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Problem statement

Measurement model
y=Ax+e

x : n dimensional unknown signal.

y : m dimensional measurement vector.
A : m X n measurement matrix.

e : error vector.

The Dantzig selector: A robust estimator for recovery of sparse signals
from linear measurements.

DS: minimize ||Z||; subjectto [|AT (A% — y)|e <,

for some € > 0. This is convex and can be recast into an LP.

Primal Dual pursuit: a homotopy approach to solve the Dantzig selector.
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Sparse Representation

e Signal/image «x(t) in time/spatial domain can be represented in some
basis v as

z(t) = Zaiwi or z=VYa«

y; = basis function
a; = expansion coefficients in ¢y domain

e.g., sinusoids, wavelets, curvelets,. ..

e Most signals of interest can be well-represented by a small number
of transform coefficients in some appropriate basis.

e Magnitude of the transform coefficients decay rapidly, usually follow-
Ing some power law

||y ~ k", forsome r >0
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v Benefits of sparsity

Sparsity plays an important role in many signal processing applications
such as

e Signal estimating in the presence of noise (thresholding)
e Inverse problems for signal reconstruction (tomography)
e Compression (transform coding)

e Signal acquisition (compressed sensing)
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Compressed Sensing
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e Data acquisition (Sampling) Shannon-Nyquist sampling theorem

— Exact reconstruction of a band-limited signal possible if sampling rate
is atleast twice the maximum frequency.
— Reconstruction phenomenon is linear.

e Compression (Transform coding)

— Transform signal/image in some suitable basis e.g., wavelets or dis-
crete cosine (DCT)

— Select few best coefficients without causing much perceptual loss.

— Transfrom back to the canonical basis.

Sample a signal at or above Nyquist rate, transform into some sparsifying
basis, adaptively encode a small portion out of it and throw away the rest.
Seems very wasteful!

Is it possible to recover a signal by acquiring only as many nonadaptive
samples as we will be keeping eventually? Answer is YES and lies in
compressed sensing!
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Compressed Sensing

14

- - entities must not be multiplied
beyond necessity’.

-Occam’s Razor (wiki)

“Consider projecting the points of your favorite
sculpture first onto a plane and then onto a single
line”. This is the power of dimensionality reduction!

— [Achlioptas 2001]
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Compressed Sensing Model

e Take m linear measurements of n dimensional signal z

Y1 = <x?901>7 Y2 = <£If,902>, e Ym = <x790m> or y=aox

e Generalized sampling/sensing, equivalent to sampling in transform
domain ¢. Call ¢ - sensing functions.

e Choice of ¢, gives flexibility in acquisition

— Dirac delta functions : conventional sampling.
— Block indicator functions : pixels values collected from CCD arrays.
— Sinusoids : Fourier measurements in MRI.

Compressed sensing model
P J y — (I)an

y=®x where m < n.

® is the measurement/sensing matrix.
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Signal Reconstruction

Compressed sensing model
Y| = (I)an
y=®x where m < n.

Underdetermined system : Impossible to solve in general!

¢ Infinetely many possible solutions on the hyperplane

H:={1t: Pz =y} =N (D) +x

e However situation is different if x is sufficiently sparse and ® obeys

some incoherence properties.

Combinatorial search : Find sparsest vector in hyperplane H.
Po : minimize ||Z||o subjectto ®z =1y

Combinatorial optimization problem, known to be NP-hard.
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Convex Relaxation
e MiNnimum ¢; norm
P : minimize ||z||y subjectto &z =y

Can be recast into an LP for real data and SOCP for complex data.

AN

H={z:dz=y}

A J
v

(a) (b) (c) (d)
Geometry of £; minimization

Y
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Uniform Uncertainty Principle

e Uniform uncertainty principle (UUP) or Restricted Isometry Property
(1= ds)llellz < | @rellz < (1 +ds)llel2 (RIP)

— dg : S-restricted isometry constant.
— &7 : columns of ® indexed by set T'.

e UUP requires ® to obey (RIP) for every subset of columns 1" and
coefficient sequence {c; }er such that |T'| < S.

e This essentially tells that every subset of columns with cardinality
less than S behaves almost like an orthonormal system.

e An equivalent form of Uniform uncertainty principle

1m 3m
el < NDreld < 22 el

where columns of ® are not normalized, ¢ = %
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Uniform Uncertainty Principle

e Uniform uncertainty principle (UUP) or Restricted Isometry Property
(1= ds)llellz < | @rellz < (1 +ds)llel2 (RIP)

— dg : S-restricted isometry constant.
— &7 : columns of ® indexed by set T'.

e UUP requires ® to obey (RIP) for every subset of columns 1" and
coefficient sequence {c; }er such that |T'| < S.

e This essentially tells that every subset of columns with cardinality
less than S behaves almost like an orthonormal system.

