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Problem statementProblem statement

Measurement model
y = Ax+ e

• x : n dimensional unknown signal.
• y : m dimensional measurement vector.
• A : m× n measurement matrix.
• e : error vector.

Primal Dual pursuit: a homotopy approach to solve the Dantzig selector.

The Dantzig selector: A robust estimator for recovery of sparse signals
from linear measurements.

DS : minimize kx̃k1 subject to kAT (Ax̃− y)k∞ ≤ ²,

for some ² > 0. This is convex and can be recast into an LP.

Primal Dual pursuit: a homotopy approach to solve the Dantzig selector.

The Dantzig selector: A robust estimator for recovery of sparse signals
from linear measurements.

DS : minimize kx̃k1 subject to kAT (Ax̃− y)k∞ ≤ ²,

for some ² > 0. This is convex and can be recast into an LP.
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OutlineOutline
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Sparse RepresentationSparse Representation

• Most signals of interest can be well-represented by a small number
of transform coefficients in some appropriate basis.

• Magnitude of the transform coefficients decay rapidly, usually follow-
ing some power law

|α|(k) ∼ k−r, for some r > 0

• Most signals of interest can be well-represented by a small number
of transform coefficients in some appropriate basis.

• Magnitude of the transform coefficients decay rapidly, usually follow-
ing some power law

|α|(k) ∼ k−r, for some r > 0

• Signal/image x(t) in time/spatial domain can be represented in some
basis ψ as

x(t) =
X
i

αiψi or x = Ψα

ψi = basis function
αi = expansion coefficients in ψ domain

e.g., sinusoids, wavelets, curvelets,. . .
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Benefits of sparsityBenefits of sparsity

Sparsity plays an important role in many signal processing applications
such as

• Signal estimating in the presence of noise (thresholding)
• Inverse problems for signal reconstruction (tomography)
• Compression (transform coding)
• Signal acquisition (compressed sensing)

Best K-term approximation with 25k wavelet coeffs.
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Compressed SensingCompressed Sensing
• Data acquisition (Sampling) Shannon-Nyquist sampling theorem

− Exact reconstruction of a band-limited signal possible if sampling rate
is atleast twice the maximum frequency.

− Reconstruction phenomenon is linear.

• Compression (Transform coding)
− Transform signal/image in some suitable basis e.g., wavelets or dis-

crete cosine (DCT)
− Select few best coefficients without causing much perceptual loss.
− Transfrom back to the canonical basis.

Sample a signal at or above Nyquist rate, transform into some sparsifying
basis, adaptively encode a small portion out of it and throw away the rest.
Seems very wasteful!

Is it possible to recover a signal by acquiring only as many nonadaptive
samples as we will be keeping eventually? Answer is YES and lies in
compressed sensing!

Is it possible to recover a signal by acquiring only as many nonadaptive
samples as we will be keeping eventually? Answer is YES and lies in
compressed sensing!
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Compressed SensingCompressed Sensing

“entia non sunt multiplicanda praeter
necessitatem -- entities must not be multiplied 
beyond necessity”. 

-Occam’s Razor (wiki)

“Consider projecting the points of your favorite 
sculpture first onto a plane and then onto a single 
line”. This is the power of dimensionality reduction! 

– [Achlioptas 2001]
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Compressed Sensing ModelCompressed Sensing Model

Compressed sensing model

y = Φx where m¿ n.

Φ is the measurement/sensing matrix.

=y Φm×n x

• Take m linear measurements of n dimensional signal x

y1 = hx,ϕ1i, y2 = hx,ϕ2i, . . . ym = hx,ϕmi or y = Φx

• Generalized sampling/sensing, equivalent to sampling in transform
domain ϕ. Call ϕk - sensing functions.

• Choice of ϕk gives flexibility in acquisition

− Dirac delta functions : conventional sampling.
− Block indicator functions : pixels values collected from CCD arrays.
− Sinusoids : Fourier measurements in MRI.
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Signal ReconstructionSignal Reconstruction

=y Φm×n x
Compressed sensing model

y = Φx where m¿ n.

• Underdetermined system : Impossible to solve in general!

• Infinetely many possible solutions on the hyperplane

H := {x̂ : Φx̂ = y} = N (Φ) + x

• However situation is different if x is sufficiently sparse and Φ obeys
some incoherence properties.

• Combinatorial search : Find sparsest vector in hyperplane H.

