Dynamic Compressive Sensing:

Sparse recovery algorithms for streaming signals and video

M. Salman Asif

Advisor: Justin Romberg

Dynamic compressive sensing

Part 1 Dynamic updating

Use previous solutions and dynamics to <u>quickly</u> solve the recovery problems

Part 2 Dynamic modeling

Use the dynamical signal structure to improve the reconstruction

Dynamic compressive sensing

Part 1 Dynamic updating

Use previous solutions and dynamics to accelerate the recovery process

Part 2 <u>Dynamic modeling</u>

Use the dynamical signal structure to <u>improve</u> the reconstruction

Compressive sensing

• A theory that deals with signal recovery from underdetermined systems:

- 1. Compression with sampling
- 2. Sparse representation in a redundant dictionary

Similar principles: *structure and incoherence*

[Candes, Romberg, Tao, Donoho, Tropp, Baraniuk, Gilbert, Vershynin, Rudelson, ...]

Compressive sensing

• Compressive sensing deals with signal recovery from underdetermined systems:

Compressive sensing

• Compressive sensing deals with signal recovery from underdetermined systems:

$$y = \Phi x \equiv \Phi \Psi \alpha \implies = \bigoplus_{\substack{N \\ Measurement matrix}} \bigoplus_{\substack{N \\ Representation basis}} \bigoplus_{\substack{N \\ Sparse signal}} \sup_{\substack{N \\ Sparsity}} \bigoplus_{\substack{N \\ Sparsity$$

"Dynamic" compressive sensing

• "Static" compressive sensing:

"Dynamic" compressive sensing

• "Static" compressive sensing:

$$y_{t} = \Phi_{t} x_{t} \equiv \Phi_{t} \Psi_{t} \alpha_{t}$$
dynamics
Fixed set of measurements Fixed signal Fixed model for representation

$$\begin{array}{c} \text{Iminimize } \|W_{t} \Psi_{t}^{T} x_{t}\|_{1} + \frac{1}{2} \|\Phi_{t} x_{t} - y_{t}\|_{2}^{2} \\ + \|F_{t} x_{t} - x_{t+1}\|_{p} + \|B_{t} x_{t} - x_{t-1}\|_{p} \end{array}$$
Spatio-temporal structure (redundancies)
in the videos as a dynamic model Fixed model for representation $x_{1} \bigoplus_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{$

Dynamic compressive sensing

Dynamic updating

Quickly update the solution to accommodate changes

- ℓ_1 homotopy
- Variations:
 - Streaming signal
 - Streaming measurements
 - More...

Dynamic modeling

Improve reconstruction by exploiting the dynamical signal structure

Low-complexity video 1. compression

Accelerated dynamic 2.

MRI

Part 1: Dynamic ℓ_1 updating

Motivation: dynamic updating in LS

- System model:
 - $y = \Phi x$
 - Φ is full rank
 - *x* is arbitrary

• LS estimate

minimize $\|\Phi x - y\|_2 \rightarrow x_0 = (\Phi^T \Phi)^{-1} \Phi^T y$

- Updates for a time-varying signal with the same Φ mainly incurs a one-time cost of factorization.

Recursive updates

• Sequential measurements:

Dynamics with the Kalman filter

• Linear dynamical system:

$$y_i = \Phi_i x_i + e_i$$
$$x_{i+1} = F_i x_i + f_i$$

• Update requires few low-rank updates

Dynamic ℓ_1 updating

• Quickly update the solution of the ℓ_1 program as the system parameters change.

 $y = \Phi \bar{x} + e \rightarrow \text{minimize } \|Wx\|_1 + \frac{1}{2} \|\Phi x - y\|_2^2$

- Variations:
 - Time-varying signal
 - Streaming measurements
 - Iterative reweighting
 - Streaming signals with overlapping measurements
 - Sparse signal in a linear dynamical system (sparse Kalman filter)

Dynamic ℓ_1 updating

• Quickly update the solution of the ℓ_1 program as the system parameters change.