Matrices which obey UUP

e (GGaussian matrix m 2> S -logn

e Bernoulli matrix m 2 S -logn

e Partial Fourier matrix m > S -log”n

e Incoherent ensemble m > u?S -log” n
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Stable Recovery

Compressed sensing model in the presence of noise
y =Pz + e,
/1 minimization with data fidelity constraints
e Quadratic constraints
minimize ||z||; subjectto |®Z — ylls <€

Also known as Lasso in statistics community.

e Bounded residual correlation : The Dantzig selector
minimize ||Z|; subjectto ||®*(PZ — y)||c <€,

where ¢ is usually chosen close to /2 logn - o, assuming that entries
inearei.i.d. N(0,02%).
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W Dantzig selector
e The Dantzig selector
minimize ||Z||; subjectto |[|®*(PZ — y)||lco < €,

where ¢ is usually chosen close to v/2logn - o, assuming that entries
ineareiid. N(0,0%).

e |f columns of ® are unit normed then solution z* to DS obeys
o a3 < C - 2logn <02 + Zmin<x?,a2>) ,
1=1

e Soft thresholding (ideal denoising) : estimate x from noisy samples
y=x-+te

minimize ||Z||; subjectto |y — Z||cc < A - 0.
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Dantzig Selector Primal and Dual

e System model
y=Azxr+e

— x € R™ : unknown signal

— y € R™ : measurement vector

— A € R™*™ : measurement matrix
— e € R™ : noise vector.

e Dantzig selector (Primal)

minimize ||Z||; subjectto [|AT(AZ — y)|le <€,

e Dantzig selector (Dual)
maximize — (e|[A|l1 + (A, Ay)) subjectto [|AT AN <1

where \ € R" is the dual vector.
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Dantzig Selector Primal and Dual

e Strong duality tells us that at any primal-dual solution pair (z*, A*)
corresponding to certain ¢

2" (|, = = (ellA"]], + (A", ATy))
or equivalently
|z* [l + e A"l = — (2, ATAN) + (A, AT (A" —y)). (1)

e Using (1), the complementary slackness and feasibility conditions for
primal and dual problems we get the following four optimality condi-
tions for the solution pair (x*, \*)

K1. A%CA (Ax™ —y) = ez

K2. AngXk = —2Z

K3. |a} (Az* —y)| <e forall veT¥
K4. |al AN*| <1 forall veTyg
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Primal Dual Pursuit

e Homotopy Principle: Start from an artificial initial value and iteratively
move towards the desired solution by gradually adjusting the homo-
topy parameter(s).

¢ |n our formulation homotopy parameter is e.

e Follow the path traced by sequence of primal-dual solution pairs
(xk, Ax) for a range of ¢, as ¢, | ¢, and consequently x; — z*.
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Primal Dual Pursuit

e Active primal constraints give us sign and support of dual vector A
e Active dual constraints give us sign and support of primal vector x

A%:A (Aa:k — y) — €L\

A%:m A)\k; = —Zx

And we keep track of supports I',, I'y and sign sequences z,, z, all
the time.

e Start at sufficiently large ¢, such that x;, = 0 and only one dual con-
straint is active (use ¢, = ||ATy||s0)-

e Move in the direction which reduces ¢ by most, until there is some
change in the supports.

e Update the supports and sign sequences for primal and dual vectors
and find new direction to move in.
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Primal Dual Pursuit

(2o, €0)

e The homotopy path for z; is piecewise linear and the kinks in this
path represent some critical values of ¢, where primal and/or dual
supports change.

e Either a new element enters the support or an element from within
the support shrinks to zero.

e At any instant, the optimality conditions (K1-K4) must be obeyed by
the primal-dual solution pair (xx, Ax).
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1 Primal Dual Pursuit

At every kth step we have primal-dual vectors (z, Ay ), respective support
(I'z, ")) and sign sequence (z, z)).