P0 : minimize kx̃k0 subject to Φx̃ = y

Combinatorial optimization problem, known to be NP-hard.

• However situation is different if x is sufficiently sparse and Φ obeys
some incoherence properties.

• Combinatorial search : Find sparsest vector in hyperplane H.

P0 : minimize kx̃k0 subject to Φx̃ = y

Combinatorial optimization problem, known to be NP-hard.
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Convex RelaxationConvex Relaxation
• minimum `1 norm

P1 : minimize kx̃k1 subject to Φx̃ = y

Can be recast into an LP for real data and SOCP for complex data.

Geometry of `1 minimization
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Uniform Uncertainty PrincipleUniform Uncertainty Principle

• An equivalent form of Uniform uncertainty principle

1

2

m

n
kck22 ≤ kΦT ck22 ≤

3

2

m

n
kck22

where columns of Φ are not normalized, δS = 1
2 .

• An equivalent form of Uniform uncertainty principle

1

2

m

n
kck22 ≤ kΦT ck22 ≤

3

2

m

n
kck22

where columns of Φ are not normalized, δS = 1
2 .

• Uniform uncertainty principle (UUP) or Restricted Isometry Property

(1− δS)kck22 ≤ kΦT ck22 ≤ (1 + δS)kck22 (RIP)

− δS : S-restricted isometry constant.
− ΦT : columns of Φ indexed by set T .

• UUP requires Φ to obey (RIP) for every subset of columns T and
coefficient sequence {cj}j∈T such that |T | ≤ S.

• This essentially tells that every subset of columns with cardinality
less than S behaves almost like an orthonormal system.
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Uniform Uncertainty PrincipleUniform Uncertainty Principle

Matrices which obey UUP
• Gaussian matrix m & S · log n
• Bernoulli matrix m & S · log n
• Partial Fourier matrix m & S · log5 n
• Incoherent ensemble m & µ2S · log5 n

• Uniform uncertainty principle (UUP) or Restricted Isometry Property

(1− δS)kck22 ≤ kΦT ck22 ≤ (1 + δS)kck22 (RIP)

− δS : S-restricted isometry constant.
− ΦT : columns of Φ indexed by set T .

• UUP requires Φ to obey (RIP) for every subset of columns T and
coefficient sequence {cj}j∈T such that |T | ≤ S.

• This essentially tells that every subset of columns with cardinality
less than S behaves almost like an orthonormal system.
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Stable RecoveryStable Recovery
Compressed sensing model in the presence of noise

y = Φx+ e,

`1 minimization with data fidelity constraints

• Quadratic constraints

minimize kx̃k1 subject to kΦx̃− yk2 ≤ ²

Also known as Lasso in statistics community.

• Bounded residual correlation : The Dantzig selector

minimize kx̃k1 subject to kΦ∗(Φx̃− y)k∞ ≤ ²,

where ² is usually chosen close to
√
2 log n · σ, assuming that entries

in e are i.i.d. N (0,σ2).
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DantzigDantzig selectorselector
• The Dantzig selector

minimize kx̃k1 subject to kΦ∗(Φx̃− y)k∞ ≤ ²,

where ² is usually chosen close to
√
2 log n · σ, assuming that entries

in e are i.i.d. N (0,σ2).

• If columns of Φ are unit normed then solution x∗ to DS obeys

kx− x∗k22 ≤ C · 2 log n ·
Ã
σ2 +

nX
i=1

min(x2i ,σ2)

!
,

• Soft thresholding (ideal denoising) : estimate x from noisy samples
y = x+ e

minimize kx̃k1 subject to ky − x̃k∞ ≤ λ · σ.

• Soft thresholding (ideal denoising) : estimate x from noisy samples
y = x+ e

minimize kx̃k1 subject to ky − x̃k∞ ≤ λ · σ.



06/19/2008 Masters Thesis Defense                     Primal Dual Pursuit 

Primal Dual PursuitPrimal Dual Pursuit
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DantzigDantzig Selector Primal and DualSelector Primal and Dual
• System model

y = Ax+ e

− x ∈ Rn : unknown signal
− y ∈ Rm : measurement vector
− A ∈ Rm×n : measurement matrix
− e ∈ Rm : noise vector.