 $y_t = \Phi_t \bar{x}_t + e_t \quad \to \quad \text{minimize } \|W_t x_t\|_1 + \frac{1}{2} \|\Phi_t x_t - y_t\|_2^2$

variations

- Variations:
 - Time-varying signal
 - Streaming measurements
 - Iterative reweighting
 - Streaming signals with overlapping measurements
 - Sparse signal in a linear dynamical system (sparse Kalman filter)

Time-varying signals

- System model: $y_1 = \Phi x_1 + e_1$
- ℓ_1 problem: minimize $\tau \|x\|_1 + \frac{1}{2} \|\Phi x y_1\|_2^2$
- Signal varies: $x_1 \rightarrow x_2 \Rightarrow y_1 \rightarrow y_2$ "Sparse innovations"
- New ℓ_1 problem: minimize $au \|x\|_1 + rac{1}{2} \|\Phi x y_2\|_2^2$
- Homotopy: minimize $\tau \|x\|_1 + \frac{1}{2} \|\Phi x (1 \epsilon)y_1 \epsilon y_2\|_2^2$

[A., Romberg, "Dynamic L1 updating", c. 2009]

Time-varying signals

- System model: $y_1 = \Phi x_1 + e_1$
- ℓ_1 problem: minimize $\tau \|x\|_1 + \frac{1}{2} \|\Phi x y_1\|_2^2$
- Signal varies:

$$x_1 o x_2 \ \Rightarrow \ y_1$$
 -'Sparse innovations"

 $\rightarrow y_2$

• New ℓ_1 problem: minimize $\tau \|x\|_1 + \frac{1}{2} \|\Phi x - y_2\|_2^2$

minimize
$$\tau \|x\|_1 + \frac{1}{2} \|\Phi x - (1 - \epsilon)y_1 - \epsilon y_2\|_2^2$$

Homotopy parameter: $0 \to 1$

• Path from old solution to new solution is piecewise linear and it is parameterized by $\epsilon: 0 \rightarrow 1$

1

Time-varying signal

- Homotopy: minimize $\tau \|x\|_1 + \frac{1}{2} \|\Phi x (1 \epsilon)y_1 \epsilon y_2\|_2^2$
- Optimality conditions:
 Must be obeyed by any solution x* with support Γ and sign sequence z

$$\Phi_{\Gamma}^{T}(\Phi x^{*} - (1 - \epsilon)y_{1} - \epsilon y_{2}) = -\tau z$$
$$\|\Phi_{\Gamma^{c}}^{T}(\Phi x^{*} - (1 - \epsilon)y_{1} - \epsilon y_{2})\|_{\infty} < \tau$$

$$\begin{pmatrix} \tau g + \Phi^T (\Phi x^* - (1 - \epsilon)y_1 - \epsilon y_2) = 0, \\ g = \partial \|x^*\|_1 : \|g\|_{\infty} \leq 1, \ g^T x^* = \|x^*\|_1 \end{pmatrix}$$

Optimality: set subdifferential of the objective to zero

Time-varying signal

- Homotopy: minimize $\tau \|x\|_1 + \frac{1}{2} \|\Phi x (1 \epsilon)y_1 \epsilon y_2\|_2^2$
- Optimality conditions:
 Must be obeyed by any solution x* with support Γ and sign sequence z

$$\Phi_{\Gamma}^{T}(\Phi x^{*} - (1 - \epsilon)y_{1} - \epsilon y_{2}) = -\tau z$$
$$\|\Phi_{\Gamma^{c}}^{T}(\Phi x^{*} - (1 - \epsilon)y_{1} - \epsilon y_{2})\|_{\infty} < \tau$$

• Change ϵ to $\epsilon + \delta$:

 $\Phi_{\Gamma}^{T}(\Phi x^{*} - (1 - \epsilon)y_{1} - \epsilon y_{2}) + \delta \Phi_{\Gamma}^{T}(\Phi \partial x + y_{1} - y_{2}) = -\tau z$ $\|\Phi_{\Gamma^{c}}^{T}(\Phi x^{*} - (1 - \epsilon)y_{1} - \epsilon y_{2}) + \delta \Phi_{\Gamma^{c}}^{T}(\Phi \partial x + y_{1} - y_{2})\|_{\infty} < \tau$

• Update direction: $\partial x = \begin{cases} (\Phi_{\Gamma}^T \Phi_{\Gamma})^{-1} \Phi_{\Gamma}^T (y_2 - y_1), & \text{on } \Gamma \\ 0, & \text{on } \Gamma^c \end{cases}$

Results

[A., Romberg, "Dynamic L1 updating", c. 2009]

