can be written as

∂x =


(ΦT

Γλ
ΦΓx)

−1vΓλ on Γx

0 otherwise,

(10.17a)

and ∂λ =


(ΦT

Γx
ΦΓλ)−1uΓx on Γλ

0 otherwise.

(10.17b)

We can change x∗ in the direction ∂x until either one of the constraints in (10.16b)

is violated, indicating that we must add an element to the dual support Γλ, or one

of the nonzero elements in x∗ shrinks to zero, indicating that we must remove an

element from Γx. Similarly, we can change λ∗ in the direction ∂λ until either one of

the constraints in (10.16d) is violated, indicating that we must add an element to the

primal support Γx, or one of the nonzero elements in λ∗ shrinks to zero, indicating

that we must remove an element from Γλ. The smallest step-size that causes one

of these changes in the support can be easily computed as δ∗ = min(δ+
x , δ

−
x , δ

+
λ , δ

−
λ),

where1

δ+
λ = min

i∈Γcλ

(
qi − pi

di
,
−qi − pi

di

)
+

, (10.18a)

δ−x = min
i∈Γx

(
−x∗i
∂xi

)
+

, (10.18b)

δ+
x = min

i∈Γcx

(
wi − αi
βi

,
−wi − αi

βi

)
+

, (10.18c)

and δ−λ = min
i∈Γλ

(
−λ∗i
∂λi

)
+

, (10.18d)

and min(·)+ means that the minimum is taken over only positive arguments. δ+
λ and

δ+
x are the smallest step-sizes that would cause an inactive primal and dual constraint

1To include the positivity constraint in the optimization problem (10.4), we initialize the ho-

motopy with a non-negative (feasible) warm-start vector x̂ and define δ+
x = mini∈Γc

x

(
−wi−αi

βi

)
+

so

that only positive elements are added to x∗. See Section 10.3 for further explanation.

107

to become active and indicate the new element that should enter the support Γλ or

Γx and its sign. δ−x and δ−λ are the smallest step-sizes that would shrink an existing

element in x∗ and λ∗ to zero and indicate the element that should leave the support

Γx or Γλ. We compute the smallest stepsize δ∗ and identify the associated change

in the support of the primal or the dual vector. The new critical value of ε becomes

ε+ δ∗ and the new primal-dual estimates become x∗ + δ∗∂x, λ∗ + δ∗∂λ.

10.2.2 Phase 2

In the second phase of the homotopy step, we keep ε fixed and identify the change

in either the primal or the dual support by updating λ∗ or x∗ such that the sizes of

Γx and Γλ remain the same. For instance, if a new element is selected to add into

Γλ or an existing element is selected to remove from Γx during the first phase, we

must either add a new element in Γx or remove an element from Γλ during the second

phase, for which we fix x∗ and update λ∗. Alternatively, if a new element is selected

to add into Γx or an element is selected to remove from Γλ during the first phase,

we must either add a new element in Γλ or remove an element from Γx during the

second phase, for which we fix λ∗ and update x∗. To update x∗ during the second

phase, we use the primal optimality conditions in (10.15a); to update λ∗, we use the

dual optimality conditions in (10.15c). We discuss the four possible scenarios below.

δ∗ = δ+
λ : Suppose an element at index γ+ with sign zγ+ is identified as the new

element that should enter Γλ during the first phase, which happens if δ∗ = δ+
λ in

(10.18). Thus, we fix x∗ and change λ∗ on the updated support [Γλ γ
+] to identify

either a new element to add into Γx or an element to remove from Γλ. The dual

feasibility condition in (10.15c) provides us one degree of freedom, because of the

newly identified element γ+ in λ∗ for which the sign is also available, such that we

can change λ∗ on the updated support without violating the active constraints on Γx.

To maintain the active constraints on Γx in (10.15c), the update direction ∂λ must

108

satisfy the following condition:

ΦT
ΓxΦΓλ∂λΓλ + θΦΓxφγ+zγ+ = 0, (10.19)

from which we can compute the update direction as

∂λ =


−(ΦT

Γx
ΦΓλ)−1ΦT

Γx
φγ+zγ+ on Γλ

zγ+ on γ+

0 elsewhere,

(10.20)

where θ > 0 denotes the step size. As we change λ∗ in the direction ∂λ by changing

the stepsize θ, either one of the following dual constraints becomes active:

|φTi Φλ∗ + (1− ε)ui︸ ︷︷ ︸
αi

+θ φTi Φ∂λ︸ ︷︷ ︸
βi

| ≤ wi for all i ∈ Γcx, (10.21)

indicating the new element that must be added to Γx, or an existing element in λ∗

shrinks to zero. The smallest step-size that causes one of these changes in the support

can be easily computed as θ∗ = min(θ+
x , θ

−
λ), where2 θ+

x , θ
−
λ are defined same as δ+

x , δ
−
λ

in (10.18), but with a different definition of α, β:

θ+
x = min

i∈Γcx

(
wi − αi
βi

,
−wi − αi

βi

)
+

(10.22a)

and θ−λ = min
i∈Γλ

(
−λ∗i
∂λi

)
+

. (10.22b)

We compute the smallest stepsize θ∗, identify the associated change in the support of

the primal or the dual vector, and update Γx and Γλ accordingly. The new optimal

dual solution becomes λ∗ + θ∗∂λ.

δ∗ = δ−x : Suppose instead of selecting an element to add into Γλ, we identified

an element γ− to remove from Γx during the first phase, which happens if δ∗ = δ−x

in (10.18). The dual feasibility condition in (10.15c) still provides us one degree

2Similarly, for non-negative x∗, we define θ+
x = mini∈Γc

x

(
−wi−αi

βi

)
+

so that only positive ele-

ments are added to the signal support. See Section 10.3 for further explanation.

109

of freedom, because the constraint on γ− ∈ Γx has now become inactive, and we

can change λ∗ on Γλ without violating the active constraints on Γx\γ−. We remove

γ− from Γx, pick an element γ+ out of Γλ and treat that as the new element to

be included in Γλ. While selecting γ+, we must ensure that the matrix ΦT
Γx

ΦΓλ

remains well-conditioned and invertible, which can be confirmed by checking that the

inverse of its Schur complement must be nonzero [10]. Using the updated Γx, Γλ,

and zγ+ = 1, we compute the update direction, ∂λ, in (10.20). Then we can compute

θ∗, as described in (10.22), and identify the associated change in the support of the

primal or the dual vector, and update Γx and Γλ accordingly. The new optimal dual

solution becomes λ∗ + θ∗∂λ. Since there is an ambiguity about the actual sign of ∂λ

on γ+, we have to flip the sign of ∂λ while computing θ∗ if sign(αγ−) = sign(βγ−).

Note that λ∗γ+ is not zero, and it can shrink to zero as well.

δ∗ = δ+
x : If an element at index γ+ with sign zγ+ is identified as a new element

for the support Γx during the first phase, which happens if δ∗ = δ+
x in (10.18), we

fix λ∗ and update x∗ on the updated support [Γx γ
+], using the procedure similar to

that we discussed for updating λ∗ if δ∗ = δ+
λ . The only difference is that here we use

the primal optimality conditions in (10.15a) to compute the update direction and the

step size. The update direction can be computed as

∂x =


−(ΦT

Γλ
ΦΓx)

−1ΦT
Γλ
φγ+zγ+ on Γx

zγ+ on γ+

0 elsewhere.

(10.23)

As we change x∗ in the direction ∂x by changing the stepsize θ, either one of the

following primal constraints becomes active:

|φTi (Φx∗ − y) + (1− ε)vi︸ ︷︷ ︸
pi

+θ φTi Φ∂x︸ ︷︷ ︸
di

| ≤ qi for all i ∈ Γcλ, (10.24)

indicating the new element that must be added to Γλ, or an existing element in x∗

shrinks to zero. The smallest step-size that causes one of these changes in the support

110

can be easily computed as θ∗ = min(θ+
λ , θ

−
x), where θ+

λ , θ
−
x are defined same as δ+

λ , δ
−
x

in (10.18), but with a different definition of p,d

θ+
λ = min

i∈Γcλ

(
qi − pi

di
,
−qi − pi

di

)
+

(10.25a)

and θ−x = min
i∈Γx

(
−x∗i
∂xi

)
+

. (10.25b)

We compute the smallest stepsize θ∗, identify the associated change in the support of

the primal or the dual vector, and update Γx and Γλ accordingly. The new optimal

primal solution becomes x∗ + θ∗∂x.

δ∗ = δ−λ : If instead of selecting an element to add into Γx, we identified an

element γ− to remove from Γλ during the first phase, which happens if δ∗ = δ−λ in

(10.18). The primal feasibility condition in (10.15a) still provides us one degree of

freedom, because the constraint on γ− ∈ Γλ has now become inactive, and we can

change x∗ on Γx without violating the active constraints on Γλ\γ−. We remove γ−

from Γλ, pick an element γ+ out of Γx and treat that as the new element to be included

in Γx. Using the updated Γx, Γλ, and zγ+ = 1, we compute the update direction,

∂x, in (10.23). Then we can compute θ∗, as described in (10.25), and identify the

associated change in the support of the primal or the dual vector, and update Γx and

Γλ accordingly. The new optimal dual solution becomes x∗ + θ∗∂x. Since there is an

ambiguity about the actual sign of ∂x on γ+, we have to flip the sign of ∂x while

computing θ∗ if sign(pγ−) = sign(dγ−). Note that x∗γ+ is not zero, and it can shrink

to zero as well.

10.3 Non-negative Dantzig selector

To impose a positivity constraint on the estimate of the DS program in (10.4), we

can solve the following modified problem:

minimize
x

1TWx + (1− ε)uTx (10.26)

subject to |ΦT (Φx− y) + (1− ε)v| � q, x � 0,

111

for which the dual program can be written as

maximize
λ

− λT (ΦTy − (1− ε)v)− ‖Qλ‖1 (10.27)

subject to ΦTΦλ+ (1− ε)u � −w. (10.28)

We can derive this dual formulation using the same procedure described in Sec-

tion 10.1.1. The only change that appears in the non-negative homotopy is the dual

optimality condition, where instead of inequality constraints on the absolute values of

ΦTΦλ+ (1− ε)u (as in (10.15d)), we have one-sided constraints on the smallest neg-

ative values. This, in turn, changes the definition of δ+
x in (10.18) and θ+

x in (10.22),

while the rest of the homotopy procedure remains the same.

112

Algorithm 4 `1 homotopy for the Dantzig selector

Input: Φ, y, W, Q, x̂, λ̂, u, and v (optional: inverse or QR factors of ΦT
Γ̂λ

ΦΓ̂x
)

Output: x∗

Initialize: ε = 0, x∗ ← x̂, λ∗ ← λ̂
Repeat:

Phase 1: . Change ε in the first phase
Compute ∂x, ∂λ in (10.17a),(10.17b) . Primal-dual update directions
Compute p,d, α, β in (10.16) . Primal-dual constraints
Compute δ∗ = min(δ+

x , δ
−
x , δ

+
λ , δ

−
λ) in (10.18) . Step size

if ε+ δ∗ > 1 then
δ∗ ← 1− ε . Last iteration
x∗ ← x∗ + δ∗∂x . Final primal solution
λ∗ ← λ∗ + δ∗∂λ . Final dual solution
break

end if
x∗ ← x∗ + δ∗∂x . Update the primal solution
λ∗ ← λ∗ + δ∗∂λ . Update the dual solution
ε← ε+ δ∗ . Update the homotopy parameter

Phase 2: . Fix ε in the second phase
if δ∗ = δ+

λ or δ∗ = δ−x then . Fix x∗ and update λ∗ only
Compute ∂λ in (10.20) . Dual update direction
Compute α, β in (10.21)
Compute θ∗ = min(θ+

x , θ
−
λ) in (10.22)

λ∗ ← λ∗ + θ∗∂λ . Update the dual solution
Update the supports Γx, Γλ

else . Fix λ∗ and update x∗ only
Compute ∂x in (10.23) . Primal update direction
Compute p, d in (10.24)
Compute θ∗ = min(θ+

λ , θ
−
x) in (10.25)

x∗ ← x∗ + θ∗∂x . Update the primal solution
Update the supports Γx, Γλ

end if

until ε = 1

113

CHAPTER XI

`1 DECODING

In this chapter we discuss dynamic updating for an `1-norm minimization program

that can recover an arbitrary vector x̄ from corrupted measurements y = Ax̄ + ē,

given A satisfies some properties and ē is a sparse error vector. This problem appears

in the context of decoding by linear programming [38], which is closely related to the

recovery of a sparse vector from an underdetermined system and compressive sensing.

While we can compress a sparse signal by applying an underdetermined incoherent

matrix, we can also protect a general signal against sparse errors by applying an

overdetermined incoherent matrix. Suppose we take M = CN incoherent measure-

ments of an arbitrary signal x̄ of length N as Ax̄, where C > 1, and add a sparse

error ē that has fewer than ρ(C) ·M non-zero terms, where ρ(C) is a constant that

depends on C. Solving the following `1 decoding program (for y = Ax̄+ ē) can exactly

recover x̄ [38, 118]:

minimize
x

‖Ax− y‖1. (11.1)

There exist a number of strong performance guarantees for (11.1) that relate the

number of errors we can correct (number of non-zero entries in ē) to the number of

measurements we have collected (rows in A) [38, 118]. If the matrix A consists of

independent Gaussian random variables, then the number of errors we can correct

(and hence recover x̄ exactly) scales with the amount of oversampling M −N .

In this chapter, we will discuss a homotopy algorithm that can update the solution

to the `1 decoding problem (11.1) as new measurements are added. This algorithm

has been published in [14].

114

11.1 Problem formulation

We will use the language of a communications system: a transmitter is trying to send

a message x̄ to a receiver. The message is turned into a codeword by applying A, and

the received signal y = Ax̄ + ē is corrupted by a sparse error vector ē. The receiver

recovers the message by solving (11.1). If the codeword is long enough (A has enough

rows) and the error is sparse enough (not too many entries of ē are non-zero), the

message will be recovered exactly. The receiver will assume that the true message

has been recovered when the error e = Ax − y for the solution to (11.1) has fewer

than M −N nonzero terms (in general, the error for the solution will contain exactly

M − N terms, and so this degeneracy indicates that the receiver has locked on to

something special). If the recovered error has exactly M − N non-zero terms, the

receiver asks the transmitter for more measurements (codeword elements).

Suppose that the receiver has just solved (11.1) to estimate a decoded message,

and then P new measurements of x are received. The updated system of equations isy
w

 =

A
B

 x̄+

ē
d̄

 , (11.2)

where w represents P new entries in the received codeword, B denotes P new rows

in the coding matrix, and d̄ is the error vector for the new codeword entries. The

receiver now solves the updated `1 decoding problem

minimize
x

‖Ax− y‖1 + ‖Bx− w‖1. (11.3)

Instead of solving (11.3) from scratch, the new measurements can be worked into the

solution gradually by solving the following homotopy program:

minimize
x

‖Ax− y‖1 + ε‖Bx− w‖1 (11.4)

as ε (the homotopy parameter) is increased from 0 to 1.