• Dantzig selector (Primal)

minimize kx̃k1 subject to kAT (Ax̃− y)k∞ ≤ ²,

• Dantzig selector (Dual)

maximize − (²kλk1 + hλ, AT yi) subject to kATAλk∞ ≤ 1

where λ ∈ Rn is the dual vector.
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DantzigDantzig Selector Primal and DualSelector Primal and Dual
• Strong duality tells us that at any primal-dual solution pair (x∗,λ∗)

corresponding to certain ²

kx∗k1 = −(²kλ∗k1 + hλ∗, AT yi)

or equivalently

kx∗k1 + ²kλ∗k1 = −hx∗, ATAλ∗i+ hλ∗, AT (Ax∗ − y)i. (1)

• Using (1), the complementary slackness and feasibility conditions for
primal and dual problems we get the following four optimality condi-
tions for the solution pair (x∗,λ∗)
K1. ATΓλ(Ax

∗ − y) = ²zλ
K2. ATΓxAλ

∗ = −zx
K3. |aTγ (Ax∗ − y)| < ² for all γ ∈ Γcλ
K4. |aTγAλ∗| < 1 for all γ ∈ Γcx
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Primal Dual PursuitPrimal Dual Pursuit
• Homotopy Principle: Start from an artificial initial value and iteratively

move towards the desired solution by gradually adjusting the homo-
topy parameter(s).

• In our formulation homotopy parameter is ².

• Follow the path traced by sequence of primal-dual solution pairs
(xk,λk) for a range of ²k as ²k ↓ ², and consequently xk → x∗.

∂x0

λ0
(x1, ²1)

∂x1

(x2, ²2)

λ1

(xd, ²d)

λd

∂xd

(x∗, ²)

(x0, ²0)
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Primal Dual PursuitPrimal Dual Pursuit
• Active primal constraints give us sign and support of dual vector λ
• Active dual constraints give us sign and support of primal vector x

ATΓλ(Axk − y) = ²kzλ
ATΓxAλk = −zx

And we keep track of supports Γx,Γλ and sign sequences zx, zλ all
the time.

• Start at sufficiently large ²k such that xk = 0 and only one dual con-
straint is active (use ²k = kAT yk∞).

• Move in the direction which reduces ² by most, until there is some
change in the supports.

• Update the supports and sign sequences for primal and dual vectors
and find new direction to move in.

• Start at sufficiently large ²k such that xk = 0 and only one dual con-
straint is active (use ²k = kAT yk∞).

• Move in the direction which reduces ² by most, until there is some
change in the supports.

• Update the supports and sign sequences for primal and dual vectors
and find new direction to move in.
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Primal Dual PursuitPrimal Dual Pursuit

• The homotopy path for xk is piecewise linear and the kinks in this
path represent some critical values of ²k where primal and/or dual
supports change.

• Either a new element enters the support or an element from within
the support shrinks to zero.

• At any instant, the optimality conditions (K1-K4) must be obeyed by
the primal-dual solution pair (xk,λk).

∂x0

λ0
(x1, ²1)

∂x1

(x2, ²2)

λ1

(xd, ²d)

λd

∂xd

(x∗, ²)

(x0, ²0)
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Primal Dual PursuitPrimal Dual Pursuit

At every kth step we have primal-dual vectors (xk,λk), respective support
(Γx,Γλ) and sign sequence (zx, zλ).

We can divide each step into two main parts

• Primal update: Compute update direction ∂x and smallest step size
δ such that either a new element enters Γλ or an existing element
leaves Γx.

• Dual update: Compute update direction ∂λ and smallest step size
θ such that either a new element enters Γx or an existing element
leaves Γλ.

Set
• xk+1 = xk + δ∂x
• λk+1 = λk + θ∂λ

and update primal-dual supports and sign sequences.
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Primal UpdatePrimal Update
|aTγ (Axk+1 − y)| = ²k+1 for all γ ∈ Γλ
|aTγ (Axk+1 − y)| ≤ ²k+1 for all γ ∈ Γcλ

| aTγ (Ax− y)| {z }
pk(γ)

+δ aTγA∂x| {z }
dk(γ)

| ≤ ²k − δ for all γ ∈ Γcλ

|pk(γ) + δdk(γ)| ≤ ²k − δ for all γ ∈ Γcλ
δ+ = min

i∈Γc
λ

µ
²k − pk(i)
1 + dk(i)

,
²k + pk(i)

1− dk(i)
¶

i+ = arg min
i∈Γc

λ

µ
²k − pk(i)
1 + dk(i)

,
²k + pk(i)

1− dk(i)
¶

δ− = min
i∈Γx

µ
−xk(i)
∂x(i)

¶
i− = arg min

i∈Γx

µ
−xk(i)
∂x(i)

¶
δ = min(δ+, δ−)

an element
from within Γx
shrinks to zero.