Signal type	DynamicX (nProdAtA, CPU)	LASSO (nProdAtA, CPU)	GPSR-BB (nProdAtA, CPU)	FPC_AS (nProdAtA, CPU)
Sparse segure scrapes, veh update. m=1024. m=512. T+m;5, k < [0, T/20]	(23.72, 0.132)	(235, <mark>0.924</mark>)	(104.5, <mark>0.18</mark>)	(148.65, <mark>0.177</mark>)
Piecewise contact signal (adapted from WaveLab)	(2.7, <mark>0.028</mark>)	(76.8, <mark>0.490</mark>)	(17, <mark>0.133</mark>)	(53.5, <mark>0.196</mark>)
Precente polynomial signal (cubic) (adapted from WaveLab)	(13.83, <mark>0.151</mark>)	(150.2, <mark>1.096</mark>)	(26.05, <mark>0.212</mark>)	(66.89, <mark>0.25</mark>)
th (zoon (r) Sices of the	(26.2, 0.011)	(53.4, <mark>0.019</mark>)	(92.24, <mark>0.012</mark>)	(90.9, <mark>0.036</mark>)

 $\tau = 0.01 \|A^T y\|_{\infty}$ nProdAtA: avg. number of matrix-vector products with Φ and Φ^T CPU: average cputime to solve

GPSR: Gradient Projection for Sparse Reconstruction. M. Figueiredo, R. Nowak, S. Wright **FPC_AS**: Fixed-point continuation and active set. Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang

"If all you have is a hammer, everything looks like a nail."

Dummy vector used to ensure optimality of previous solution with the changes [A., Romberg, 2010]

 ℓ_1 analysis

Sequential measurements

Positivity/affine constraint

Sparse Kalman filter

 Posit

 Dictionary update
 Construction

 Reweighted ℓ_1 Sparse

New measurements added

Dantzig selector

 ℓ_1 decoding

to the system

Streaming signal

Previous work on single measurement update: [Garrigues & El Ghaoui '08; A., Romberg, '08]

Homotopy parameter: $0 \rightarrow 1$

• Iterative reweighting : minimize $\|[(1-\epsilon)W + \epsilon \widetilde{W}]x\|_1 + \frac{1}{2} \|\Phi x - y\|_2^2$

Weights are updated [A., Romberg, 2012]

Adaptive reweighting in Chapter VI in the thesis

 ℓ_1 analysis

Sequential measurements

Positivity/affine constraint

Sparse Kalman filter

Dantzig selector

 ℓ_1 decoding

Dictionary update

Reweighted ℓ_1

Streaming signal

"One *homotopy* to rule them all"

- System model: $\mathbf{y} = \Phi \mathbf{\bar{x}} + \mathbf{e}$
- Solve $\min_{\mathbf{x}} \|\mathbf{W}\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{\Phi}\mathbf{x} \mathbf{y}\|_2^2$

- System model: $\mathbf{y} = \mathbf{\Phi} ar{\mathbf{x}} + \mathbf{e}$
 - $\mathbf{\bar{x}}$ is sparse

optimality of the starting point at $\epsilon = 0$

• Instead, use the following versatile homotopy:

$$\begin{array}{c} \underset{\mathbf{x}}{\text{minimize}} & \|\mathbf{W}\mathbf{x}\|_{1} + \frac{1}{2}\|\mathbf{\Phi}\mathbf{x} - \mathbf{y}\|_{2}^{2} + (1 - \epsilon)\mathbf{u}^{T}\mathbf{x} \\ \\ \text{Optimization problem to solve} & \text{Homotopy part} \\ \\ \hat{\mathbf{x}} : warm-start \ vector \\ \hat{\mathbf{x}} : \|\hat{\mathbf{z}}\|_{\infty} \leq 1, \hat{\mathbf{z}}^{T}\hat{\mathbf{x}} = \|\hat{\mathbf{x}}\|_{1} & \mathbf{u} \stackrel{\text{def}}{=} -\mathbf{W}\hat{\mathbf{z}} - \mathbf{\Phi}^{T}(\mathbf{\Phi}\hat{\mathbf{x}} - \mathbf{y}) \\ \\ \hat{\mathbf{u}} \stackrel{\text{def}}{=} -\mathbf{W}\hat{\mathbf{z}} - \mathbf{\Phi}^{T}(\mathbf{\Phi}\hat{\mathbf{x}} - \mathbf{y}) \\ \\ \text{A "dummy" variable that maintains} \end{array}$$

• System model: $\mathbf{y} = \mathbf{\Phi} \mathbf{\bar{x}}_{\kappa} + \mathbf{e}$

$$ackslash ar{\mathbf{x}}$$
 is sparse

• A versatile homotopy formulation:

$$\underset{\mathbf{x}}{\text{minimize}} \|\mathbf{W}\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{\Phi}\mathbf{x} - \mathbf{y}\|_2^2 + (1 - \epsilon) \mathbf{u}^{\mathbf{T}}\mathbf{x}$$