115

We will find it convenient to trace the path of both the primal and dual solutions

as ε increases from 0 to 1. We begin by writing the dual problem for (11.4) as

maximize
λ,ν

− λTy − ενTw

subject to ATλ+ εBTν = 0, ‖λ‖∞ ≤ 1, ‖ν‖∞ ≤ 1, (11.5)

where λ ∈ RM and ν ∈ RP are the dual optimization variables [26, 38].

The optimality conditions for (x∗, λ∗, ν∗) to be a primal-dual solution set at a

given value of ε can be derived as follows. Let e∗ = Ax∗− y and d∗ = Bx∗−w be the

error estimates for the first and second part of the codeword; their supports denoted

by Γe and Γd respectively. Using the fact that, because of the strong duality in a

linear program [26], the primal and dual objectives in (11.4) and (11.5) will be equal

for the optimal solutions, we get the following conditions for (x∗, λ∗, ν∗):

λ∗ = sign(Ax∗ − y) on Γe, ‖λ∗‖∞ < 1 on Γce (11.6a)

ν∗ = sign(Bx∗ − w) on Γd, ‖νk‖∞ < 1 on Γcd (11.6b)

ATλ∗ + εBTν∗ = 0. (11.6c)

These conditions tell us that the dual vectors lie in the left null space of the combined

coding matrix (ignoring the presence of ε here), and whenever an entry in the error

estimate is non-zero the corresponding dual element is equal to the sign of the error

at that location, while the absolute value of dual vectors at all other indices is smaller

than 1. In the homotopy scheme for `1 decoding, we update the active set for the

error estimate Γ = {Γe ∪ Γd} while satisfying the constraints on the dual vectors as

we increase ε from 0 to 1.

11.2 Homotopy algorithm

The algorithm for updating the solution for (11.4), (11.5) as ε moves from 0 to 1

consists of an initialization procedure followed by alternating updates of the primal

116

and the dual solutions. The critical points along the homotopy path correspond to

the values of ε when an element enters or leaves the support of the sparse error vectors

(e∗ and d∗) corresponding to the optimal solution x∗. We describe each of these stages

below.

11.2.1 Initialization

We initialize x∗ and λ∗ with the primal and dual solutions at ε = 0; the old error

estimate for the first M codeword elements as e∗ = Ax∗ − y. We initialize the error

estimate for the next P elements as d∗ = Bx∗ − w. In general, if we have not yet

recovered the underlying message, all of the terms in d∗ will be non-zero. Throughout

the algorithm, we will use Γ as the index set for the error locations over all M + P

codeword elements; we initialize it with Γ = {Γe ∪Γd}, where Γe is the support of e∗,

and Γd is the support of d∗. We initialize the dual variable ν∗ corresponding to the

new errors as ν∗ = sign(Bx∗ − w). Apart from keeping track of the support of the

entire error estimate, we will also find it necessary to keep track of which elements

from the second part of the error (i.e., d) leave the support at some time. To this

end, we initialize a set Γn = Γd and if an element in d shrinks to zero, we remove

its location from Γn (we will never grow Γn), which is equivalent to removing the

homotopy parameter from in front of the measurements in (11.4) corresponding to

that index in d.

Every step of the homotopy algorithm for `1 decoding can be divided into a primal

and a dual update. Assume that we already have primal-dual solutions (x∗, λ∗, ν∗)

for the problems in (11.4) and (11.5) for a given value of ε between 0 and 1, with

supports Γ (corresponding to all the nonzero entries in the error estimate) and Γn

(corresponding to the entries of d which have remained non-zero so far).

117

11.2.2 Dual update

Assume that the current error estimate has exactly N terms which are zero, which

implies that Γ has size M + P −N and Γc has size N , and exactly N entries in the

dual vector (λ∗, ν∗) have magnitudes smaller than 1. There are N degrees of freedom

for which the dual solution can move during one step of the update; we will exercise

this freedom by manipulating the dual coefficients on the set Γc.

We combine both parts of the coding matrix together as G = [AT BT] and both

parts of the dual vector together as ξ∗ =

λ∗
ν∗

. By dividing ξ into components that

correspond to Γn (those error locations in d that have remained nonzero so far) and

the rest, the optimality condition (11.6c) can be written as

GΓcnξ
∗
Γcn

+ εGΓnξ
∗
Γn = 0. (11.7)

Note that if at any point an element in d shrinks to zero, the corresponding element

is removed from Γn. Increasing ε to ε + δ, the dual solution changes in direction ∂ξ

and the optimality conditions change as

GΓcn(ξ∗ + ∂ξ)Γcn + (ε+ δ)GΓn(ξ∗ + ∂ξ)Γn = 0

GΓcn∂ξΓcn
+ δ GΓn(ξ∗ + ∂ξ)Γn = 0. (11.8)

Since ∂ξ can change only on the set Γc (i.e., N indices where error vectors e∗ and d∗

are zero), Γn ⊂ Γ, and Γc ⊂ Γcn, ∂ξΓn = 0. We can compute the update direction ∂ξ

and the step size δ required to change ε to ε+ δ as

∂ξ =


−(GΓc)

−1GΓnξ
∗
Γn

on Γc

0 otherwise,

(11.9)

As we increase ε to ε + δ, the dual solution (ξ∗) changes in the direction ∂ξ with

step size δ until one of its element becomes active (equal to +1 or -1) on Γc. The

118

smallest step size for this to happen can be computed as

δ+ = min
i∈Γc

(
1− ξ∗i
∂ξi

,
1 + ξ∗i
−∂ξi

)
+

. (11.10)

The new critical value for ε becomes ε + δ+ and dual solution vector ξ∗ becomes

ξ∗ + δ+∂ξ. Let γ+ be the index for the minimizer in (11.10). This tells us that we

have a new element in the estimated error vector at index γ+ with the sign, zγ+ , same

as ξ∗γ+ .

11.2.3 Primal update

The dual update provides us with a new element in the support of the error estimate.

As the error estimate will have exactly N zero entries until we have recovered the

message, we know that one of the elements currently in Γ must shrink to zero. This

is accomplished by the primal update.

We have the following system of equations at εA
B


︸ ︷︷ ︸
GT

x∗ −

y
w


︸︷︷︸
s

=

e∗
d∗


︸ ︷︷ ︸
c∗

, (11.11)

where the current optimal error estimate c∗ is supported on the set Γ. The dual

update has indicated that our new error estimate will have a new active term at

index γ+, and that the sign of this new term should be zγ+ . We update our estimate

of the message x∗ such that the updated error estimate c∗ has sign[c∗γ+] = zγ+ and c∗

remains zero at the remaining indices in Γc. In other words, for an update direction

∂x, the system in (11.11) needs to be satisfied with the following conditions on the

set Γc for a small step size δ > 0:

(GT (x∗ + δ∂x)− s)Γc = (c∗ + δ∂c)Γc , (11.12)

119

where ∂c is constrained on the set Γc as

∂cΓc =


zγ+ on γ+

0 on Γc\{γ+}.
(11.13)

We choose δ above as the smallest value which shrinks an existing element in c∗ to

zero, which will also be the value for the new element in c∗ at index γ+.

Using (11.12) and (11.13) we can write the following system of equations to com-

pute the update direction ∂x

[GT][Γc]∂x =


zγ+ on γ+

0 on Γc\{γ+},
(11.14)

where [GT][Γc] corresponds to the rows of GT indexed by elements in the set Γc, which

is same as (GΓc)
T . We solve (11.14) to compute ∂x and consequently ∂c = GT∂x.

The step size associated with ∂x is δ, and as we increase δ from 0, one of the elements

in c∗+ δ∂c will eventually shrink to zero. The value of this step size can be computed

as

δ− = min
i∈Γ

(
−c∗i
∂cj

)
+

, (11.15)

which is also the new value of c∗γ+ . Let us denote γ− as the index that leaves the

support of c∗. The new estimates for the message x and the error vector c can be

written as x∗ + δ−∂x and c∗ + δ−∂c, respectively.

The support set can be updated as Γ = [Γ ∪ γ+]\{γ−}. If at some point during

the primal update, an element from within Γn is removed, set Γn = Γn\{γ−} and

(to maintain the optimality of the dual solution) ξ∗γ− = ε ξ∗γ− . This is equivalent to

removing the homotopy parameter ε for that element in d and ν for which the error

shrunk to zero. We repeat the alternating dual and primal updates until ε becomes

equal to 1.

The procedure outlined above used two working assumptions. The first is that the

error estimate will have exactly N zero entries until we recover the original message

120

x. The second is that any N × N submatrix formed by picking N rows from the

M + P ×N coding matrix will be nonsingular. The second assumption allows us to

calculate the update directions for both the primal and dual; the first ensures that

this update direction is unique. Both of these assumptions are true with probability

1 if the coding matrix is Gaussian or a random projection, and they are true with

very high probability if the coding matrix A is Bernoulli [93]. In addition to this, the

condition number of these submatrices will be fairly controlled [119]. The algorithm

can be extended to properly handle situations where these assumptions do not hold,

but we will not discuss this here.

The main computational cost in this algorithm also comes from solving a system

of equations to compute the update directions. At every homotopy step we have one

element swap in the support set Γc, and consequently a column gγ+ in GΓc is replaced

with gγ− (a column of G at index γ−). Note that we can represent the change in GΓc

as a rank-one update as

GΓc ← GΓc + (gγ− − gγ+)1γ,

where 1γ represents a row vector with all zeros except at index γ that corresponds

to the location of γ+ in Γc. Instead of computing the inverse of GΓc from scratch at

every step, we can simply update the old inverse using a rank-one update [23, 66].

11.2.4 Numerical experiments

We evaluated the performance of dynamic updating for `1 decoding using the follow-

ing experiment. We generated a message x̄ of length N by selecting each entry from

i.i.d. N (0, 1) distribution; encoded x̄ using an N × N Gaussian matrix A, whose

entries were generated from i.i.d. N (0, 1) distribution; and added error e by selecting

S nonzero entries from i.i.d. N (0, 1) distribution, at random locations. We computed

the initial estimate as x̂ = A−1y. Afterwards, we started adding P error-free mea-

surements to the system and solved (11.3) using Algorithm 5 until the exact message

121

is recovered. Results for signal recovery for different values of N and S, averaged over

20 independent experiments, are presented in Table 11.1 and Figures 11.1 and 11.2.

Table 11.1 presents the results for the average number of measurements (length of

codeword, M) required for perfect reconstruction of messages of length N = 64, 128

when S = [10, 20, 30, 40, 50] sparse errors are present in the starting codeword. As it

can be seen that the redundancy (M −N) required for perfect recovery ranges within

2S–4S. Figure 11.1 illustrates the total number of homotopy iterations that was

used to recover the signal exactly. Figure 11.2 illustrates the approximate number of

homotopy iterations used to update the solution every time P new measurement were

added to the system. We observed that the average number of homotopy iterations

required for adding a new measurement range from 3–11 for N = 64 and 5–15 for

N = 128, which is a small fraction of the problem size and the number of errors

in the measurements. Thus, instead of solving a new problem from scratch after

receiving new measurements, we can quickly update the solution in a small number

of homotopy iterations.

Table 11.1: Comparison of recovery performance at different levels of error: Average
length of codeword (M) and redundancy (M − N) required for perfect signal recovery in
the presence of S sparse errors using `1 decoding.

Signal length No. of errors Average redundancy Average codeword length
(S) (M −N) (M)

N = 64

10 33 97
20 56 120
30 76 140
40 93 157
50 111 175

N = 128

10 40 168
20 68 196
30 89 217
40 109 237
50 128 256

122

10 20 30 40 50
100

200

300

400

500

600

700

800

900

1000

1100

Number of errors

N
u

m
b

e
r

o
f

h
o

m
o

to
p

y
 i
te

ra
ti
o

n
s

P=1

P=2

P=4

P=8

(a) N = 64

10 20 30 40 50
200

400

600

800

1000

1200

1400

1600

1800

2000

Number of errors

N
u

m
b

e
r

o
f

h
o

m
o

to
p

y
 i
te

ra
ti
o

n
s

P=1

P=2

P=4

P=8

(b) N = 128

Figure 11.1: Total number of homotopy iterations required for signal recovery, while
adding P new measurements at a time until the exact signal is recovered.

10 20 30 40 50

4

5

6

7

8

9

10

Number of errors

N
u

m
b

e
r

o
f

h
o

m
o

to
p

y
 i
te

ra
ti
o

n
s

P=1

P=2

P=4

P=8

(a) N = 64

10 20 30 40 50

5

6

7

8

9

10

11

12

13

14

15

Number of errors

N
u

m
b

e
r

o
f

h
o

m
o

to
p

y
 i
te

ra
ti
o

n
s

P=1

P=2

P=4

P=8

(b) N = 128

Figure 11.2: Average number of homotopy iterations required to add one new measure-
ment, while adding P new measurements at a time until the exact signal is recovered.

123

Algorithm 5 `1 decoding

Input: y, w,A,B and primal-dual solution pair: x∗, λ∗.
Output: x∗

Initialize: e∗ = Ax∗−y with support Γe; d
∗ = Bx∗−w with support Γd; ν

∗ = zd;

Γn ← Γd and Γ← [Γe ∪ Γn]; c∗ =

[
e∗

d∗

]
; ξ∗ =

[
λ∗

ν∗

]
; and G = [AT BT].

Repeat:

Dual update:
Compute ∂ξ in (11.9) . Update direction
Compute δ+, γ+ and zγ in (11.10) . Step size and change in support
if ε+ δ+ > 1 then

δ+ ← 1− ε . Last iteration
ξ∗ = ξ∗ + δ+∂ξ
break; . Quit without any further update

end if
ξ∗ ← ξ∗ + δ+∂ξ
ε← ε+ δ+

Primal update:
Compute ∂x in (11.14) and set ∂c = GT∂x . Update directions
Compute δ− and γ− in (11.15) . Step size and change in support
x∗ ← x∗ + δ−∂x
c∗ = c∗ + δ−∂c

Γ← [Γ ∪ γ+]\{γ−} . Swap outgoing and incoming elements
if γ− ∈ Γn then

Γn ← Γn\{γ−} . Remove homotopy on zero error locations
ξ∗γ− = ε ξ∗γ− . Maintains optimality of the dual solution
if Γn becomes empty then

break; . Lucky breakdown
end if

end if
until ε = 1

124

PART II

Dynamic models in video

CHAPTER XII

LOW-COMPLEXITY VIDEO CODING

In this chapter, we discuss an application of compressive sensing in video coding,

where the encoder is very simple and most of the computational complexity is shifted

to the decoder. Conventional encoders compress video signals by exploiting temporal

and spatial redundancies using motion estimation and transform coding blocks—the

same blocks are the main source of complexity in standardized video encoders. To

reduce the encoder complexity, we eliminate these blocks in our proposed video en-

coder. We assume that the encoder compresses a video sequence by recording a small

number of non-adaptive measurements for each image (frame) in the sequence. At

the decoder, we reconstruct the video sequence from the compressed measurements

by exploiting the inherent spatial and temporal structure in video signals. We model

the measurements and the underlying video sequence as a linear dynamical system

in which adjacent frames are related to each other via (unknown) inter-frame mo-

tion. We assume that the images in the video sequence and the motion-compensated

differences have sparse representations and alternately estimate images and inter-

frame motion during the recovery process. We present experiments to demonstrate

the performance of our recovery framework for different test sequences at different

compression levels.