New constraints
getting active as
²k reduces
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Dual UpdateDual Update
|aTν Aλk+1| = 1 for all ν ∈ Γx
|aTν Aλk+1| ≤ 1 for all ν ∈ Γcx

| aTν Aλk| {z }
ak(ν)

+θ aTν A∂λ| {z }
bk(ν)

| ≤ 1 for all ν ∈ Γcx

|ak(ν) + θbk(ν))| ≤ 1 for all ν ∈ Γcx
θ+ = min

j∈Γcx

µ
1− ak(j)
bk(j)

,
1 + ak(j)

−bk(j)
¶

j+ = arg min
j∈Γcx

µ
1− ak(j)
bk(j)

,
1 + ak(j)

−bk(j)
¶

θ− = min
j∈Γλ

µ−λ(j)
∂λ(j)

¶
j− = arg min

j∈Γλ

µ−λ(j)
∂λ(j)

¶
θ = min(θ+, θ−)
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Update DirectionsUpdate Directions

• Primal update direction

∂x =

(
−(ATΓλAΓx)−1zλ on Γx
0 elsewhere

• Dual update direction

∂λ =


−zγ(ATΓxAΓλ)−1ATΓxaγ on Γλ
zγ on γ

0 elsewhere

Why? ATΓxA(λ+ θ∂λ) = −zx
ATΓxAΓλ ∂̃λ+ A

T
Γxaγzγ = 0.
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Primal Dual Pursuit AlgorithmPrimal Dual Pursuit Algorithm
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Primal Dual Pursuit AlgorithmPrimal Dual Pursuit Algorithm
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Numerical ImplementationNumerical Implementation

• Main computational cost

− Update direction (∂x, ∂λ).
− Step size (δ, θ).

ÃT B̃ =
£
AT aT

¤ ·B
b

¸
=

·
ATB AT b
aTB aT b

¸
=:

·
A11 A12
A21 A22

¸
.

• No need to solve a new system at every step.

• Just update the most recent inverse matrix whenever supports change.

− Matrix inversion lemma.
− Rank one update.
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Numerical ImplementationNumerical Implementation
• Just update the most recent inverse matrix whenever supports change.

− Matrix inversion lemma.
− Rank one update.·
A11 A12
A21 A22

¸−1
=

·
A−111 +A

−1
11 A12S

−1A21A−111 −A−111 A12S−1
−S−1A21A−111 S−1

¸
,

where S = A22 −A21A−111 A12 is the Schur complement of A11.

Computational cost for one step is just few matrix vector multiplications.

·
A11 A12
A21 A22

¸−1
=

·
Q11 Q12
Q21 Q22

¸
,

A−111 = Q11 −Q12Q−122 Q21.
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SS--step Solutionstep Solution

• Random measurements

m & S2 · log n
Gaussian entries ofA independently selected to be i.i.d. GaussianN (0, 1/m).
Bernoulli entries of A independently selected to be ±1/√m with equal

probability

• S-sparse signal can be recovered in S primal-dual step !

y = Ax0

• Incoherent measurements

S ≤ 1
2

µ
1 +

1

M

¶
where M = max

i 6=j
|hai, aji|
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Optimality ConditionOptimality Condition

H1. AΓ is full rank.
H2. kATΓcAΓ(ATΓAΓ)−1zk∞ < 1

H3. sign[(ATΓAΓ)−1z] = z

K1. ATΓλ(Ax
∗ − y) = ²zλ

K2. ATΓxAλ
∗ = −zx

K3. kATΓc
λ
(Ax∗ − y)k∞ < ²

K4. kATΓcxAλ∗k∞ < 1

(x∗² ,λ
∗) is a solution pair

for all 0 ≤ ² ≤ ²crit := min
γ∈Γ

µ
−x0(γ)
λ(γ)

¶

λ∗ =

(
−(ATΓAΓ)−1z on Γ
0 elsewhere

Γ := Γx
z := zx

set x∗² = x0 + ²λ∗

Γλ = Γx
zλ = −zx

λ∗ = −∂̂x
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S step SolutionS step Solution

(xd, ²d)

λ0

−∂xd = λd

λS−1

λS−2

(xS−1, ²S−1)

(x1, ²1)

(xS−2, ²S−2)

λ1

(x0, 0)

(xS , ²S)

• Trace the path backwards, starting from exact solution x0.