Optimization problem to solve

Homotopy part

$$\begin{pmatrix} \mathbf{Wg} + \mathbf{\Phi}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u} = 0, \\ \mathbf{g} = \partial \|\mathbf{x}^*\|_{\mathbf{1}} : \|\mathbf{g}\|_{\infty} \leq \mathbf{1}, \ \mathbf{g}^{\mathbf{T}}\mathbf{x}^* = \|\mathbf{x}^*\|_{\mathbf{1}} \end{pmatrix}$$

$$\mathbf{u} \stackrel{\text{def}}{=} -\mathbf{W}\mathbf{\hat{z}} - \mathbf{\Phi}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{\hat{x}} - \mathbf{y})$$

A "dummy" variable that maintains optimality of the starting point at $\epsilon = 0$

Optimality: set subdifferential of the objective to zero

- Homotopy: minimize $\|\mathbf{W}\mathbf{x}\|_1 + \frac{1}{2}\|\mathbf{\Phi}\mathbf{x} \mathbf{y}\|_2^2 + (1-\epsilon)\mathbf{u}^T\mathbf{x}$
- Optimality conditions:
 Must be obeyed by any solution x* with support Γ and sign sequence z

$$\begin{aligned} \Phi_{\Gamma}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \mathbf{\epsilon})\mathbf{u} &= -\mathbf{W}\mathbf{z} \\ |\mathbf{\Phi}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \mathbf{\epsilon})\mathbf{u}| \leqslant \mathbf{w} \end{aligned}$$

- Homotopy: minimize $\|\mathbf{W}\mathbf{x}\|_1 + \frac{1}{2}\|\mathbf{\Phi}\mathbf{x} \mathbf{y}\|_2^2 + (1-\epsilon)\mathbf{u}^T\mathbf{x}$
- Optimality conditions:
 Must be obeyed by any solution x* with support Γ and sign sequence z

$$\begin{aligned} \mathbf{\Phi}_{\Gamma}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u} &= -\mathbf{W}\mathbf{z} \\ |\mathbf{\Phi}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u}| \leqslant \mathbf{w} \end{aligned}$$

• Change ϵ to $\epsilon + \delta$:

$$\Phi_{\Gamma}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^{*}-\mathbf{y}) + (\mathbf{1}-\epsilon)\mathbf{u} + \delta\left(\Phi_{\Gamma}^{\mathbf{T}}\mathbf{\Phi}\partial\mathbf{x}-\mathbf{u}\right) = -\mathbf{W}\mathbf{z}$$
$$|\phi_{\mathbf{i}}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^{*}-\mathbf{y}) + (\mathbf{1}-\epsilon)\mathbf{u}_{\mathbf{i}} + \delta\left(\phi_{\mathbf{i}}^{\mathbf{T}}\mathbf{\Phi}\partial\mathbf{x}-\mathbf{u}_{\mathbf{i}}\right)| \leqslant \mathbf{w}_{\mathbf{i}}$$
$$\mathbf{v}_{\mathbf{i}}$$

- Homotopy: minimize $\|\mathbf{W}\mathbf{x}\|_1 + \frac{1}{2}\|\mathbf{\Phi}\mathbf{x} \mathbf{y}\|_2^2 + (1-\epsilon)\mathbf{u}^T\mathbf{x}$
- Optimality conditions:
 Must be obeyed by any solution x* with support Γ and sign sequence z

$$\begin{aligned} \mathbf{\Phi}_{\Gamma}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u} &= -\mathbf{W}\mathbf{z} \\ |\mathbf{\Phi}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u}| \leqslant \mathbf{w} \end{aligned}$$

- Update direction:

$$\partial \mathbf{x} = \begin{cases} (\boldsymbol{\Phi}_{\boldsymbol{\Gamma}}^{\mathbf{T}} \boldsymbol{\Phi}_{\boldsymbol{\Gamma}})^{-1} \mathbf{u}_{\boldsymbol{\Gamma}}, & \text{on } \boldsymbol{\Gamma} \\ 0, & \text{on } \boldsymbol{\Gamma}^c \end{cases}$$