Conventional video coding schemes rely on the availability of fully sampled, high-

resolution images for motion estimation and subsequent compression. Our focus in

this chapter is on low-complexity video coding where the encoder is restricted to

capture only a small number of non-adaptive measurements, and it is the task of the

decoder to provide quality reconstruction by extracting as much information about the

125

video sequence as possible from the available measurements. The recovery framework

described in this chapter can be utilized in many other situations where only a small

number of non-adaptive measurements of the video sequence are available for the

reconstruction. One such example is the accelerated dynamic magnetic resonance

imaging, which we discuss in Chapter 13.

12.1 Background

Current video coding technology has developed assuming that a high-complexity en-

coder in a broadcast tower would support millions of low-complexity decoders in

receiving devices. However, with the proliferation of inexpensive video recording de-

vices, such as camcorders and mobile phones, user-generated content has become

commonplace. Therefore, there is a need for low-complexity encoding technology

that can be deployed in these low-cost, low-power devices [112]. Because power con-

sumption is proportional to the encoder complexity, current high-complexity encoders

consume too much power to provide high compression ratios. To increase the battery

life in mobile devices, a low-complexity encoder with good coding efficiency is highly

desirable. Since the decoders are usually located in mains-connected devices such as

set-top boxes, television sets, and computers, their complexity and high-power con-

sumption are tolerable. We propose an encoding and decoding scheme that leverages

ideas from standard video coding and compressive sensing.

Conventional video coding schemes achieve compression by exploiting the spatial

and temporal structure in the video sequence [115, 128]. At the encoder, typically

we first estimate motion between adjacent frames (e.g., using block matching), and

then we use transform coding (e.g., DCT or wavelets) on the inter-frame motion-

compensated differences and a reference frame. Motion estimation and transform

coding blocks often dominate the computational complexity of the encoder. The

decoder, in contrast, is much simpler. Its only task is to use the inter-frame motion

126

information (transmitted by the encoder) to combine the reference frame with the

motion-compensated residuals to reconstruct the video sequence.

A typical video encoder divides a video sequence into disjoint groups of T frames.

Out of the T frames in each group, one frame is designated to be the I (intra-coded)

frame and the rest are designated to be P (predictive) frames (or some times B frames

for bi-directional prediction). The I-frame is encoded as a static image. P-frames are

encoded in terms of motion-compensated residuals between the original P-frames and

their respective motion-compensated predictions from the neighboring frames. Since

adjacent frames in a video sequence are very similar to each other, the prediction

error is usually small and allows efficient encoding. Inter-frame motion between pairs

of images is typically estimated using block-matching. To predict an image A from

an image B, block matching first divides A into non-overlapping blocks of equal size

(e.g., 8× 8 or 16× 16), and then finds the closest matching block of the same size in

B for every block in A. The motion-compensated predicted image A is constructed

by replacing each block in A with its closest matching block from B. The relative

locations of the blocks are stored in the form of motion vectors. I-frame, motion-

compensated residuals, and the associated motion vectors constitute the compressed

data for a group of T frames.

Compressive sensing (CS) provides a signal acquisition framework in which only

a small number of (non-adaptive) linear measurements are sufficient for the recovery

of a (structured) sparse signal [30]. Conventional compression schemes often require

fully sampled signals at the encoder, which they then compress by retaining a small

subset of data after some processing (e.g., motion estimation and transform coding

in MPEG and H.264 video coding) and discarding the rest. In contrast, CS combines

compression with acquisition by acquiring only as many measurements as would be

necessary for the signal recovery. The number of measurements required for such

recovery depends on the sparse structure of the signal (also related to the degrees

127

of freedom in the signal). This combined acquisition and compression reduces the

burden on sensing devices in two ways: full signal acquisition and any additional

compression are not required. Furthermore, the computational burden shifts from

the encoder to the decoder. It is a task for the decoder to reconstruct the signal

from the compressed measurements, using any available information about the signal

structure. CS decoders typically recover signals by solving an optimization problem

that promote sparsity in the signals while maintaining fidelity to the measurements.

To recover a video from compressed measurements, our proposed decoder ex-

ploits both spatial and temporal structures in a video signal. The inter-frame motion

provides a good model for the temporal structure; however, in our compression frame-

work, the inter-frame motion is not readily available at the decoder. Therefore, we

use a two-step approach to iteratively update the estimates for the images in the

video sequence and the inter-frame motion. At every iteration, we use available mo-

tion (or temporal) information to reconstruct images in the video sequence from the

available measurements, and then refine the inter-frame motion estimates using the

recovered images. Our two-step approach is similar to those appeared in [108, 114];

however, it is different from those in [76, 99], which assume availability of a high-

quality reference frame and reconstruct motion-compensated residuals with respect

to the reference frame.

12.2 Video compressive sensing

12.2.1 Compressive acquisition

Our goal is to have a simple encoder with low computational complexity. We assume

that the encoder records each image in a video sequence using a small number of non-

adaptive measurements. This task can be performed in an imaging hardware (e.g., a

single-pixel camera [129, 143]) without explicitly capturing and storing the original

images or by post-processing the images recorded with conventional CCD sensors.

128

Consider a video sequence x1, x2, . . . where each xi ∈ RN is an N -pixel image in

the video sequence. The encoder generates a sequence of measurements as

yi = Φixi + ei, (12.1)

where yi denotes measurements of xi, Φi denotes the measurement matrix of size

Mi×N , and ei denotes noise in the measurements. The ratio of N and Mi determines

the compression rate for the ith image.

One important feature that we borrow from conventional video coding in the

design of our encoder is that we allow non-uniform compression for images in the

video sequence. Suppose our desired compression rate allows M measurements per

T frames. We allow the encoder to distribute the available measurement count to

T frames in any desired fashion. Figure 12.1 depicts three possible choices for the

distribution of measurements in a group of T frames: (a) Every image gets an equal

number of measurements. (b) One boundary image in every group of T images gets

significantly more measurements than the rest. This scheme is analogous to the I-

frame and P-frames in the standard video coding. (c) An arbitrary non-uniform

distribution of measurements. The motivation behind using non-uniform distribution

of measurements is that a few good quality images help improve the quality of the

heavily compressed neighboring images during the reconstruction. In the case of non-

uniform measurements, we define the compression ratio as TN/M , where M is the

total number of measurements utilized by T frames.

The quality of reconstruction depends on two factors: the number of measurements

(more the better) and the type of measurements. We do not make any assumption

on the specific type of measurements. A general rule for CS applications is to use

the measurements that are spread out in the transform domain in which the signal

of interest is sparse [32]. Some commonly used measurements for images in the CS

framework include subsampled DCT, subsampled noiselets, and random convolution

[117].

129

Mi

Frame index i

. . .

T
(a)

. . .

T
(b)

. . .

T
(c)

Figure 12.1: Distribution of measurements in a group of T frames. (a) Uniform distribu-
tion. (b) One boundary frame gets more measurements (analogous to I and P frames). (c)
Custom distribution.

12.2.2 Motion-adaptive reconstruction

To recover the video sequence from compressive measurements in (12.1), we exploit

the spatial and temporal structured sparsity in the video.

Individual images in a natural video sequence have sparse representation in a

variety of spatial transforms; for example, wavelet transforms or total variation [94,

120]. Each image in the video sequence can be reconstructed independently, using

one of the existing sparse recovery methods for images [117]; but such an approach

ignores similarities between neighboring images in the video sequence. To exploit the

temporal structure, one can assume that the inter-frame differences are sparse [97].

However, the temporal variations in video sequences are not fully captured by the

inter-frame differences. Inter-frame motion provides a much superior representation

for the variations in a video sequence.

To model the temporal variations, we represent video frames in the form of a

linear dynamical system, where each frame is related to its immediate neighbors via

inter-frame motion, as depicted in Figure 12.2. The following linear system provides

a combined model for the linear measurements and the inter-frame relationship:

yi = Φixi + ei (12.2a)

xi = Fi−1xi−1 + fi (12.2b)

xi = Bi+1xi+1 + bi, (12.2c)

130

x1 x2 x3

...

xT

F1 F2 FT¡1

B2 B3 BT

Figure 12.2: Bi-directional inter-frame motion interpretation.

where Fi−1 and Bi+1 denote the forward and the backward motion operators that

couple xi to its immediate neighbors xi−1, xi+1, and fi and bi denote the forward and

the backward motion-compensated residuals, respectively. Motion operators can be

viewed as interpolation operators that move locations of the pixels according to the

inter-frame motion. The motion-compensated residual images fi = Fi−1xi−1−xi and

bi = Bi+1xi+1−xi may exhibit sparsity, either in the canonical representation or after

an appropriate spatial transformation. We exploit the sparsity of original images and

motion-compensated residuals in the recovery process.

Note that Fi−1 and Bi+1 require information about motion between xi and its

immediate neighbors xi−1 and xi+1, respectively. To estimate inter-frame motion we

require images, but we only have their compressed measurements at the decoder.

Therefore, we adopt an iterative approach for the reconstruction, where we alternate

between estimating video frames using the available motion information, and using

the estimated video frames to refine the motion estimate. Video recovery algorithms

with similar alternating motion update principles have also appeared in [108, 114].

In our proposed recovery algorithm, we jointly recover a group of images from the

linear dynamic system in (12.2). It helps to select the groups following the measure-

ment distribution at the encoder. For instance, if the encoder uses the measurement

131

distribution in Figure 12.1(b), we divide the sequence at the decoder into overlap-

ping groups of T + 1 images, where the two boundary frames in each group have

more measurements, and they are shared by the adjacent groups. Such a group di-

vision provides one “free” additional high-quality frame in each group, which can be

beneficial with motion regularization in both forward and backward directions.

Our recovery algorithm consists of the following two-step iterative procedure:

1) Initialization. 2) Motion adaptation.

Initialization: Solve the following `1-regularized optimization problem for an initial

estimate of images:

minimize
∑
i

τ‖xi‖Ψ + λ‖xi−1 − xi‖Ψ + ‖Φixi − yi‖2
2, (12.3)

where ‖·‖Ψ denotes the `1 norm in the Ψ domain (i.e., ‖z‖Ψ
def
= ‖ΨT z‖1); for example,

wavelets or total-variation. The first term promotes sparsity in the spatial transform

of each image, the second term promotes sparsity in the inter-frame difference, and

the last term keeps the solution close to the measurements.

Motion adaptation: This step can be further divided into two intermediate steps,

and it can be repeated multiple times to improve the reconstruction quality:

i. Motion estimation: Use reconstructed frames to estimate or update the inter-

frame motion, and define or update the forward and backward motion operators

Fi and Bi, for all i.

ii. Motion compensation: Solve the following optimization problem for the dynami-

cal system in (12.2):

minimize
∑
i

τ‖xi‖Ψ +α‖Fi−1xi−1−xi‖Ψ +β‖Bi+1xi+1−xi‖Ψ +‖Φixi−yi‖2
2.

(12.4)

132

coastguard container foreman hall

Figure 12.3: Images from video test sequences.

The regularization parameters: τ , λ, α, and β can be adapted according to the

problem at hand. We found it useful to start α and β with a small value in the

first iteration and increase them as the motion estimates improve. We have written

all the regularization terms as a general norm ‖ · ‖Ψ to emphasize that any suitable

transform Ψ can be used with the `1-norm; or if the residuals are dense, we may use

the `2 norm. We do not restrict ourselves to any particular motion estimation scheme

either. However, since we estimate motion from the reconstructed images instead

of the original images, the motion estimation scheme should be robust to noise and

other artifacts. In our experiments, we found that block matching algorithms did not

perform very well. We found the phase-based motion estimation [92] and the optical

flow-based schemes [86] to be more useful.

12.3 Experiments and Results

To evaluate the performance of our proposed scheme for video compressive sensing,

we performed various experiments on four standard test sequences: coastguard, con-

tainer, foreman, and hall1. Figure 12.3 presents one image from each of the four

sequences. The coastguard sequence contains the most abrupt temporal variations

among the four, foreman ranks second, followed by hall, and the container sequence

has the least and the slowest scene variations. In all our experiments, we used 128×128

center portion of the first 129 frames of the four sequences.

1Video test sequences downloaded from the following webpage: http://trace.eas.asu.edu/yuv/

133

Our experiment setup is as follows: We divided 129 frames into 16 overlapping

groups of 9 frames, where the frames at indices 9, 17, . . . , 121 are shared by two ad-

jacent groups. We encoded each group according to the scheme in Figure 12.1(b),

where the number of measurements for every boundary frame was twice the number

of measurements for each of the remaining frames. Linear measurements for each

frame consist of two parts: the first 16 × 16 measurements consist of the scaling co-

efficients of the discrete wavelet transform of the image (using Daubechies 4 filters),

while the remaining measurements consist of subsampled noiselet coefficients of the

image. Every group of 9 images was then reconstructed from compressed measure-

ments using the recovery method outlined in Section 12.2.2. We used 2-D dual-tree

complex wavelet transform [122] as the sparse representation basis Ψ for the spatial

`1-norm regularization in (12.3) and (12.4). We estimated motion using phases of

the subband coefficients from the complex dual-tree wavelets, using the hierarchical

method described in [92]. We solved the optimization problems in (12.3) and (12.4)

using the `1-analysis formulation in the NESTA toolbox [19].

The recovery results for the four sequences at different compression rates are pre-

sented in Figure 12.4. The performance curves plot average peak signal to noise ratio

(PSNR) of all the reconstructed images at the given compression ratios. Results for

our proposed motion-compensation based recovery method after 3 motion-adaptation

iterations are labeled as CS-MC (solid blue line with ∗ marker). Results for the ini-

tial reconstruction with frame-difference are labeled as CS-DIFF (broken blue line

with + marker). Results for the frame-by-frame reconstruction (without the frame

difference in (12.3)) are labeled as CS (broken blue line × marker). We also present

results for videos compressed with the following two low-complexity encoders: 1) Lin-

ear DCT approximation for which the results are presented as ldct (dashed red line

with O marker). Linear DCT compressed an image by keeping only a small num-

ber of low-frequency 2D-DCT coefficients, selected in a predefined zigzag order. The

134

measurements in this compression scheme are non-adaptive and can be recorded by

acquiring a predefined set of DCT coefficients for all the images. 2) JPEG compres-

sion without the entropy coding for which the results are presented as qJPEG (broken

magenta line with o marker). In the qJPEG scheme, we compressed every image by

thresholding its 8×8 block-DCT coefficients using the predefined quantization masks

for different quality factors. The compression ratio for qJPEG at any value of quality

factor was calculated as the ratio of the number of pixels in the image to the num-

ber of nonzero block-DCT coefficients retained. Although the qJPEG compression is

computationally simple, it is data dependent and requires full resolution images to

be available for compression.