• S step solution property holds if xS = 0. Means all the elements are
removed from the support in S steps.

• Only if conditions (H1-H3) hold at every step.
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1. k = 0, Γ0 = supp x0, and z0 = sign(x0
¯̄
Γ0
).

2. If xk = 0, return Success.
3. Check that

kATΓckAΓk(A
T
Γk
AΓk)

−1zk∞ < 1

sign[(ATΓkAΓk)
−1z] = z

If either condition fails, break and return Failure.

4. Set λk =

½ −(ATΓkAΓk)−1zk on Γk
0 on Γck

,

²k+1 = min
γ∈Γk

³
xk(γ)
−λk(γ)

´
,

xk+1 = xk + ²k+1λk,

γ0k+1 = arg min
γ∈Γk

³
xk(γ)
−λk(γ)

´
,

Γk+1 = Γk\γ0k+1,
zk+1 = zk restricted to Γk+1.

5. Set k ← k + 1, and return to step 2.

DantzigDantzig ShrinkabilityShrinkability
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Sufficient Conditions for S step SolutionSufficient Conditions for S step Solution

• AΓ be full rank. (H1)

• Let G = I − ATΓAΓ, then (H2-H3) will be satisfied if kGk < 1 and

max
γ∈{1,...,n}

|h(ATΓAΓ)−1Yγ , zi| < 1, (2)

with

Yγ =

(
ATΓaγ γ ∈ Γc
ATΓaγ − 1γ γ ∈ Γ ,
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Condition H3 !Condition H3 !
If kGk < 1, we can write (ATΓAΓ)−1z in the following way

(ATΓAΓ)
−1z = (I −G)−1z =

∞X
`=0

G`z =

Ã
z +

∞X
`=1

G`z

!
,

condition (H3) will be satisfied if°°°°°
∞X
`=1

G`z

°°°°°
∞
< 1.

max
γ∈Γ

¯̄̄̄
¯h1γ ,

∞X
`=1

G`zi
¯̄̄̄
¯ = maxγ∈Γ

¯̄̄̄
¯h
∞X
`=1

G`1γ, zi
¯̄̄̄
¯

= max
γ∈Γ

¯̄̄̄
¯h
∞X
`=1

G`−1gγ , zi
¯̄̄̄
¯

= max
γ∈Γ

¯̄h(ATΓAΓ)−1gγ, zi¯̄

Neumann series
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Outline of Proof for SOutline of Proof for S--step propertystep property
• Bound the norm of Yγ for all γ ∈ {1, . . . , n}
• Bound the norm of wγ := (ATΓATΓ )−1Yγ

• Use Cauchy-Schwarz inequality to satisfy |hwγ , zi| < 1 for all γ

Random Matrices : Gaussian or Bernoulli
• Each entry of Yγ is bounded by Cβ

q
log n
m with probability exceeding

1 − O(n−β), for some constant β > 0. So kYγk < Cβ

q
S log n
m

with
same probability.

• Uniform uncertainty principle tells us that k(ATΓAΓ)−1k < 2 with over-
whelming high probability.

• Using Cauchy-Schwarz inequality, (2) is satisfied with probability ex-
ceeding 1− O(n−β) if m ≥ Cβ · S2 log n
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Experimental Results (Gaussian)Experimental Results (Gaussian)
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Experimental Results (OrthoExperimental Results (Ortho--Gaussian)Gaussian)
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Lasso and Lasso and DantzigDantzig SelectorSelector

• Lasso
minimize

x̃

1

2
ky − Ax̃k22 + ²kx̃k1 (Lasso)

• Optimality conditions

L1. ATΓ (Ax∗ − y) = −²z
L2. |aTγ (Ax∗ − y)| < ² for all γ ∈ Γc

∂xLasso ¯̄
Γ
= (ATΓAΓ)

−1z (Lasso update)

∂xDS ¯̄
Γx
= −(ATΓλAΓx)−1zλ (DS update)
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Future WorkFuture Work

• Better bound on required number of measurements!

S2 · log n ?−−→ S · logα n,

for some small α > 0.

• Investigate the effect of orthogonal rows in the S-step recovery.

• Dynamic update of measurements.

• Implementation for largescale problems.
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QuestionsQuestions
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Thankyou !

Muhammad Salman Asif
sasif@gatech.edu