- Homotopy: minimize $\|\mathbf{W}\mathbf{x}\|_1 + \frac{1}{2}\|\mathbf{\Phi}\mathbf{x} \mathbf{y}\|_2^2 + (1-\epsilon)\mathbf{u}^T\mathbf{x}$
- Optimality conditions:
 Must be obeyed by any solution x* with support Γ and sign sequence z

$$\begin{aligned} \mathbf{\Phi}_{\Gamma}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u} &= -\mathbf{W}\mathbf{z} \\ |\mathbf{\Phi}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^* - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u}| \leqslant \mathbf{w} \end{aligned}$$

• Change ϵ to $\epsilon+\delta$:

$$\begin{split} \Phi_{\Gamma}^{\mathbf{T}}(\Phi\mathbf{x}^{*}-\mathbf{y}) + (\mathbf{1}-\epsilon)\mathbf{u} + \delta\left(\Phi_{\Gamma}^{\mathbf{T}}\Phi\partial\mathbf{x}-\mathbf{u}\right) &= -\mathbf{W}\mathbf{z} \\ \left[|\phi_{\mathbf{i}}^{\mathbf{T}}(\Phi\mathbf{x}^{*}-\mathbf{y}) + (\mathbf{1}-\epsilon)\mathbf{u}_{\mathbf{i}} + \delta\left(\phi_{\mathbf{i}}^{\mathbf{T}}\Phi\partial\mathbf{x}-\mathbf{u}_{\mathbf{i}}\right)| \leqslant \mathbf{w}_{\mathbf{i}} \\ \mathbf{p}_{i} & \mathbf{d}_{i} \\ \end{bmatrix} \\ \mathsf{Step size:} \quad \delta^{*} &= \min(\delta^{+},\delta^{-}) \\ \delta^{+} &= \min_{i\in\Gamma^{c}}\left(\frac{\mathbf{w}_{i}-\mathbf{p}_{i}}{\mathbf{d}_{i}}, \frac{-\mathbf{w}_{i}-\mathbf{p}_{i}}{\mathbf{d}_{i}}\right)_{+} \\ \delta^{-} &= \min_{i\in\Gamma}\left(\frac{-\mathbf{x}_{i}^{*}}{\partial\mathbf{x}_{i}}\right)_{+} \\ \end{split}$$

- Homotopy: minimize $\|\mathbf{W}\mathbf{x}\|_1 + \frac{\mathbf{I}}{2} \|\mathbf{\Phi}\mathbf{x} \mathbf{y}\|_2^2 + (\mathbf{1} \epsilon)\mathbf{u}^T\mathbf{x}$
- Change ϵ to $\epsilon + \delta$: $\Phi_{\Gamma}^{T}(\Phi \mathbf{x}^{*} - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{u} + \delta(\Phi_{\Gamma}^{T}\Phi\partial \mathbf{x} - \mathbf{u}) = -\mathbf{W}\mathbf{z}$ $|\phi_{\mathbf{i}}^{\mathbf{T}}(\mathbf{\Phi}\mathbf{x}^{*}-\mathbf{y})+(\mathbf{1}-\epsilon)\mathbf{u}_{\mathbf{i}}+\delta\left(\phi_{\mathbf{i}}^{\mathbf{T}}\mathbf{\Phi}\partial\mathbf{x}-\mathbf{u}_{\mathbf{i}}
 ight)|\leqslant\mathbf{w}_{\mathbf{i}}$ d \mathbf{p}_i $\partial \mathbf{x} = \begin{cases} (\mathbf{\Phi}_{\Gamma}^{\mathbf{T}} \mathbf{\Phi}_{\Gamma})^{-1} \mathbf{u}_{\Gamma}, & \text{on } \Gamma \\ 0, & \text{on } \Gamma^{c} \end{cases} \quad \gamma^{+} enters \Gamma \quad \delta^{+} = \min_{i \in \Gamma^{c}} \left(\frac{\mathbf{w}_{i} - \mathbf{p}_{i}}{\mathbf{d}_{i}}, \frac{-\mathbf{w}_{i} - \mathbf{p}_{i}}{\mathbf{d}_{i}} \right)_{+} \end{cases}$ $\delta^* = \min(\delta^+, \delta^-)$ $\mathbf{x} \succeq \mathbf{0}$ Update: $\mathbf{x}^* \leftarrow \mathbf{x}^* + \delta^* \partial \mathbf{x}, \ \epsilon \leftarrow \epsilon + \delta^*, \ \Gamma.$
 - Repeat until $\epsilon = 1$