As we can see in Figure 12.4, adding temporal regularization in the recovery pro-

cess increases the PSNR of the reconstructed videos significantly (see the improve-

ment of CS-MC (or CS-DIFF) over CS). Moreover, CS-MC outperforms qJPEG,

even though qJPEG is a data-adaptive compression scheme. qJPEG performs closer

to CS-MC only for the coastguard sequence, which has a complex motion, especially

around frame 70.

135

5 10 15

24

26

28

30

32

34

coastguard

Compression ratio

P
S

N
R

 in
 d

B

CS−MC
CS−DIFF
CS
qJPEG
ldct

5 10 15

25

30

35

40

45

container

Compression ratio

P
S

N
R

 in
 d

B

CS−MC
CS−DIFF
CS
qJPEG
ldct

5 10 15

30

35

40

foreman

Compression ratio

P
S

N
R

 in
 d

B

CS−MC
CS−DIFF
CS
qJPEG
ldct

5 10 15

25

30

35

40

hall

Compression ratio

P
S

N
R

 in
 d

B

CS−MC
CS−DIFF
CS
qJPEG
ldct

Figure 12.4: Video reconstruction from linear, non-adaptive measurements (wavelet scal-
ing + noiselet coefficients). Motion-compensated CS (CS-MC), frame-difference (CS-DIFF),
frame-by-frame (CS). Comparison with JPEG without entropy coding (qJPEG) and linear
DCT (ldct) approximation.

136

CHAPTER XIII

ACCELERATED DYNAMIC MRI

In this chapter, we present a new recovery algorithm for highly accelerated dynamic

magnetic resonance imaging (MRI) with multiple receiver coils. To recover high-

resolution images from undersampled k-space data, our algorithm exploits spatial

and temporal structured sparsity in MR images. To model spatial sparsity, we use

wavelet transforms. To model temporal sparsity, we use inter-frame motion, which

is a useful tool for representing temporal variations in video frames. In our recovery

framework, we treat the underlying image sequence as a group of video frames in

which an image can be predicted from its neighboring images through a motion-

adaptive interpolation. The difference between an original image and its motion-

adaptive interpolation is called a motion-compensated residual, which often provides

a (structured) sparse image. The recovery algorithm solves an optimization problem

that involves cost functions for data mismatch, spatial sparsity of each image, and

temporal sparsity of motion-compensated residuals. To promote spatial and temporal

structured sparsity in the solution, we use the `1-norm regularization. We call this

method motion-adaptive spatio-temporal regularization (MASTeR).

13.1 Background

Magnetic resonance imaging (MRI) is a versatile and highly accurate imaging modal-

ity. Although MRI is used to diagnose numerous medical conditions, the current

technology has several practical limitations, one of which is the slow imaging speed.

Imaging speed in MRI is limited by physical and physiological constraints associated

with rapidly switching magnetic field gradients. Lack of speed poses particular chal-

lenges for applications in dynamic cardiac MRI. To reduce artifacts related to the

137

respiratory motion, most routine cardiac MRI techniques acquire images during a

patient’s breath-holds. A complete acquisition takes a few cardiac cycles and may

require multiple breath-holds by the patient. Thus, the patient’s ability to sustain

breath-holds and the imaging speed determine the duration of the examination, which

in turn, determines the spatial and the temporal resolution of the images. However,

since many patients are unable to sustain breath-holds, the acquisition process must

be accelerated to reduce scan time.

With the introduction of reduced-data imaging methods, reduction in the scan

time does not require an increase in the imaging speed (via enhanced gradient perfor-

mance), but instead, a reduction in the number of phase-encoding lines that results

in an undersampled k-space. A fundamental challenge in reduced-data imaging is

to recover high-resolution images from undersampled k-space data—a problem that

is often underdetermined. One common approach to solve such an underdetermined

problem is to utilize the spatial and temporal structures in the images and the re-

dundancies in the acquisition process.

Based on different sources of prior information, current state-of-the-art methods

for dynamic MRI can be categorized as follows: parallel imaging methods, reduced

field of view methods, compressed sensing-based methods, and a combination of these

methods that can use multiple independent sources of prior information.

Parallel imaging methods such as SENSE [111], SPACE-RIP [82], SMASH [125],

and GRAPPA [67] utilize information provided by multiple receiver coils and recover

images from undersampled k-space data provided by each receiver. The main idea

behind reduced field of view (rFOV) methods such as UNFOLD [91] and Noquist [28]

is to exploit the spatiotemporal redundancy that is often available in dynamic imaging

because parts of the field of view remain static over time. Parallel imaging and rFOV

methods utilize independent prior information sources to accelerate imaging speed

and they can be combined for even higher acceleration or reduced image artifacts.

138

Examples of methods that integrate parallel imaging with rFOV are TSENSE [80],

k-t SENSE [135], and PINOT [69].

A recent addition to reduced-data imaging is compressed sensing (CS)-based meth-

ods [74, 84, 85, 88, 140]. CS theory has shown that, under certain conditions, a

sparse signal can be recovered from a small number of linear, incoherent measure-

ments [37, 55]. However, signal recovery from the resulting underdetermined system

involves solving an optimization problem [46, 132]. An effective convex optimization

program, which comes with various theoretical guarantees, minimizes the `1-norm

of the sparse signal under some data-fidelity constraints [32, 38]. Sparse MRI [88]

exploits spatial sparsity in MR images, such as sparsity of angiography images in the

image domain and sparsity of brain or cardiac images in the wavelet or total-variation

domain. CS-SENSE [84] and SparseSENSE [85] combine parallel imaging with CS. k-

t SPARSE [90] and k-t FOCUSS [74] use a temporal discrete Fourier transform (DFT)

for sparse representation of temporal variations in cardiac images. k-t FOCUSS can

also be used with data-driven transforms such as the Karhunen-Loeve transform or

the principal component analysis.

The rFOV (with static and dynamic partition) and temporal-DFT methods use

fixed transforms along straight lines in the temporal direction without taking spatial

dependencies into account. For every pixel location, these methods impose a model

that does not use (nor does it provide) any information about neighboring pixels

within the same frame or across different frames. However, variations in dynamic

MR images arise because physical changes occur over time. For instance, a scan of

a beating heart reveals different states of the heart in a cardiac cycle. Intensities of

pixels overlapping the heart wall change as the heart beats (possibly in a near-periodic

fashion), but at the same time, the wall of the heart changes its position from one

frame to the next. These changes, correlated in both space and time, appear as a

displacement of pixels in images and provide direct information about the temporal

139

structure in the image sequence. The displacement of pixels in a sequence of images

is commonly referred to as inter-frame motion, which plays a fundamental role in

modern video compression (e.g., in H.264 and MPEG standards) [128, 146]. Inter-

frame motion provides an efficient and direct representation for variations as well as

dependencies in a sequence of closely-related images.

k-t FOCUSS with motion estimation/motion compensation (ME/MC) [74, 75]

is another recently proposed method for dynamic MRI that uses inter-frame mo-

tion during the recovery process. k-t FOCUSS with ME/MC reconstructs motion-

compensated residuals of the entire image sequence with respect to a reference image

by assuming that the residuals have sparse temporal-DFT. To estimate the inter-

frame motion, k-t FOCUSS with ME/MC recommends using a fully sampled image

as a reference frame. In the absence of a fully-sampled image, a reference image can

be generated from the temporal average of k-t measurements for the entire image se-

quence or for only those images that correspond to the diastole phase, where the latter

approach would reduce blurring in the reference image. The quality of reconstruction

for k-t FOCUSS with ME/MC directly depends on the quality of the reference image

and the accuracy with which it can model the true motion-compensated residuals.

The main contribution of this chapter is the use of motion-adaptive transforms

that model temporal dependencies between adjacent images in both forward and

backward directions. Our model can be interpreted as a linear dynamical system in

which neighboring images are linked through a motion-adaptive transform that inter-

polates pixel values of an image to a new set of locations described by the inter-frame

motion. In contrast to k-t FOCUSS with ME/MC, our proposed method, MASTeR,

does not require any reference frame. Instead, all the inter-frame dependencies are

embedded in the linear dynamical system formulation. As a result, it provides a prac-

tical and versatile recovery scheme that combines parallel imaging with the spatial

and the temporal regularization in a unified manner. MASTeR consists of two main

140

steps: initialization and motion adaptation. The initialization step estimates the im-

age sequence without any motion information. The motion-adaptation step, which

can be repeated multiple times, estimates inter-frame motion in the reconstructed

images and applies it to further refine image estimates. Experiments demonstrate

that our method provides good reconstructed MR images from highly undersampled

k-space measurements. A comparison with k-t FOCUSS with ME/MC [74] shows

that MASTeR reconstructs images with a better spatio-temporal resolution, a better

signal-to-noise ratio, and fewer artifacts.

13.2 Problem formulation

13.2.1 Imaging model

Consider a dynamic MRI setting in which data consist of T images in a cardiac cycle.

The vector form of the imaging system for an ith image can be written as

yi = Φixi + ei, (13.1)

where xi is an N -length vector that denotes the underlying two-dimensional complex-

valued MR image, yi denotes the vector with k-space measurements of xi, and ei

denotes noise in the measurements. Encoding matrix Φi consists of the Fourier trans-

form coefficients weighted by coil sensitivity maps. Suppose the system has C receiver

coils and at time i we receive M k-space samples from every coil at locations specified

by the set Ωi. The expanded form of Φi in (13.1) can be written as

Φi ≡


FΩiS

1
i

...

FΩiS
C
i

 , (13.2)

where S1
i , . . . , S

C
i denote the sensitivity profiles of C receiver coils and FΩi denotes

an operator that computes Fourier coefficients only at locations indexed by set Ωi.

141

We can write the overall dynamic MRI system as

y1

y2

...

yT


=



Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦT





x1

x2

...

xT


+



e1

e2

...

eT


≡ y = Φx+ e, (13.3)

where x denotes a vector of length TN (with all of the T images stacked on top of

each other), y is a vector of length TCM (consisting of all the k-space measurements),

Φ is a TCM ×TN system matrix, and e denotes noise in the measurements. We call

R = N/M the reduction or the acceleration factor.

In accelerated MRI, increasing the acceleration factor (R) causes the system in

(13.3) to become highly ill-conditioned and eventually underdetermined. To recover

the underlying images from such an underdetermined system, we need additional

information about the structure of the underlying images. Compressed sensing theory

comprehensively addresses such problems.

13.2.2 Structure and recovery

Compressed sensing theory provides a general sensing and reconstruction framework

in which a sparse signal can be recovered from a small number of linear, incoherent

measurements [37, 55]. It is a well-known fact that most natural signals inherently

contain redundant information that can be represented using a small number of im-

portant features [94]. For example, images can be represented using a small number

of discrete cosine transform (DCT) or wavelet transform coefficients; adjacent frames

in a video can be represented using a reference frame and motion-compensated resid-

uals. In principle, CS schemes use such prior information about sparse structures to

enable the recovery of signals from a small number of measurements. The recovery

process involves solving an optimization problem that promotes the desired structure

142

in the solution while maintaining fidelity towards the measurements. An example of

such an optimization program is the following `1-regularized least-squares problem:

minimize
x

‖Φx− y‖2
2︸ ︷︷ ︸

data fidelity

+τ ‖Θx‖1︸ ︷︷ ︸
structure

, (13.4)

where the `2 term keeps the solution close to the measurements, the `1 term en-

courages the solution to be sparse with the Θ transform, and τ > 0 is the so-called

regularization parameter that controls the tradeoff between the data fidelity and the

signal sparsity.

CS principles can be easily applied to the dynamic MRI because MR images

exhibit sparsity in a variety of spatial transforms along with significant redundancies

in the temporal direction. Moreover, to satisfy the incoherence requirement of the CS

system, k-space measurements for each frame can be selected at random (e.g., uniform

or variable-density phase-encoded sampling) [88]. To extract the best results from the

least number of measurements, a recovery algorithm must exploit both the spatial

and temporal structures in MR images. Previous applications of CS in dynamic

MRI have used spatial transform sparsity [84, 85, 88] as well as temporal transform

sparsity [74, 90, 107] in MR images. In the rest of this section, we summarize several

state-of-the-art recovery methods that use the spatial and temporal structures of MR

images.

We start our discussion with the simple least squares (LS) formulation in which

we will later add regularization terms that promote certain desired structures in the

reconstructed signals. The LS method—one of the simplest algorithms for MR image

recovery—minimizes the data mismatch without assuming any specific structure in

the signal. If Φ in (13.3) has full column rank, x can be reliably estimated by solving

the following LS problem:

minimize
x

∑
i

‖Φixi − yi‖2
2. (13.5)

143

The problem in (13.5) can be solved separately for each xi [66]. However, if Φ becomes

ill-conditioned or underdetermined, the LS method does not provide a reliable solution

[88], necessitating the use of additional information in the recovery process.

MR images exhibit spatial sparsity in a variety of transforms such as wavelets and

finite differences. In the CS framework, we can easily incorporate spatial sparsity in

the recovery process by adding a new regularization term to (13.5). One candidate is

the following convex program:

minimize
x

∑
i

‖Φixi − yi‖2
2 + τ‖Ψxi‖1, (13.6)

where Ψ denotes a sparsity inducing transform applied to each image. The program

in (13.6) can be solved using a variety of fast and efficient solvers [19, 20, 26, 62, 68].

In dynamic MRI, significant gains can be achieved by exploiting the temporal

structure across different images in the sequence [110, 140]. A number of recently

proposed methods for cardiac MRI use Fourier transform to model sparsity in the

temporal direction [74, 90, 135]. An example of a recovery program that incorporates

a temporal DFT can be written as

minimize
x

‖Φx− y‖2
2 + τ‖Ftx‖1, (13.7)

where Ftx generates a T -point DFT along the temporal direction for every pixel

location in the image sequence x. Fourier transform appears to be an attractive

choice for temporal sparsity in cardiac MRI for several reasons. It is a simple, global

model that does not require any additional information about the signal. It can also

be viewed as a method that automatically selects static and dynamic partitions in an

image sequence. For instance, a temporal DFT for any pixel in the static region will

have just one nonzero component. However, temporal DFT may not be sparse for

the pixels in dynamic regions, especially those with sharp amplitude variations, which

may have all the DFT coefficients to be nonzero. Therefore, although temporal DFT

performs very well in many cases, it does not fully exploit the temporal structure.

144

Since temporal variations are linked with changes in the spatial domain across

different frames and dependencies among neighboring pixels, a temporal transform

that adapts to the underlying spatial variations can provide a more effective model

for the temporal structure. One such adaptive transform can be constructed using

inter-frame motion.

13.3 Motion-adaptive spatio-temporal regularization

Inter-frame motion plays an integral role in modern video compression schemes (e.g.,

MPEG and H.264 codecs) [128, 146]. The fundamental insight is that inter-frame

motion provides an effective way to predict neighboring frames from one another.