We can divide each step into two main parts

e Primal update: Compute update direction 0x and smallest step size
0 such that either a new element enters I', or an existing element
leaves IT',,.

e Dual update: Compute update direction 0\ and smallest step size
6 such that either a new element enters I', or an existing element
leaves T'.

Set

® rip11 =T+ 00x
® >\k+1 — )\k + OO\

and update primal-dual supports and sign sequences.
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1 Primal Update

T Primal constraints
— 2 T T T T T T
|a,,y (A:Ek+1 — )] = €ft1 forallyeI'y, il Y
15 . 7

a2 (Azp1 — y)| < €rgr for all v € I'§
|a (Az — )+5a$A8w|§ek—6 for all v € I'§

~~ o ——
pr () di ()

1Pk (y) + 0di ()] < e — 9 for all V€ I‘C 05!

v (e —pr(t) e+ pr(i)
0 _{2}2(1+d,€<z’)’ 1 — dy.(i)

7T =arg min

(Gk — (1) €r + pi(?)
iers

11 dp(i) 1—dp(i)

i~ = rQIFn ( xk(2> .....................

)
¢~ =arg min ( wk(z)

el

§=min(d",67)
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Dual Update

lal A1 =1 for all v € ',
lal AN <1 for all v € T,

lal AN, +0al ADN| <1 for all v € TS
—— S——
ar(v) br (V)

lar(v) + 0bx(v))| < 1 for all v € T},

o (1—ag(y) 1+ ak(y)
0+_jr2|Fr;c( br(j) _bk(j))

- . (1—ap(j) 1+ ap(j)
]+—arjg361tr;|n< bk(?) 7 —bkl(gj))

o= min (5:0)

j~ = arg min (_)\ ]))
VIS DY 8)\(.])
0 =min(0",07)
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i Update Directions

e Primal update direction

Oy — —(A%:)\pr)_lz)\ onl',
elsewhere

e Dual update direction

(—2,(AL Ar,)7*AL a, onT,
0N = < z, on v
0 elsewhere

\

Why? AL AN+ 00N) = —2,
Aa Ap, O\ + A%; a~zy = 0.
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Primal Dual Pursuit Algorithm
Primal update:

compute the primal update direction Ox
compute py, di, and o

Tpy1 = T + 00x

€fp1 = € — 0

if 6 =0 then

I, T\ i {remove ¢~ from supp(z) and update I',.}
r N =1 {store the current I'y in a dummy variable}
I'y—Ty\\~v {select an index ~ from supp(\) and remove it from I')}
Zy = 2)(7) {treat + as the new element to supp(\)}
update z,. 2 {update sign sequences on updated supports}
else
Iy =Ty uU{it} {store i™ but do not update 'y}
= 51311[44%;(4421?“1 — )] {update z, }
v = ;T
z = 2(7)
end if
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Primal Dual Pursuit Algorithm

Dual update:
compute the dual update direction O\

compute ay and by
if 0 =0 && signfag(i™)] = sign|bg(i~)] then

O\ — —O\ {a check needed due to uncertainty in sign}
by, < —by, {flip the sign of JA and in turn by}
end if

compute 0
Meg1 = A + OO
if 6 =6 then

| N \J~ {remove 7~ from supp(A) and update I'y}

update 2z, {update sign sequence on updated support}
else

I, —T,u{;7} {add j* to supp(x) and update I',}

| N {set I'y to supp(A) determined in Primal update}

P Sign[}lrfﬁ; ANjiq] {update z,}
end if
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N Numerical Implementation

e Main computational cost

— Update direction (0x, 0\).
— Step size (9, 0).

e No need to solve a new system at every step.

e Just update the most recent inverse matrix whenever supports change.

— Matrix inversion lemma.
— Rank one update.

All A12

- an[f)- (58 8-t %)
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Numerical Implementation

e Just update the most recent inverse matrix whenever supports change.

— Matrix inversion lemma.
— Rank one update.

A Ap] L [AR AT ALS T AN AL — AT ARST
A21 AQQ —S_lAglAl_ll S_l ’

where S = Ay, — A21A1_11A12 is the Schur complement of A;;.