The Dantzig selector ℓ_1 -homotopy

• Dantzig selector:

Primalminimize
$$\|\mathbf{W}\mathbf{x}\|_1$$
subject to $|\mathbf{\Phi}^T(\mathbf{\Phi}\mathbf{x} - \mathbf{y})| \preceq \mathbf{q}$ Dualmaximize $-\lambda^T \mathbf{\Phi}^T \mathbf{y} - \|\mathbf{Q}\lambda\|_1$ subject to $|\mathbf{\Phi}^T \mathbf{\Phi}\lambda| \preceq \mathbf{w},$

• Primal-dual ℓ_1 -homotopy:

Primal homotopyminimize $\|\mathbf{W}\mathbf{x}\|_1 + (\mathbf{1} - \epsilon)\mathbf{u}^T\mathbf{x}$
subject to $|\mathbf{\Phi}^T(\mathbf{\Phi}\mathbf{x} - \mathbf{y}) + (\mathbf{1} - \epsilon)\mathbf{v}| \leq \mathbf{q}$ Dual homotopymaximize $-\lambda^T(\mathbf{\Phi}^T\mathbf{y} - (\mathbf{1} - \epsilon)\mathbf{v}) - \|\mathbf{Q}\lambda\|_1$
subject to $|\mathbf{\Phi}^T\mathbf{\Phi}\lambda + (\mathbf{1} - \epsilon)\mathbf{u}| \leq \mathbf{w},$

Sparse recovery: streaming system

- Signal observations: $y_t = \Phi_t x_t + e_t$
- Sparse representation: $x[n] = \sum_{p,k} \alpha_{p,k} \psi_{p,k}[n]$

Sparse recovery: streaming system

- Time-varying signal *represented with block bases*
- Streaming, *disjoint* measurements

Sparse recovery: streaming system

- Time-varying signal *represented with lapped bases*
- Streaming, overlapping measurements

Sparse recovery: streaming system

- Time-varying signal *represented with lapped bases*
- Streaming, overlapping measurements

Sparse recovery: streaming system

• Iteratively estimate the signal over a sliding (active) interval:

Desired minimize
$$\|\mathbf{W}\alpha\|_{1} + \frac{1}{2} \|\bar{\Phi}\tilde{\Psi}\alpha - \tilde{\mathbf{y}}\|_{2}^{2}$$

Homotopy minimize $\|\mathbf{W}\alpha\|_{1} + \frac{1}{2} \|\bar{\Phi}\tilde{\Psi}\alpha - \tilde{\mathbf{y}}\|_{2}^{2} + (1-\epsilon)\mathbf{u}^{T}\alpha$

(Top-left) Linear chirp signal (zoomed in for first 2560 samples.(Top-right) Error in the reconstruction at R=N/M = 4.(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients

(left) SER at different R from ±1 random measurements at 35 db SNR(middle) Count for matrix-vector multiplications(right) Matlab execution time

SpaRSA: Sparse Reconstruction by Separable Approximation, Wright et al., 2009. <u>http://www.lx.it.pt/~mtf/SpaRSA/</u> **YALL1**: Alternating direction algorithms for L1-problems in compressive sensing, Yang et al., 2011. <u>http://yall1.blogs.rice.edu/</u>

(Top-left) Mishmash signal (zoomed in for first 2560 samples.
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) LOT coefficients. (Bottom-right) Error in LOT coefficients

(left) SER at different R from ±1 random measurements at 35 db SNR(middle) Count for matrix-vector multiplications(right) Matlab execution time

Sparse recovery: dynamical system

- Signal observations: $y_t = \Phi_t x_t + e_t$
- Sparse representation: $x[n] = \sum_{p,k} \alpha_{p,k} \psi_{p,k}[n]$ • Linear dynamic model: $x_{t+1} = F_t x_t + f_t$

$$\underset{\alpha_{1},...,\alpha_{P}}{\text{minimize}} \sum_{t=1}^{P} \|W_{t}\alpha_{t}\|_{1} + \frac{1}{2} \|\Phi_{t}\Psi_{t}\alpha_{t} - y_{t}\|_{2}^{2} \\ + \frac{\lambda_{t}}{2} \|F_{t-1}\Psi_{t-1}\alpha_{t-1} - \Psi_{t}\alpha_{t}\|_{2}^{2} \\ \text{Dynamic model}$$

Related work: [Vaswani '08; Carmi et al. '09; Angelosante et al. '09; Zaniel et al. '10; Charles et al. '11]