In standard video compression, we divide a video sequence into disjoint groups of

frames in which we usually designate one frame as the reference frame and the re-

maining ones as prediction frames. Starting with the frame after the reference frame,

we estimate motion between every frame and its previous neighbor and encode the

motion-compensated residuals (constructed by subtracting the original frame from

its prediction) using some spatial transform. At the decoder, the reference frame

and motion-compensated residuals are combined to reconstruct all the frames in the

group.

In dynamic MRI, physical changes (e.g., a beating heart in cardiac imaging) govern

the transformation between any two adjacent images. Inter-frame motion provides

an efficient model for the underlying temporal structure. However, video compression

principles are not directly applicable in dynamic MRI. First, a fully sampled reference

frame is not readily available in cardiac MRI. To acquire images at a desired tempo-

ral resolution in cardiac MRI, we can observe only a small amount of k-space data

(i.e., a small number of phase-encoding lines) per frame per heartbeat. Although we

can generate a reference frame by combining the downsampled k-space data, a fully

sampled image at the same temporal resolution cannot be acquired in an accelerated

145

cardiac MRI. This is because the number of cardiac cycles required for filling up

the k-space of either one frame or all of the frames in the cardiac cycle is the same.

Second, we do not have motion information readily available during reconstruction.

In the following section, we show that these problems can be circumvented by

describing dynamic MRI in the form of a linear dynamical system in which neigh-

boring frames predict each other using motion-adaptive transforms. The underlying

inter-frame motion can be estimated and iteratively refined from available data.

13.3.1 Motion-adaptive linear dynamical system

The displacement of image features in space appears as motion across different frames.

Suppose the pixel values in a small neighborhood of location (u, v) in xi are closest

to the pixel values in the neighborhood of location (u + ∆u, v + ∆v) in xi−1. The

collection of (∆u,∆v) for all pixels constitutes the so-called motion vectors. We use

motion vectors to define a transform that approximates xi from xi−1 as

xi = Fi−1xi−1 + fi, (13.8)

where Fi−1 denotes a forward motion operator and fi denotes a forward motion-

compensated residual. Fi−1 can be considered an operator that uses motion informa-

tion to interpolate the pixel values in xi−1 to displaced locations in xi. Similarly, we

can approximate images in the reverse direction (i.e., xi from xi+1) as

xi = Bi+1xi+1 + bi, (13.9)

where Bi+1 denotes a backward motion operator and bi denotes a backward motion-

compensated residual. These forward and backward motion operators construct our

so-called motion-adaptive transforms that use inter-frame motion to represent an

image sequence x in the form of forward and backward motion-compensated residuals

fi and bi, respectively.

146

We combine the imaging system in (13.1) and the motion compensation equations

in (13.8) and (13.9) to write the following motion-adaptive linear dynamical system:

yi = Φixi + ei (13.10a)

xi = Fi−1xi−1 + fi (13.10b)

xi = Bi+1xi+1 + bi. (13.10c)

To recover the image sequence x, we solve (13.10) by exploiting sparse structures in

xi, fi, and bi for all i.

13.3.2 Recovery algorithm

Now we discuss the details of our proposed recovery algorithm: motion-adaptive

spatio-temporal regularization (MASTeR). MASTeR uses the dynamical system de-

scribed in (13.10), in which we need inter-frame motion to define operators F and

B so that we can recover the image sequence, yet we need images to compute the

inter-frame motion. A common approach to mitigate such a problem is to alternately

update estimates of the image sequence and inter-frame motion [108, 114]. We adopt

a two-step approach in which we estimate the image sequence with any available

motion information and then use the estimated image sequence to refine the motion

information. A pseudocode for the recovery algorithm is as follows.

MASTeR consists of the following two-step iterative procedure:

(1) initialization and (2) motion adaptation.

1. Initialization: Solve the following spatial `1-regularization problem to recover

initial image estimates from their respective k-space measurements:

minimize
x

∑
i

‖Φixi − yi‖2
2 + τ‖Ψxi‖1, (13.6)

147

where Ψ denotes the spatial sparsifying transform.

2. Motion adaptation: This step can be further divided into two intermediate steps

and repeated multiple times to improve the reconstruction quality.

i. Motion estimation: Use the reconstructed image sequence to estimate or refine

inter-frame motion and define forward and backward motion operators Fi and

Bi for all i1.

ii. Motion compensation: Solve the following optimization problem following the

dynamical system in (13.10):

minimize
x

∑
i

‖Φixi − yi‖2
2 + α‖Fi−1xi−1 − xi‖1 + β‖Bi+1xi+1 − xi‖1.

(13.11)

A few remarks about MASTeR are in order. During the initialization step, we

do not have any motion information; however, a temporal regularization can be eas-

ily added to the optimization problem (e.g., a temporal DFT or a static/dynamic

partition of the field-of-view). We used `1 norms with the last two terms in (13.11)

because of our assumption that motion-compensated residuals fi and bi are sparse

in the image domain. We can easily modify these residual terms to accommodate

sparsity in some transform domain, or in the case of dense residuals, we can replace

the `1 norm with an `2 norm. Regularization parameters τ , α, and β can be adjusted

according to the problem.

To estimate the inter-frame motion, we can use any of the existing motion esti-

mation or optical-flow estimation schemes [17, 27, 71, 72, 105, 127]. Although our

1For the boundary frames, we can either couple them and treat them as neighbors (i.e., a periodic

video), or we can ignore the forward motion term for the first frame (at i = 0) and the backward

motion term for the last frame (at i = T).

148

algorithm does not depend on any particular motion estimation scheme, we must em-

phasize that the quality of reconstructed images directly depends on the quality of the

motion estimates. Furthermore, since motion estimates come from the reconstructed

images and not the original images, the motion estimation scheme should be robust

against both noise and aliasing artifacts. In this regard, we found that compared

to block-matching algorithms, which do not perform very well, phase-based motion

estimation [92] and optical-flow methods [86] provide significantly better results.

13.4 Methods

In our experiments, we used breath-held, prospectively-gated, steady-state free pre-

cession (SSFP) cardiac MRI scans, following the protocol approved by the Institu-

tional Review Board. We simulated accelerated imaging system by decimating fully-

sampled k-space data from multiple receiver coils according to a desired sampling

pattern. We used downsampled k-space measurements to reconstruct the underlying

image sequence using MASTeR. We evaluated the performance of MASTeR recon-

struction for two in vivo cardiac MRI scan datasets at different reduction factors. We

also compared our results against that of k-t FOCUSS with ME/MC [74].

A short-axis MRI scan (images shown in Figure 13.1) was acquired using a GE

1.5T TwinSpeed scanner (R12M4) with a 5-element cardiac coil and a FIESTA-

FastCARD cine SSFP sequence. Scan parameters were selected as follows: TE: 2.0

ms, TR: 4.1 ms, flip angle: 45◦, FOV: 350 × 350 mm, slice thickness: 12 mm, 8

views per segment, 224 phase-encoding lines, 256 read-out samples, and 16 temporal

frames. To emulate the estimation of sensitivity maps from a prescan, we acquired a

separate scan (which we assumed to be a prescan) with identical scan parameters and

estimated sensitivity maps as follows. Half of the (high frequency) k-space samples

from each coil were removed from the prescan via a smoothing filter followed by an

inverse Fourier transform to obtain smoothed images for each coil. To estimate the

149

sensitivity maps, we divided each smoothed coil image by the root-sum-of-squares of

all coil images.

A two-chamber view cine MRI scan (images shown in Figure 13.4) was acquired

using a Philips Intera 1.5T scanner (R10.3) with a 5-element cardiac synergy coil and

a balanced fast field echo SSFP sequence. Scan parameters were selected as follows:

TE: 2.2 ms, TR: 4.4 ms, flip angle: 45◦, slice thickness: 8 mm, 240 phase-encoding

lines, 200 read-out samples, and 16 temporal frames. To simulate perfectly registered

sensitivity maps, we estimated them from the same data. Although this approach

introduces a positive bias in the signal-to-noise ratio of measurements, it eliminates

errors that may arise because of the misregistration of sensitivity profiles.

In our experiments, we primarily used a 2-D Cartesian downsampling pattern with

a fully sampled low-frequency region and a randomly sampled high-frequency region.

To achieve a desired reduction factor, we constructed the downsampled measurements

by selecting eight low-frequency phase-encoding lines around the center of the k-

space and the remaining lines at random from the high-frequency region, according

to a standard Gaussian distribution. We would like to point out that although we

employed the sampling pattern with dense sampling in the low-frequency region, our

algorithm does not impose any such restriction on the sampling pattern.

We reconstructed MR image sequences from the downsampled k-space data using

MASTeR. We used NESTA toolbox [19] to solve the `1-norm minimization problems in

(13.6) and (13.11). For the initialization, we solved (13.6) using wavelet transforms

as the spatial sparsifying transform Ψ for every frame in the sequence. For the

subsequent motion adaptation iterations, we estimated inter-frame motion from the

reconstructed images, updated motion-operators F and B, and solved (13.11). We

coupled the boundary frames such that the forward motion operator for the first

frame (at i = 1) used the last frame and the backward motion operator for the last

frame (at i = T) used the first frame during motion estimation and compensation

150

steps. We performed three motion-adaptation iterations of MASTeR for the results

presented in this chapter.

We used 2-D dual-tree complex-wavelet transform (DT-CWT) [122] as the spatial

transform because it provided significantly better images compared with the com-

monly used orthogonal wavelets. We also used DT-CWT coefficient for estimating

inter-frame motion, where we used the fact that a local displacement (motion) in the

image domain appears as a phase shift in the CWT coefficients [92]. The DT-CWT is

a redundant, nearly shift-invariant wavelet transform, which decomposes each image

into directional, multiscale subbands. Each scale of the wavelet tree produces two

complex-valued lowpass and six complex-valued bandpass subimages. A benefit of

this redundancy is that local displacements in the image domain cause predictable

changes in the wavelet coefficients. In particular, a phase shift of a complex coefficient

in each bandpass subimage is approximately linearly proportional to a local displace-

ment in the input image in a certain direction. Starting with the CWT coefficients

of two images at the coarsest scale, we can estimate a local displacement vector for

every subpixel in the lowpass subimage at that scale using phase shifts of respective

coefficients from all the bandpass subimages. We pass the estimated displacement

field to the next scale by interpolating and scaling it up by two, where each subpixel

at the coarser scale would correspond to four subpixels at the next scale. At the next

scale, we start with the interpolated displacement field and use phase shifts of the

coefficients at that scale to further refine the displacement field. In this manner, we

use a coarse-to-fine refinement strategy to produce a displacement field for each pixel.

A MATLAB implementation of MASTeR, along with scripts for the DT-CWT and

motion estimation, is available at http://users.ece.gatech.edu/∼sasif/dynamicMRI.

To compare the results of MASTeR and k-t FOCUSS with ME/MC [74], we im-

plemented iterative reweighted least-squares problem for k-t FOCUSS algorithm with

multiple receiver coils using the conjugate gradient (CG) method. We selected the

151

regularization parameters for each dataset such that the RMS error between the orig-

inal and reconstructed sequence is minimized. We selected the error threshold for CG

termination as 10−6 and allowed the CG method to run for a maximum of 200 itera-

tions. To report the best possible results for k-t FOCUSS, we recorded the RMS error

at every CG iteration and selected the CG estimate with the minimum RMS error.

We generated a reference frame by taking average of six images out of 16 reconstructed

images. We identified these (almost static) frames in the diastole phase by visually

inspecting all the images in each dataset. We used the generated reference frame

for the motion estimation and compensation steps in k-t FOCUSS with ME/MC.

We performed two iterations of motion-estimation and motion-compensated residual

reconstruction with three reweighting iterations each, which provided us overall good

performance with k-t FOCUSS with ME/MC.

13.5 Results

13.5.1 Short Axis dataset

Figure 13.1 illustrates the comparison of MASTeR and k-t FOCUSS with ME/MC

for the short axis MRI dataset at reduction factors 4 and 8. Figure 13.1(a) shows

frames 1, 8, and 13 (from left to right) out of the 16 frames in the sequence, calculated

from the fully sampled k-space data. The region of interest (ROI), enclosed by the

white square box, is the heart region where most of the changes occur. Figure 13.1(b)

presents cropped and zoomed ROI from the three frames in (a). Figures 13.1(c) and

(d) present MASTeR reconstructions at reduction factors 4 and 8, respectively. The

first row shows reconstructed images, and the second row shows five times amplified

differences between the original and reconstructed images. The results for k-t FO-

CUSS with ME/MC at reduction factors 4 and 8 are presented in Figures 13.1(e) and

(f), respectively.

152

The MASTeR reconstruction shows a significant improvement over the k-t FO-

CUSS with ME/MC reconstruction at both reduction factors. MASTeR reconstruc-

tions consistently contain less random noise than k-t FOCUSS with ME/MC re-

constructions. More importantly, preservation of sharp myocardial edges at high

reduction factors, critically important for clinical interpretation of ventricular dy-

namics, is clearly superior in the MASTeR reconstruction. This perhaps may be

best observed in the sharply reduced residual errors practically everywhere along the

endo- and epicardial borders, but most prominently visible in the frames (8 and 13)

with the fastest systolic and diastolic myocardial motion. Furthermore, k-t FOCUSS

with ME/MC reconstructions contain a number of aliasing artifacts (visible in bright

smooth regions), while the MASTeR reconstructions are much cleaner.

In Figure 13.2, we illustrate similar observations in three temporal slices taken

from selected dynamic locations in the original image sequence. Figures 13.2(c)–(f)

present MASTeR and k-t FOCUSS with ME/MC results. We observe that the MAS-

TeR reconstructions follow temporal variations very closely whereas k-t FOCUSS with

ME/MC results are noisy and tend to lose fine details. White arrows in Figure 13.2(f)

illustrate such regions where k-t FOCUSS with ME/MC results show artifacts and

fail to follow the temporal variations accurately, whereas MASTeR remains close to

the ground truth.

A quantitative comparison of MASTeR and k-t FOCUSS with ME/MC for a range

of reduction factors is presented in Figure 13.3. We evaluated the performance of both

methods in terms of signal-to-error ratio (SER) in dB, defined as

SER = 10 log10

‖x‖2
2

‖x− x̂‖2
2

,

where x and x̂ denote the original images (constructed from full k-space data) and

reconstructed images, respectively. Solid lines in Figure 13.3 denote SER over the

ROI and dashed lines denote SER over the entire image. SER curves show that

MASTeR outperforms k-t FOCUSS with ME/MC at all the reduction factors with

153

Figure 13.1: A comparison of MASTeR and k-t FOCUSS with ME/MC for the short-axis
MRI scan: frames 1, 8, and 13 (left to right). (a) Conventional full-grid ground truth images
from full k-space. (b) Enlarged spatial ROI. Left column: (c) MASTeR reconstruction at
R = 4 and (e) k-t FOCUSS with ME/MC reconstruction at R = 4. Right column: (d)
MASTeR reconstruction at R = 8 and (f) k-t FOCUSS with ME/MC reconstruction at
R = 8. Bottom rows in (c)–(f) show difference images that are amplified by a factor of 5.