[All AlQ] o _ [Qll QlQ]
A21 A22 Q21 Q22 ’

A1_11 = Q11 — Q12Q2_21Q21-

Computational cost for one step is just few matrix vector multiplications.
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W S-step Solution

e S-sparse signal can be recovered in S primal-dual step !
y = Az

e Random measurements

m > 8% . logn

Gaussian entries of A independently selected to be i.i.d. Gaussian N (0,1/m).
Bernoulli entries of A independently selected to be +1/4/m with equal
probability

e Incoherent measurements

where M = mgx (a;, a;)|
1#]
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Optimality Condition

(K1. AL, (Az* — y) = ez )

K2. AL AN* = —2, (xX,\*) is a solution pair
T *
K3 s (Az” = 9llleo <€ Hforall 0 < e < e = i (_a;()(w)))
K4. ||Afc ANl < 1 Ve Y
K4 [[Apg AN |oo < )

I':=1", /\ A — _(A%AF)_lz onl PN _an
0 elsewhere

set z7 =xo9 +e\”

KHl. Ar is full rank. b
H2. || AL Ar(AT Ar) 'z)la < 1 ~ =T,
. . |
\HS. sign[(Af Ar) 'z = 2 b 2y = — 2y
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i S step Solution

—3$d = )\d
n—— N ¥R )

e Trace the path backwards, starting from exact solution zy.

e S step solution property holds if g = 0. Means all the elements are
removed from the support in S steps.

e Only if conditions (H1-H3) hold at every step.
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Dantzig Shrinkability
1. k=0, Ty = supp xg, and z, = sign(azo\ro).
2. If x;, =0, return Success.
3. Check that

|AZ, A, (AT, Ap,) 2]l < 1
sign((AZ, Ar,)"12] = 2

If either condition fails, break and return Failure.

—(Af, Ar,) 'z on Ty,

4. Set )\k:{ 0 on T°¢
k

. z(7y)
€ — min | —1
b LT Jer (—Akm) ’

Tyl = Tk + €py1 Ak,
V41 = arg min (_"’i{“é@)) :
velg
I‘k:—|—1 — Fk\/}/]/{H-l)
211 = 2 restricted to I'kyq.
5. Set k <+ k+ 1, and return to step 2.

06/19/2008 Masters Thesis Defense Primal Dual Pursuit



".

1 Sufficient Conditions for S step Solution

| W
\%

e Ar be full rank. (H1)
o Let G =1 — AL Ar, then (H2-H3) will be satisfied if || G|| < 1 and

ALANTY., 2)| < 1, 2
max (AT Ar) Y5, 2) 2
with
v _ Ala, v eTIe
" 1A4Afa, -1, €T
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If |G|| < 1, we can write (AL Ap)~!

(Af Ar)~

Condition H3!

z—IG

z in the following way

z_Zsz_ <z+ZG£ )

condition (H3) will be satisfied if \/

06/19/2008

oo
max | (1, g G*
~yel =1
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Neumann series

< 1.

oo

= max <Z G'1,,2)

a2 <Z G gy, 2)
K —1

= INnax
T —1
= max |((ArAr) gy, 2)|
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y  Outline of Proof for S-step property

e Bound the normof Y, forall v € {1,...,n}
e Bound the norm of w, := (AL AL)~ 1Y,

e Use Cauchy-Schwarz inequality to satisfy |(w.,, z)| < 1 for all v

Random Matrices : Gaussian or Bernoulli

logn
m

e Each entry of Y, is bounded by Cjs with probability exceeding

1 — O(n=P), for some constant 8 > 0. So ||Y,| < Cg4/ 22" with
same probability.

e Uniform uncertainty principle tells us that || (AL Ar) || < 2 with over-
whelming high probability.

e Using Cauchy-Schwarz inequality, (2) is satisfied with probability ex-
ceeding 1 — O(n=P)if m > Cg - S?logn
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Percentage of signals recovered

Percentage of signals recovered

Experimental Results (Ortho-Gaussian)
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Lasso and Dantzig Selector

| - 8
minimize §||y — AZ||3 + €||Z]|1 (Lasso)

e Optimality conditions
L1. AL (Az* —y) = —ez

L2. |a) (Az* —y)| <e forall ~eT*

8xLaSS°‘F = (AL Ap) 12 (Lasso update)
0xPS| . = —(A%:}\Al"w)_lz)\ (DS update)

'z
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Hg Future Work

e Better bound on required number of measurements!

?
S?.logn —— S -log%n,

for some small o > 0.
e Investigate the effect of orthogonal rows in the S-step recovery.
e Dynamic update of measurements.

¢ Implementation for largescale problems.
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Questions
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Thankyou !

Muhammad Salman Asif
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