Sparse recovery: dynamical system

- Signal observations: $y_t = \Phi_t x_t + e_t$
- Linear dynamic model: $x_{t+1} = F_t x_t + f_t$
- Sparse representation: $x[n] = \sum_{p,k} \alpha_{p,k} \psi_{p,k}[n]$

minimize
$$\sum_{p=1}^{P} \|W_p \alpha_p\|_1 + \frac{1}{2} \|\Phi_p \Psi_p \alpha_p - y_p\|_2^2$$

 $+ \frac{\lambda_p}{2} \|F_{p-1} \Psi_{p-1} \alpha_{p-1} - \Psi_p \alpha_p\|_2^2$

(Top-left) HeaviSine signal (shifted copies) in image
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) Reconstructed signal at R=4.
(Bottom-right) Comparison of SER for the L1- and the L2-regularized problems

(left) SER at different R from ±1 random measurements at 35 db SNR(middle) Count for matrix-vector multiplications(right) Matlab execution time

(Top-left) Piece-Regular signal (shifted copies) in image
(Top-right) Error in the reconstruction at R=N/M = 4.
(Bottom-left) Reconstructed signal at R=4.
(Bottom-right) Comparison of SER for the L1- and the L2-regularized problems

(left) SER at different R from ±1 random measurements at 35 db SNR(middle) Count for matrix-vector multiplications(right) Matlab execution time

Part 2: Dynamic models in video

Low-complexity video compression

Video compression

Compression is achieved by removing the spatio-temporal redundancies in the videos

Video compression

Compression is achieved by removing the spatio-temporal redundancies in the videos ⁵²

Video coding paradigm

Major blocks in the encoder:

Motion estimation, Transform coding, Entropy coding

Shift processing burden from the encoder to the decoder!

Compressive encoder

computational load is shifted to the decoder

Structure in video (for recovery)

- Frame-by-frame recovery (same as recovery of independent images).
- Spatial structure:
 - Wavelets
 - Total-variation

- Recovery of multiple frames (images are temporally correlated)
- Temporal structure:
 - Frame difference
 - Inter-frame motion

Structure... $F_1 \quad F_2 \quad F_{T-1}$ $x_1 \quad x_2 \quad x_3 \quad x_T$ $F_1 \quad x_2 \quad x_3 \quad x_T$

Linear dynamical system:

 $y_i = A_i x_i + e_i$ (Linear measurements) $x_i = F_{i-1} x_{i-1} + f_i$ (forward motion pred.) $x_i = B_{i+1} x_{i+1} + b_i$ (backward motion pred.)

Accelerated dynamic MRI

Accelerated acquisition in MRI?

• How the cardiac MRI works:

One cardiac cycle

A small spatial area is - scanned in every heart beat (e.g., 8 lines per heartbeat)

Direct tradeoff between temporal resolution and lines per heart beat segment Number of lines per frame are the same

Parallel imaging

• Parallel imaging [SENSE, SMASH, SPACE-RIP, GRAPPA, ...]:

Motion-adaptive Spatio-temporal Regularization (MASTeR)

- We model temporal variations in the images using inter-frame motion!
- This way we are not using some fixed global model, instead, we learn the structure *directly* from the data.

Motion-adaptive Spatio-temporal Regularization (MASTeR)

- Spatial structure: wavelets
- Temporal structure: inter-frame motion
- Linear dynamical system model:

 $y_i = A_i x_i + e_i$ (Linear measurements) $x_i = F_{i-1} x_{i-1} + f_i$ (forward motion pred.) $x_i = B_{i+1} x_{i+1} + b_i$ (backward motion pred.)

Video recovery

Video reconstruction

Video reconstruction

Comparison of low-complexity encoders

Results (short axis):

R: acceleration factor Sampling: 8 low-freq. lines + random sampling

MASTER: Motion-adaptive spatio-temporal regularization:

k-t FOCUSS with ME/MC: -Temporal DFT sparsity -Motion residual with a reference frame or temporal average.