154

Figure 13.2: A comparison of MASTeR and k-t FOCUSS with ME/MC for the short-
axis MRI scan: temporal variations. (a) ROI with lines illustrating the three locations for
the temporal slices. (b) Temporal profiles in y-t space at three different locations along x
direction. Left column: (c) MASTeR and (e) k-t FOCUSS with ME/MC reconstruction at
R = 4. Right column: (d) MASTeR and (f) k-t FOCUSS with ME/MC reconstruction at
R = 8. Bottom rows in (c)–(f) show difference images that are amplified by a factor of 5.
White arrows point to regions where we see straight lines instead of smooth variations.

155

Figure 13.3: SER comparison of the MASTeR (red,+) and k-t FOCUSS with
ME/MC (black,×) for the short-axis MRI dataset at different reduction factors. Solid
lines represent SER in the region of interest (ROI) and dashed lines show SER over the
entire image.

SER gains in the range of 4–6 dB.

13.5.2 Two-chamber results

Figure 13.4 presents a similar comparison of the reconstruction results of MASTeR

and k-t FOCUSS with ME/MC for the two-chamber MRI dataset at reduction factors

6 and 10. Figure 13.4(a) presents frames 1, 3, and 9 (from top to bottom) out of

total 16 frames, constructed from fully sampled k-space data. Figure 13.4(b) shows

the ROI in the three frames. Figures 13.4(c) and (d) present MASTeR reconstruc-

tions at R = 6 and R = 10, and Figures 13.4(e) and (f) present k-t FOCUSS with

ME/MC results at R = 6 and R = 10, respectively. At both reduction factors the

MASTeR reconstructions have significantly better image quality than k-t FOCUSS

with ME/MC. Even though levels of random image noise appear fairly low in all

reconstructions shown from this dataset, levels of structured noise are clearly lower in

156

MASTeR compared with k-t FOCUSS with ME/MC. This finding is consistent with

our qualitative observations and quantitative SER measurements in the short-axis

scan. Moreover, delineation of the mitral valve (of clinical importance for left ven-

tricular valve function assessment) is still adequate at reduction factor R = 10 with

MASTeR, while the k-t FOCUSS with ME/MC reconstruction has lost most of the

image details at this location and acceleration factor (white arrows in Figure 13.4(f)).

Figure 13.5 illustrates three temporal slices from the two-chamber dataset. Fig-

ures 13.5(c)–(f) present MASTeR and k-t FOCUSS with ME/MC reconstruction re-

sults. We observe a phenomenon similar to the one observed in Figure 13.2: MAS-

TeR reconstructions follow temporal variations very closely, but k-t FOCUSS with

ME/MC results tend to lose the fine details. The white arrows in Figure 13.5(f)

indicate the regions where original temporal information is lost.

13.6 Discussion

13.6.1 Source of improvement in MASTeR

The fundamental difference between the motion-based temporal models of MASTeR

and k-t FOCUSS with ME/MC is that instead of modeling the inter-frame mo-

tion with respect to a single reference frame and reconstructing resultant motion-

compensated residuals, we modeled the temporal dependencies within neighboring

frames in the form of a linear dynamical system and reconstructed the image sequence

using motion-adaptive transforms. We believe that the main source of improvement

for MASTeR is this difference in the temporal models. Because even if we generate

a good reference frame from the available k-space data, that reference frame may

fail to provide a good correspondence for all the other frames in the sequence. We

observed this in our experiments on the two-chamber MRI scan where the fine de-

tails that were absent in the reference frame also vanished in the k-t FOCUSS with

ME/MC reconstructions.

157

Figure 13.4: A comparison of MASTeR and k-t FOCUSS with ME/MC for the two-
chamber MRI scan: frames 1, 3, and 9 (top to bottom). (a) Conventional full-grid ground
truth images from the full k-space. (b) Enlarged spatial ROI. Top rows: (c) MASTeR re-
construction at R = 6 and (e) k-t FOCUSS with ME/MC reconstruction at R = 6. Bottom
rows: (d) MASTeR reconstruction at R = 10 and (f) k-t FOCUSS with ME/MC recon-
struction at R = 10. Right-side columns in (c)–(f) show difference images that are amplified
by a factor of 5. White arrows in (f) point to the regions where heart structure is missing
in the k-t FOCUSS with ME/MC reconstruction.

158

Figure 13.5: A comparison of MASTeR and k-t FOCUSS with ME/MC for the two-
chamber MRI scan: temporal variations. (a) ROI with lines illustrating the three locations
of the temporal slices. (b) Temporal profiles in y-t space at three different locations along x
direction. Left column: (c) MASTeR and (e) k-t FOCUSS with ME/MC reconstruction at
R = 6. Right column: (d) MASTeR and (f) k-t FOCUSS with ME/MC reconstruction at
R = 10. Bottom rows in (c)–(f) show difference images that are amplified by a factor of 5.
White arrows point to the regions where temporal information is lost in the k-t FOCUSS
with ME/MC reconstruction.

159

We support this claim by comparing k-t FOCUSS with ME/MC and a variant

of that in which we replaced the reference frame-based motion-compensated residu-

als terms with the motion-adaptive transforms from MASTeR. We call this variant

k-t FOCUSS with MASTeR. In both the methods, the initial estimate for the image

sequence is identical and is computed by solving k-t FOCUSS (i.e., a least-squares

problem with iteratively reweighted temporal-DFT). For the motion-compensation

step, k-t FOCUSS with ME/MC solves the following least-squares problem with it-

erative reweighting:

minimize
∆x

‖Φ∆x− y‖2
2 + λ‖WFt∆x‖2

2, (13.12)

where ∆x denotes motion-compensated residuals for the entire image sequence with

respect to a reference frame, Ft denotes a temporal-DFT operator, and W denotes a

diagonal matrix that is used for iterative reweighting. In contrast, k-t FOCUSS with

MASTeR solves the following least-squares problem with iterative reweighting:

minimize
x

‖Φx− y‖2
2 + λ‖WMx‖2

2, (13.13)

where x denotes the image sequence, W denotes a diagonal reweighting matrix, and

M denotes a motion-compensation operator that uses the forward and the backward

motion operators, Fi and Bi, to compute the respective motion-compensated differ-

ences: fi = Fixi − xi+1 and bi = Bixi − xi−1, for each image xi in the sequence x

and stacks them on top of one another. In fact, (13.13) uses iterative reweighting to

approximately solve the following `1 norm problem of the MASTeR (also presented

in (13.11)):

minimize
x

‖Φx− y‖2
2 + λ‖Mx‖1. (13.14)

We used identical procedure for optimizing regularization parameters and for iterative

reweighting, while solving (13.12) and (13.13).

160

We followed the experimental setup described in the Methods section and com-

pared the reconstructions for MASTeR, k-t FOCUSS with ME/MC, and k-t FOCUSS

with MASTeR. The results are presented in Figure 13.6 (for short-axis scan at reduc-

tion factors 6 and 10) and Figure 13.7 (for two-chamber scan at reduction factors 10

and 12). The results show that, under identical settings of recovery framework, the

motion-adaptive model outperforms the reference frame-based residual reconstruc-

tion. The results for k-t FOCUSS with MASTeR are distinctly better than those of

k-t FOCUSS with ME/MC; they are less noisy and preserve the fine details in the

reconstructions that are lost in k-t FOCUSS with ME/MC. The results for MAS-

TeR are still superior to those of k-t FOCUSS with MASTeR, which can be due to

the use of `1 norm instead of iteratively reweighted `2 norm and the use of spatial

regularization instead of temporal regularization for the initialization.

13.6.2 Comparison of motion estimation schemes

Motion estimation is a central component of our method, and we desire a robust

motion estimation scheme that can perform well with noisy, distorted images. Al-

though we can use any motion estimation scheme in MASTeR framework, we found

that CWT phase-based motion estimation performed significantly better than block-

matching and overlapped block-matching schemes in our experiments.

In Figure 13.8 we present an experiment where we reconstructed a short-axis MRI

scan at reduction factor R = 8 using MASTeR. In the initialization step, we estimated

each image by solving (13.6) using DT-CWT as the sparse spatial transform Ψ. The

second column in Figure 13.8 presents the ROI of the reconstructed images, which are

blurry and contain several artifacts. We used three different schemes for estimating

motion: phase shifts of CWT coefficients (in the third column), overlapped block-

matching (in the fourth column), and standard block-matching (in the last column).

The results clearly show that the CWT-based motion estimation scheme is more

161

Figure 13.6: A comparison of MASTeR, MASTeR with k-t FOCUSS, and k-t FOCUSS
with ME/MC for the short-axis MRI scan: frames 1, 8, and 13 (left to right). (a) Con-
ventional full-grid ground truth images from the full k-space. (b) Enlarged spatial ROI.
MASTeR reconstruction at R = 6 in (c) and R = 10 in (d). k-t FOCUSS with MASTeR at
R = 6 in (e) and R = 10 in (f). k-t FOCUSS with ME/MC reconstruction at R = 6 in (g)
and R = 10 in (h). Bottom rows in (c)–(h) show difference images that are amplified by a
factor of 5.

162

Figure 13.7: A comparison of MASTeR, MASTeR with k-t FOCUSS, and k-t FOCUSS
with ME/MC for the two-chamber MRI scan: frames 1, 3, and 9 (top to bottom). (a)
Conventional full-grid ground truth images from the full k-space. (b) Enlarged spatial ROI.
MASTeR reconstruction at R = 10 in (c) and R = 12 in (d). k-t FOCUSS with MASTeR
at R = 10 in (e) and R = 12 in (f). k-t FOCUSS with ME/MC reconstruction at R = 10
in (g) and R = 12 in (h). Right-side columns in (c)–(h) show difference images that are
amplified by a factor of 5.

163

robust than the block matching and the overlapped block matching schemes in this

setting.

We would like to point out that if we add temporal regularization (e.g., temporal-

DFT) in the initialization step, the quality of initial reconstruction improves and

OBM-based motion estimation scheme works well. However, we have presented these

result to justify the reason for using CWT-based motion estimation scheme in our

experiments, in which block-matching based schemes did not perform very well.

164

Figure 13.8: A comparison of different motion estimation schemes in MASTeR. Column 1:
ROIs from frames 1, 8, and 13 of the short-axis MRI scan. The images are reconstructed
from k-space data at R = 8. Column 2: Initial results for frame-by-frame reconstruction
using `1 regularization with DT-CWT. Column 3–5: Results after thee motion adaptation
iterations when we estimated motion using CWT-based method, overlapped block-matching
(OBM)-based method, or standard block-matching (BM)-based method, respectively. Bot-
tom rows in each plot show difference images that are amplified by a factor of 5.

165

CHAPTER XIV

CONCLUSION

The work presented in this thesis builds on the principles of sparse signal recovery from

linear, non-adaptive measurements. A number of efficient algorithms and recovery

guarantees have been proposed in optimization and compressive sensing literature for

such problems. However, most of these results assume a static model for the signal

and the measurement system. The main emphasis in this thesis is on the algorithms

that can efficiently use dynamics in the signal and the measurements for solving the

sparse recovery problems. In dynamic `1 updating, our goal is to use any available

knowledge about the signal estimate and the variations in the signal or the system in a

systematic manner so that the sparse recovery process can be accelerated. In building

the dynamic model for video, our goal is to utilize knowledge about the spatial and

the temporal structure inherent in a video sequence so that a high-quality video can

be reconstructed from the available compressed, non-adaptive measurements.

14.1 Dynamic `1 updating

We presented a suite of homotopy algorithms that can quickly update solutions for

various `1-norm minimization programs. The homotopy methods we discussed are

simple and inexpensive, and promise significantly lower marginal cost than solving

entirely new optimization programs from scratch. These methods break the update

procedure into a series of linear steps, and the computational cost of each step is a

few matrix-vector multiplications. We presented a general homotopy algorithm in

Chapter 3 that caters to a variety of dynamical settings; for instance, time-varying

signals, streaming measurements, iterative reweighting in `1 norm, and dynamic signal

models. In Chapters 4–11, we discussed dynamic updating for different `1 programs

166

that usually arise in streaming and dynamical settings, and for which the homotopy

update can substantially expedite the recovery process. We presented experimental

evidence to demonstrate that our proposed homotopy algorithms perform significantly

better than other state-of-the-art solvers.

14.2 Dynamic models in video

Low-complexity video coding: We presented a video coding framework that is

inspired by compressive sensing principles, where instead of sampling the video scene

at full resolution, we capture a small number of indirect, non-adaptive measurements.

Such an encoder is particularly desired when the video recording device is constrained

and can only provide incomplete measurements. In that case, conventional video cod-

ing tasks such as motion-estimation and residual compression cannot be performed at

the encoder. The constraints can be for various reasons; for instance, limitations of the

sensors, excessive power consumption, or prolonged imaging time. In such a case, the

burden of reconstruction is shifted to the decoder, which needs to extract as much in-

formation about the video sequence as possible and provide its quality reconstruction

from the available measurements. To recover the video from the compressed measure-

ments, we used a motion-adaptive dynamical system to describe measurements and

temporal variations in the video; where we used inter-frame motion to couple neigh-

boring frames in the video sequence. Since motion information is not readily available

from compressed measurements of the video, we adopt an alternating minimization

approach in which we iteratively estimate images using any available motion infor-

mation and then use estimated images to refine estimates of inter-frame motion. We

demonstrated with an extensive set of experiments on standard test sequences that

using inter-frame motion in the reconstruction provides significantly better results

compared to either frame-by-frame or frame-difference based reconstruction.

167

Accelerated dynamic MRI: We presented a new recovery algorithm (MASTeR)

for highly accelerated dynamic MRI, in which the acquisition process is accelerated by

undersampling the k-space data (i.e., 2-D Fourier coefficients). MASTeR, which uses

motion-adaptive transforms to model the temporal sparsity in images, was demon-

strated to successfully recover cardiac MR images for a range of undersampling fac-

tors. It provided images with consistently superior spatial and temporal resolutions

and signal-to-error ratios compared to k-t FOCUSS with ME/MC, which is another

popular recovery method. The source of improvement in MASTeR over existing meth-

ods is the motion-adaptive temporal model, where instead of modeling the inter-frame

motion with respect to a single reference frame and reconstructing resultant motion-

compensated residuals, we reconstructed images using a linear dynamical system that

employs motion-adaptive transforms for modeling temporal dependencies between ad-

jacent frames in forward and backward directions. Our results show that it is feasible

to recover high-quality dynamic cardiac MR images with an acceleration factor up to

R = 10 using MASTeR.

14.3 Future directions

To conclude, we discuss some possible future directions for this research.

Dynamic updating: Homotopy methods for `1 problems are extremely fast and

accurate, but they are limited to small-to-medium scale problems. One possible

future work is to extend homotopy algorithms for general structured-signal recovery

problems and develop online algorithms for fast updating in large-scale problems.

Furthermore, a theoretical analysis of performance guarantees for the `1-homotopy

algorithms is also highly desirable.

168

Adaptive sensing for videos: In our work on the recovery of videos from com-

pressed measurements, we have primarily used non-adaptive measurements to acquire

each image. However, since images in a video sequence are highly correlated, we can

potentially infer the contents of an image before acquisition by either extrapolating

previously reconstructed images or using guidance from other sources (e.g., a map or

geometry of the scene that identifies regions of interest). A future work might con-

sider an intelligent sensing mechanism in which prior information is used to design

measurements for each image. We expect that such an adaptive sensing scheme can

provide an improved coded video acquisition and reconstruction framework.

Medical imaging: We used motion-adaptive model in dynamic MRI to establish

a dynamic model between adjacent images in the MRI sequence. Other problems

in medical imaging can also benefit from similar models. One such example is the

ultrasound imaging, where an array of transducers record reflections from a local

region in the body. Since relative locations of the transducers with respect to the

region under observation is known, a signal model that uses correlation between the

received signals can explain the phenomenon in a better way. This can potentially

improve the quality of reconstruction or help reduce the complexity of the transducer.

169

REFERENCES

[1] Afonso, M., Bioucas-Dias, J., and Figueiredo, M., “Fast image recovery
using variable splitting and constrained optimization,” IEEE Transactions on
Image Processing, vol. 19, pp. 2345–2356, Sept. 2010.

[2] Angelosante, D., Roumeliotis, S. I., and Giannakis, G. B., “Lasso-
Kalman smoother for tracking sparse signals,” in Proc. 43rd Asilomar Confer-
ence on Signals, Systems and Computers, pp. 181–185, Nov. 2009.

[3] Asif, M. S. and Romberg, J., “On the LASSO and Dantzig selector equiva-
lence,” in 44th Annual Conference on Information Sciences and Systems, pp. 1–
6, Mar. 2010.

[4] Asif, M. S., Charles, A., Romberg, J., and Rozell, C., “Estimation and
dynamic updating of time-varying signals with sparse variations,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3908–3911, May 2011.

[5] Asif, M. S., Hamilton, L., Brummer, M., and Romberg, J., “Motion-
adaptive spatio-temporal regularization for accelerated dynamic MRI,” Mag-
netic Resonance in Medicine, 2012. DOI: 10.1002/mrm.24524.

[6] Asif, M. S. and Romberg, J., “Streaming measurements in compressive
sensing: `1 filtering,” in 42nd Asilomar conference on Signals, Systems and
Computers, pp. 1051–1058, Oct. 2008.

[7] Asif, M. S. and Romberg, J., “Dantzig selector homotopy with dynamic
measurements,” in Proc. IS&T/ SPIE Computational Imaging VII, vol. 7246,
2009.

[8] Asif, M. S. and Romberg, J., “Dynamic updating for sparse time vary-
ing signals,” in 43rd Annual Conference on Information Sciences and Systems
(CISS), pp. 3–8, Mar. 2009.

[9] Asif, M. S. and Romberg, J., “Sparse signal recovery and dynamic update of
the underdetermined system,” in 44th Asilomar Conference on Signals, Systems
and Computers, pp. 798–802, Nov. 2010.

[10] Asif, M. S., “Primal Dual Pursuit: A homotopy based algorithm for the
Dantzig selector,” Master’s thesis, Georgia Institute of Technology, Aug. 2008.

[11] Asif, M. S. and Romberg, J., “`1 Homotopy : A MATLAB
toolbox for homotopy algorithms in `1 norm minimization problems.”
http://users.ece.gatech.edu/∼sasif/homotopy.

[12] Asif, M. S. and Romberg, J., “Fast and accurate algorithms for re-weighted
`1-norm minimization,” [Preprint] Available: http://arxiv.org/abs/1208.0651.

170

[13] Asif, M. S. and Romberg, J., “Sparse recovery of streaming signals using
`1-homotopy,” [Preprint] Available: http://arxiv.org/abs/1306.3331.

[14] Asif, M. S. and Romberg, J., “Dynamic updating for `1 minimization,”
IEEE Journal of Selected Topics in Signal Processing, vol. 4, pp. 421–434, Apr.
2010.

[15] Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M., “A simple
proof of the restricted isometry property for random matrices,” Constructive
Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[16] Baraniuk, R., Cevher, V., Duarte, M., and Hegde, C., “Model-based
compressive sensing,” IEEE Transactions on Information Theory, vol. 56,
pp. 1982 –2001, Apr. 2010.

[17] Barron, J. L., Fleet, D. J., and Beauchemin, S. S., “Performance of
optical flow techniques,” International Journal of Computer Vision, vol. 12,
pp. 43–77, Feb. 1994.

[18] Beck, A. and Teboulle, M., “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 1, pp. 183–202, 2009.

[19] Becker, S., Bobin, J., and Candès., E., “NESTA: A fast and accurate
first-order method for sparse recovery,” SIAM Journal on Imaging Sciences,
vol. 4, no. 1, pp. 1–39, 2011.

[20] Becker, S., Candès, E., and Grant, M., “Templates for convex cone prob-
lems with applications to sparse signal recovery,” Mathematical Programming
Computation, vol. 3, no. 3, 2011.

[21] Bertsekas, D., Nonlinear programming. Athena Scientific Belmont, Mass,
1999.

[22] Bioucas-Dias, J. and Figueiredo, M., “A new TwIST: two-step iterative
shrinkage/thresholding algorithms for image restoration,” IEEE Transactions
on Image Processing, vol. 16, pp. 2992–3004, Dec. 2007.

[23] Björck, Å., Numerical Methods for Least Squares Problems. Society for In-
dustrial and Applied Mathematics (SIAM), 1996.

[24] Blu, T., Dragotti, P.-L., Vetterli, M., Marziliano, P., and Coulot,
L., “Sparse Sampling of Signal Innovations [Theory, algorithms, and perfor-
mance bounds],” IEEE Signal Processing Magazine, vol. 25, pp. 31–40, Mar.
2008.

[25] Blumensath, T. and Davies, M., “Iterative thresholding for sparse approxi-
mations,” Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 629–
654, 2008.

171

[26] Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge Univer-
sity Press, March 2004.

[27] Brox, T., Bruhn, A., Papenberg, N., and Weickert, J., “High accuracy
optical flow estimation based on a theory for warping,” in European conference
on computer vision (ECCV), Prague, p. 25–36, 2004.

[28] Brummer, M. E., Moratal-Pérez, D., Hong, C., Pettigrew, R. I.,
Millet-Roig, J., and Dixon, W. T., “Noquist: Reduced field-of-view imag-
ing by direct fourier inversion,” Magnetic Resonance in Medicine, vol. 51,
pp. 331–342, Feb. 2004.

[29] Buckheit, J., Chen, S., Donoho, D., and Johnstone, I., “Wavelab 850,
Software toolbox.” http://www-stat.stanford.edu/∼wavelab/.

[30] Candès, E., “Compressive sampling,” Proceedings of the International
Congress of Mathematicians, Madrid, Spain, vol. 3, pp. 1433–1452, 2006.

[31] Candès, E. and Donoho, D., “Ridgelets: a key to higher-dimensional inter-
mittency?,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 357, no. 1760, pp. 2495–2509, 1999.

[32] Candès, E. and Romberg, J., “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007.

[33] Candès, E., Romberg, J., and Tao, T., “Stable signal recovery from in-
complete and inaccurate measurements,” Communications on Pure and Applied
Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[34] Candès, E. and Tao, T., “The Dantzig selector: Statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–2351,
2007.

[35] Candès, E. J. and Tao, T., “Near-optimal signal recovery from random pro-
jections: Universal encoding strategies?,” IEEE Transactions on Information
Theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[36] Candès, E. and Donoho, D., “New tight frames of curvelets and optimal
representations of objects with piecewise C2 singularities,” Communications on
Pure and Applied Mathematics, vol. 57, no. 2, pp. 219–266, 2004.

[37] Candès, E., Romberg, J., and Tao, T., “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[38] Candès, E. and Tao, T., “Decoding by linear programming,” IEEE Trans-
actions on Information Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

172

[39] Candès, E., “The restricted isometry property and its implications for com-
pressed sensing,” Comptes Rendus Mathematique, vol. 346, pp. 589–592, May
2008.

[40] Candès, E., Eldar, Y., and Needell, D., “Compressed sensing with coher-
ent and redundant dictionaries,” Applied and Computational Harmonic Analy-
sis, vol. 31, no. 1, pp. 59–73, 2011.

[41] Candès, E. and Romberg, J., “`1-magic: Recovery of sparse signals via
convex programming.” http://users.ece.gatech.edu/∼justin/l1magic/.

[42] Candès, E. J., Wakin, M. B., and Boyd, S. P., “Enhancing sparsity by
reweighted `1 minimization,” Journal of Fourier Analysis and Applications,
vol. 14, no. 5-6, pp. 877–905, 2008.

[43] Carmi, A., Gurfil, P., and Kanevsky, D., “Methods for sparse signal
recovery using Kalman filtering pseudo-measuremennt norms and quasi-norms,”
IEEE Transactions on Signal Processing, vol. 58, pp. 2405–2409, Apr. 2010.

[44] Charles, A., Asif, M. S., Romberg, J., and Rozell, C., “Sparsity penal-
ties in dynamical system estimation,” in Proc. Conference on Information and
System Sciences (CISS), pp. 1–6, Mar. 2011.

[45] Charles, A. S. and Rozell, C. J., “Re-weighted `1 dynamic
filtering for time-varying sparse signal estimation,” [Preprint]
http://arxiv.org/abs/1208.0325.

[46] Chen, S. S., Donoho, D. L., and Saunders, M. A., “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–
61, 1999.

[47] Chen, W., Rodrigues, M., and Wassell, I., “Penalized `1 minimization
for reconstruction of time-varying sparse signals,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3988–
3991, May 2011.

[48] Cohen, A., Daubechies, I., and Feauveau, J.-C., “Biorthogonal bases of
compactly supported wavelets,” Communications on Pure and Applied Mathe-
matics, vol. 45, no. 5, pp. 485–560, 1992.

[49] Coifman, R., Geshwind, F., and Meyer, Y., “Noiselets,” Applied and
Computational Harmonic Analysis, vol. 10, no. 1, pp. 27–44, 2001.

[50] Coifman, R. and Wickerhauser, M., “Entropy-based algorithms for best
basis selection,” IEEE Transactions on Information Theory, vol. 38, no. 2 Part
2, pp. 713–718, 1992.

173

[51] Cotter, S. F. and Rao, B. D., “Sparse channel estimation via matching pur-
suit with application to equalization,” IEEE Transactions on Communications,
vol. 50, no. 3, pp. 374–377, 2002.

[52] Daubechies, I., Defrise, M., and De Mol, C., “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Communica-
tions on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.

[53] Daubechies, I., Ten Lectures on Wavelets, vol. 61. Society for Industrial and
Applied Mathematics (SIAM), 1992.

[54] Donoho, D. L. and Tsaig, Y., “Fast solution of `1-norm minimization prob-
lems when the solution may be sparse,” IEEE Transactions on Information
Theory, vol. 54, no. 11, pp. 4789–4812, 2008.

[55] Donoho, D., “Compressed sensing,” IEEE Transactions on Information The-
ory, vol. 52, pp. 1289–1306, Apr. 2006.

[56] Donoho, D., Elad, M., and Temlyakov, V., “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Transactions on
Information Theory, vol. 52, pp. 6–18, Jan. 2006.

[57] Donoho, D. and Huo, X., “Uncertainty principles and ideal atomic decom-
position,” IEEE Transactions on Information Theory, vol. 47, pp. 2845–2862,
Nov. 2001.

[58] Donoho, D. and Johnstone, J., “Ideal spatial adaptation by wavelet shrink-
age,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[59] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[60] Elad, M., Milanfar, P., and Rubinstein, R., “Analysis versus synthesis
in signal priors,” Inverse Problems, vol. 23, p. 947, 2007.

[61] Feng, P. and Bresler, Y., “Spectrum-blind minimum-rate sampling and re-
construction of multiband signals,” in IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), vol. 3, pp. 1688–1691, s, 1996.

[62] Figueiredo, M., Nowak, R., and Wright, S., “Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse
problems,” IEEE Journal of Selected Topics in Signal Processing, vol. 1,
pp. 586–597, Dec. 2007.

[63] Friedlander, M., Mansour, H., Saab, R., and Yilmaz, O., “Recover-
ing compressively sampled signals using partial support information,” IEEE
Transactions on Information Theory, vol. 58, pp. 1122 –1134, Feb. 2012.

174

[64] Fuchs, J., “On sparse representations in arbitrary redundant bases,” IEEE
Transactions on Information Theory, vol. 50, pp. 1341–1344, June 2004.

[65] Garrigues, P. J. and Ghaoui, L. E., “An homotopy algorithm for the Lasso
with online observations,” Neural Information Processing Systems (NIPS) 21,
Dec. 2008.

[66] Golub, G. and Van Loan, C., Matrix Computations. Johns Hopkins Uni-
versity Press, 1996.

[67] Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jel-
lus, V., Wang, J., Kiefer, B., and Haase, A., “Generalized autocalibrating
partially parallel acquisitions (GRAPPA),” Magnetic Resonance in Medicine,
vol. 47, pp. 1202–1210, June 2002.

[68] Hale, E., Yin, W., and Zhang, Y., “Fixed-Point Continuation for `1-
minimization: Methodology and Convergence,” SIAM Journal on Optimization,
vol. 19, no. 3, pp. 1107–1130, 2008.

[69] Hamilton, L. H., Fabregat, J. A., Moratal, D., Ramamurthy, S.,
Lerakis, S., Parks, W. J., Sallee III, D., and Brummer, M. E.,
“PINOT: Time-resolved parallel magnetic resonance imaging with a reduced
dynamic field of view,” Magnetic Resonance in Medicine, vol. 65, pp. 1062–
1074, Apr. 2011.

[70] Hayes, M., Statistical Digital Signal Processing and Modeling. John Wiley &
Sons, Inc. New York, NY, USA, 1996.

[71] Horn, B. K. and Schunck, B. G., “Determining optical flow,” Artificial
Intelligence, vol. 17, pp. 185–203, Aug. 1981.

[72] Jain, J. and Jain, A., “Displacement measurement and its application in
interframe image coding,” IEEE Transactions on Communications, vol. 29,
pp. 1799– 1808, Dec. 1981.

[73] James, G., Radchenko, P., and Lv, J., “The DASSO algorithm for fitting
the Dantzig selector and the Lasso,” Journal of the Royal Statistical Society,
Series B, vol. 71, pp. 127–142, 2009.

[74] Jung, H., Sung, K., Nayak, K., Kim, E., and Ye, J., “k-t FOCUSS:
A general compressed sensing framework for high resolution dynamic MRI,”
Magnetic Resonance in Medicine, vol. 61, no. 1, pp. 103–116, 2009.

[75] Jung, H. and Ye, J., “Motion estimated and compensated compressed sensing
dynamic magnetic resonance imaging: What we can learn from video compres-
sion techniques,” International Journal of Imaging Systems and Technology,
vol. 20, no. 2, pp. 81–98, 2010.