[Jung et al., k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. MRM, 2009]

k-t FOCUSS with ME/MC

Results (short axis)

(c)

(d)

MASTeR

k-t FOCUSS with ME/MC

Conclusion

The more we know about the signal (dynamics) the faster and/or more accurately we can reconstruct

Dynamic ℓ_1 updating

<u>Quickly</u> update the solution to accommodate changes

- ℓ_1 homotopy
 - Breaks updating into piecewise linear steps
 - Simple, inexpensive (rank-one update)

Dynamic modeling

Improve reconstruction by exploiting the dynamical signal structure

- Motion-adaptive dynamical system
- 1. Low-complexity video compression
- 2. Accelerated dynamic MRI

Future directions

- ℓ_1 -homotopy:
 - Theoretical analysis
 - Large-scale streaming problems
- Compressive sensing in videos:
 - Adaptive sampling
 - Distributed cameras
 - Computational imaging (lightfield etc.)
- Medical imaging:
 - MRI... (maybe hyper-polarized)
 - Ultrasound
 - EEG

Select publications

- Dynamic updating
 - M. Asif and J. Romberg, ``Sparse recovery algorithm for streaming signals using L1homotopy," Submitted to *IEEE Trans. Sig. Proc.*, June 2013. [<u>Arxiv</u>]
 - M. Asif and J. Romberg, ``Fast and accurate algorithm for re-weighted L1-norm minimization,'' Submitted to *IEEE Trans. Sig. Proc.*, July 2012. [<u>Arxiv</u>]
 - M. Asif and J. Romberg, ``Dynamic updating for L1 minimization," *IEEE Journal of Selected Topics in Signal Processing*, 4(2) pp. 421--434, April 2010.
 - M. Asif and J. Romberg, ``Sparse signal recovery and dynamic update of the underdetermined system," *Asilomar Conf. on Signals, Systems, and Computers*, Pacific Grove, November 2010.
 - M. Asif and Justin Romberg, ``Basis pursuit with sequential measurements and timevarying signals," in *Proc. Computational Advances in Multi-Sensor Adaptive Processing* (CAMSAP), Aruba, December 2009.
 - M. Asif and J. Romberg, ``Dynamic updating for sparse time-varying signals," *Conference* on inf. sciences and systems (CISS), Baltimore, March 2009.
 - M. Asif and J. Romberg, ``Streaming measurements in compressive sensing: L1 filtering," Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, October 2008.
- Dynamic model in video
 - M. Asif, L. Hamilton, M. Brummer, and J. Romberg, ``Motion-adaptive spatio-temporal regularization (MASTER) for accelerated dynamic MRI,'' accepted in *Magnetic Resonance in Medicine*, November 2012 [Early view DOI: <u>10.1002/mrm.24524</u>].
 - M. Asif, F. Fernandes, and J. Romberg, "Low-complexity video compression and compressive sensing," preprint 2012.

Select publications

• Sparsity and dynamics

- M. Asif, A. Charles, J. Romberg, and C. Rozell, ``Estimating and dynamic updating of time-varying signals with sparse variations," in *Proc. IEEE Int. Conf. on Acoustics, Speech,* and Signal Processing (ICASSP), Prague, Czech Republic, May 2011.
- A. Charles, M. Asif, J. Romberg, and C. Rozell, ``Sparse penalties in dynamical system estimation,", *Conference on Inf. Sciences and Systems (CISS)*, Baltimore, Maryland, March 2011.

• Streaming greedy pursuit

- P. Boufounos and M. Asif, ``Compressive sensing for streaming signals using the streaming greedy pursuit," in *Proc. Military Commun. Conf. (MILCOM)*, San Jose, California, October 2010.
- M. Asif, D. Reddy, P. Boufounos, and A. Veeraraghavan, ``Streaming compressive sensing for high-speed periodic videos,'' in *Proc. IEEE Int. Conf. on Image Processing (ICIP)*, Hong Kong, September 2010.
- P. Boufounos and M. Asif, ``Compressive sampling for streaming signals with sparse frequency content," *Conference on Inf. Sciences and Systems (CISS)*, Princeton, New Jersey, March 2010.

Channel protection

- M. Asif, W. Mantzel, and J. Romberg, ``Random channel coding and blind deconvolution," *Allerton Conf. on Communication, Control, and Computing*, Monticello, Illinois, October 2009.
- M. Asif, W. Mantzel, and J. Romberg, ``Channel protection: Random coding meets sparse channels," *Information Theory Workshop*, Taormina, Italy, October 2009.

Acknowledgements

- Special thanks to my collaborators
 - William Mantzel
 - Petros Boufonous
 - Felix Fernandes
 - Adam Charles and Chris Rozell
 - Lei Hamilton and Marijn Brummer
- and my advisor, Justin Romberg
Thank you!

Questions?

Email:sasif@gatech.eduWeb:http://users.ece.gatech.edu/~sasif/