175

[76] Jung, H., Sung, K., Nayak, K. S., Kim, E. Y., and Ye, J. C., “k-t
FOCUSS: a general compressed sensing framework for high resolution dynamic
MRI,” Magnetic Resonance in Medicine, vol. 61, pp. 103–116, Jan. 2009.

[77] Kailath, T., Sayed, A. H., and Hassibi, B., Linear estimation. Prentice
Hall Upper Saddle River, NJ, 2000.

[78] Kalman, R., “A new approach to linear filtering and prediction problems,”
Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[79] Kay, S. M., Fundamentals of statistical signal processing: Estimation theory.
Prentice Hall, 1993.

[80] Kellman, P., Epstein, F. H., and McVeigh, E. R., “Adaptive sensitivity
encoding incorporating temporal filtering (TSENSE),” Magnetic Resonance in
Medicine, vol. 45, pp. 846–852, May 2001.

[81] Khajehnejad, M., Xu, W., Avestimehr, A., and Hassibi, B., “Improved
sparse recovery thresholds with two-step reweighted `1 minimization,” in IEEE
International Symposium on Information Theory Proceedings (ISIT), pp. 1603–
1607, June 2010.

[82] Kyriakos, W. E., Panych, L. P., Kacher, D. F., Westin, C., Bao,
S. M., Mulkern, R. V., and Jolesz, F. A., “Sensitivity profiles from an ar-
ray of coils for encoding and reconstruction in parallel (SPACE RIP),” Magnetic
Resonance in Medicine, vol. 44, pp. 301–308, Aug. 2000.

[83] Li, W. and Preisig, J., “Estimation of rapidly time-varying sparse channels,”
IEEE Journal of Oceanic Engineering, vol. 32, no. 4, pp. 927–939, 2007.

[84] Liang, D., Liu, B., Wang, J., and Ying, L., “Accelerating SENSE using
compressed sensing,” Magnetic Resonance in Medicine, vol. 62, pp. 1574–1584,
Dec. 2009.

[85] Liu, B., Sebert, F., Zou, Y., and Ying, L., “SparseSENSE: Randomly-
sampled parallel imaging using compressed sensing,” in Proceedings of the 16th
Annual Meeting of ISMRM, Toronto, p. 3154, May 2008.

[86] Liu, C., Beyond Pixels: Exploring New Representations and Applications for
Motion Analysis. Doctor of philosophy, Massachusetts Institute of Technology,
2009.

[87] Lu, Y. and Do, M., “Sampling signals from a union of subspaces [a new
perspective for the extension of this theory],” IEEE Signal Processing Magazine,
vol. 25, pp. 41–47, Mar. 2008.

[88] Lustig, M., Donoho, D., and Pauly, J., “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine,
vol. 58, no. 6, pp. 1182–1195, 2007.

176

[89] Lustig, M., Donoho, D., Santos, J., and Pauly, J., “Compressed Sensing
MRI [A look at how CS can improve on current imaging techniques],” IEEE
Signal Processing Magazine, vol. 25, pp. 72–82, Mar. 2008.

[90] Lustig, M., Santos, J., Donoho, D., and Pauly, J., “k-t SPARSE: High
frame rate dynamic MRI exploiting spatio-temporal sparsity,” in Proceedings
of the 13th Annual Meeting of ISMRM, Seattle, p. 2420, May 2006.

[91] Madore, B., “UNFOLD-SENSE: A parallel MRI method with self-calibration
and artifact suppression,” Magnetic Resonance in Medicine, vol. 52, pp. 310–
320, Aug. 2004.

[92] Magarey, J. and Kingsbury, N., “Motion estimation using a complex-
valued wavelet transform,” IEEE Transactions on Signal Processing, vol. 46,
pp. 1069–1084, Apr. 1998.

[93] Malioutov, D., Sanghavi, S., and Willsky, A., “Compressed sensing with
sequential observations,” IEEE International Conference on Acoustics, Speech,
and Signal Processing,, pp. 3357–3360, April 2008.

[94] Mallat, S., A Wavelet Tour of Signal Processing. Academic Press, second ed.,
1999.

[95] Malvar, H. and Staelin, D., “The LOT: Transform coding without blocking
effects,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37,
no. 4, pp. 553–559, 1989.

[96] Mansour, H., “Beyond `1-norm minimization for sparse signal recovery,” in
Proc. of the IEEE Statistical Signal Processing Workshop (SSP), Aug. 2012.

[97] Marcia, R. and Willett, R., “Compressive coded aperture video recon-
struction,” in Proc. European Signal Processing Conf.(EUSIPCO), Aug. 2008.

[98] Meinshausen, N. and Yu, B., “Lasso-type recovery of sparse representations
for high-dimensional data,” Annals of Statistics, vol. 37, no. 1, pp. 246–270,
2008.

[99] Mun, S. and Fowler, J. E., “Residual reconstruction for block-based com-
pressed sensing of video,” in Data Compression Conference (DCC), pp. 183–192,
Mar. 2011.

[100] Natarajan, B., “Sparse Approximate Solutions to Linear Systems,” SIAM
Journal on Computing, vol. 24, p. 227, 1995.

[101] Needell, D. and Tropp, J., “CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples.,” Applied and Computational Harmonic Analysis,
vol. 26, pp. 301–321, June 2008.

177

[102] Nesterov, Y. and Nemirovsky, A., “Interior Point Polynomial Methods in
Convex Programming,” Studies in Applied Mathematics (SIAM), vol. 13, 1994.

[103] Nyquist, H., “Certain topics in telegraph transmission theory,” Transactions
of the American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–644,
1928.

[104] Olshausen, B. and Field, D., “Sparse coding with an overcomplete basis set:
A strategy employed by V1?,” Vision research, vol. 37, no. 23, pp. 3311–3325,
1997.

[105] Orchard, M. T. and Sullivan, G. J., “Overlapped block motion com-
pensation: An estimation-theoretic approach,” IEEE Transactions on Image
Processing, vol. 3, pp. 693–699, Sept. 1994.

[106] Osborne, M., Presnell, B., and Turlach, B., “A new approach to vari-
able selection in least squares problems,” IMA Journal of Numerical Analysis,
vol. 20, no. 3, pp. 389–403, 2000.

[107] Otazo, R., Kim, D., Axel, L., and Sodickson, D. K., “Combination of
compressed sensing and parallel imaging for highly accelerated first-pass cardiac
perfusion MRI,” Magnetic Resonance in Medicine, vol. 64, pp. 767–776, Sept.
2010.

[108] Park, J. and Wakin, M., “A multiscale framework for compressive sensing
of video,” in IEEE Picture Coding Symposium, Chicago, pp. 1–4, May 2009.

[109] Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S., “Orthogo-
nal matching pursuit: recursive function approximation with applications to
wavelet decomposition,” in 27th Asilomar Conference on Signals, Systems and
Computers, vol. 1, pp. 40–44, Nov. 1993.

[110] Portniaguine, O., Bonifasi, C., DiBella, E., and Whitaker, R., “In-
verse methods for reduced k-space acquisition,” in Proceedings of the 11th Meet-
ing of ISMRM, Toronto, p. 481, July 2003.

[111] Pruessmann, K., Weiger, M., Scheidegger, M., and Boesiger, P.,
“SENSE: sensitivity encoding for fast MRI,” Magnetic Resonance in Medicine,
vol. 42, no. 5, p. 952–962, 1999.

[112] Puri, R., Majumdar, A., and Ramchandran, K., “PRISM: a video coding
paradigm with motion estimation at the decoder,” IEEE Transactions on Image
Processing, vol. 16, pp. 2436–2448, Oct. 2007.

[113] Radchenko, P. and James, G., “Improved variable selection with forward-
lasso adaptive shrinkage,” The Annals of Applied Statistics, vol. 5, no. 1,
pp. 427–448, 2011.

178

[114] Reddy, D., Veeraraghavan, A., and Chellappa, R., “P2C2: pro-
grammable pixel compressive camera for high speed imaging,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Colorado Springs,
pp. 329–336, June 2011.

[115] Richardson, I. E. G., H.264 and MPEG-4 Video Compression. Chichester,
UK: John Wiley & Sons, Ltd, Sept. 2003.

[116] Rockafellar, R. T., Convex analysis, vol. 28. Princeton university press,
1997.

[117] Romberg, J., “Imaging via Compressive Sampling [Introduction to compres-
sive sampling and recovery via convex programming],” IEEE Signal Processing
Magazine, vol. 25, pp. 14–20, Mar. 2008.

[118] Rudelson, M. and Vershynin, R., “Geometric approach to error correct-
ing codes and reconstruction of signals,” International Mathematics Research
Notices, no. 64, pp. 4019–4041, 2005.

[119] Rudelson, M. and Vershynin, R., “The Littlewood–Offord problem and
invertibility of random matrices,” Advances in Mathematics, 2008.

[120] Rudin, L. I., Osher, S., and Fatemi, E., “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, pp. 259–
268, Nov. 1992.

[121] Santosa, F. and Symes, W., “Linear Inversion of Band-Limited Reflection
Seismograms,” SIAM Journal on Scientific and Statistical Computing, vol. 7,
p. 1307, 1986.

[122] Selesnick, I., Baraniuk, R., and Kingsbury, N., “The dual-tree complex
wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 123–
151, 2005.

[123] Shannon, C. E., “Communication in the presence of noise,” Proceedings of
the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[124] Shannon, C. E., “A mathematical theory of communication,” ACM SIGMO-
BILE Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55,
2001.

[125] Sodickson, D. K. and Manning, W. J., “Simultaneous acquisition of spatial
harmonics (SMASH): Fast imaging with radio-frequency coil arrays,” Magnetic
Resonance in Medicine, vol. 38, pp. 591–603, Oct. 1997.

[126] Sorenson, H. W., “Least-squares estimation: from Gauss to Kalman,” IEEE
Spectrum, vol. 7, no. 7, pp. 63–68, 1970.

179

[127] Srinivasan, R. and Rao, K., “Predictive coding based on efficient motion
estimation,” IEEE Transactions on Communications, vol. 33, pp. 888– 896,
Aug. 1985.

[128] Sullivan, G. J. and Wiegand, T., “Video compression - from concepts to
the H.264/AVC standard,” Proceedings of the IEEE, vol. 93, pp. 18–31, Jan.
2005.

[129] Takhar, D., Laska, J., Wakin, M., Duarte, M., Baron, D., Sar-
votham, S., Kelly, K., and Baraniuk, R., “A New Compressive Imaging
Camera Architecture using Optical-Domain Compression,” Proc. IS&T/SPIE
Computational Imaging IV, 2006.

[130] Taubman, D. and Marcellin, M., JPEG2000: Image compression funda-
mentals, standards and practice,. Kluwer Academic Publishers Boston, 2002.

[131] Tibshirani, R., “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996.

[132] Tropp, J., “Just relax: Convex programming methods for identifying sparse
signals in noise,” IEEE Transactions on Information Theory, vol. 52, no. 3,
pp. 1030–1051, 2006.

[133] Tropp, J. A., Laska, J. N., Duarte, M. F., Romberg, J. K., and Bara-
niuk, R. G., “Beyond Nyquist: Efficient sampling of sparse, bandlimited sig-
nals,” IEEE Transactions on Information Theory, vol. 56, pp. 520–544, Jan.
2010.

[134] Tropp, J. A. and Gilbert, A., “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Transactions on Information Theory,
vol. 53, pp. 4655–4666, Dec. 2007.

[135] Tsao, J., Boesiger, P., and Pruessmann, K. P., “k-t BLAST and k-t
SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correla-
tions,” Magnetic Resonance in Medicine, vol. 50, pp. 1031–1042, Nov. 2003.

[136] Unser, M., “Sampling-50 years after shannon,” Proceedings of the IEEE,
vol. 88, pp. 569–587, Apr. 2000.

[137] van den Berg, E. and Friedlander, M. P., “Probing the pareto frontier
for basis pursuit solutions,” SIAM Journal on Scientific Computing, vol. 31,
no. 2, pp. 890–912, 2008.

[138] Vanderbei, R., Linear Programming: Foundations and Extensions. Kluwer
Academic Publishers, 2001.

[139] Vaswani, N., “Kalman filtered compressed sensing,” in 15th IEEE Interna-
tional Conference on Image Processing, pp. 893–896, Oct. 2008.

180

[140] Velikina, J., Johnson, K., Block, K., and Samsonov, A., “Design of
temporally constrained compressed sensing methods for accelerated dynamic
mri,” in Proceedings of the 18th Annual Meeting of ISMRM, Stockholm, p. 4865,
May 2010.

[141] Vetterli, M. and Kovacevic, J., Wavelets and subband coding. Prentice
Hall PTR Englewood Cliffs, NJ, 1995.

[142] Vetterli, M., Marziliano, P., and Blu, T., “Sampling signals with finite
rate of innovation,” Signal Processing, IEEE Transactions on, vol. 50, no. 6,
pp. 1417–1428, 2002.

[143] Wakin, M., Laska, J., Duarte, M., Baron, D., Sarvotham, S.,
Takhar, D., Kelly, K., and Baraniuk, R., “An architecture for com-
pressive imaging,” pp. 1273–1276, 8-11 Oct. 2006.

[144] Wen, Z. and Yin, W., “FPC AS: A MATLAB solver for `1-regularized least-
squares problems.” http://www.caam.rice.edu/∼optimization/L1/FPC AS/.

[145] Whitaker, E., “On the functions which are represented by the expansion of
interpolating theory,” in Proc. Roy. Soc. Edinburgh, vol. 35, pp. 181–194, 1915.

[146] Wiegand, T., Sullivan, G. J., Bjontegaard, G., and Luthra, A.,
“Overview of the H.264/AVC video coding standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, pp. 560–576, July 2003.

[147] Wright, S., Nowak, R., and Figueiredo, M., “Sparse reconstruction by
separable approximation,” IEEE Transactions on Signal Processing, vol. 57,
pp. 2479–2493, July 2009.

[148] Yang, J. and Zhang, Y., “Alternating direction algorithms for `1-problems in
compressive sensing,” SIAM Journal on Scientific Computing, vol. 33, no. 1-2,
pp. 250–278, 2011.

[149] Yang, T.-J., Tsai, Y.-M., Li, C.-T., and Chen, L.-G., “WarmL1: A warm-
start homotopy-based reconstruction algorithm for sparse signals,” in IEEE
International Symposium on Information Theory Proceedings (ISIT), pp. 2226–
2230, July 2012.

[150] Yin, W., Osher, S., Goldfarb, D., and Darbon, J., “Bregman iterative
algorithms for `1 minimization with application to compressed sensing,” SIAM
Journal on Imaging sciences, vol. 1, no. 1, pp. 143–168, 2008.

[151] Ziniel, J., Potter, L. C., and Schniter, P., “Tracking and smoothing of
time-varying sparse signals via approximate belief propagation,” in 44th Asilo-
mar Conference on Signals, Systems and Computers, pp. 808–812, Nov. 2010.

[152] Zou, H., “The adaptive lasso and its oracle properties,” Journal of the Amer-
ican Statistical Association, vol. 101, no. 476, pp. 1418–1429, 2006.

181

