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ABSTRACT

Mask-based lensless cameras replace the lens by placing a fixed
mask on top of an image sensor. These cameras can potentially
be very thin and even flexible. Recently, it has been demonstrated
that such mask-based cameras can recover light intensity and depth
information of a scene. Existing depth recovery algorithms either
assume that the scene consists of a small number of depth planes
or solve a sparse recovery problem over a large 3D volume, and
lose robustness to complicated scenes consisting of varying depth
surface. In this paper, we propose a new approach for depth esti-
mation based on alternating gradient descent algorithm that jointly
estimates the continuous depth map and light distribution of a scene.
The computational complexity of the algorithm scales linearly with
the spatial dimension of the imaging system. We present simula-
tion results on image and depth reconstruction for standard 3D test
scenes. The comparison between the proposed algorithm and other
method shows that our algorithm is faster and more robust for natural
scenes with a large range of depths.

Index Terms— Lensless imaging, depth estimation, non-convex
optimization

1. INTRODUCTION

Depth estimation is an important and challenging problem that arises
in a variety of applications including computer vision, robotics, and
autonomous systems. Existing depth estimation systems are based
on disparity frames based on conventional camera or time-of-flight
cameras [1–3]. These cameras are often heavy and bulky and re-
quire large space for their installation. Therefore, their adoption for
portable and lightweight devices with strict physical constraints is
still limited.

In this paper, we propose a joint image and depth estimation
framework for a computational lensless camera that consists of a
fixed, binary mask placed on top of a bare sensor. Such mask-based
cameras offer an alternative design for building cameras without
lenses. A recent example of mask-based lensless camera is known
as FlatCam [4]. In contrast with a lens-based camera that is designed
to map every point in the scene to a single pixel on the sensor, every
sensor in a FlatCam records light from every point in the scene. A
single point source in the scene would cast a shadow of the mask on
the sensor, which would shift if the point moves parallel to the sen-
sor plane and expand/shrink if the point source moves toward/away
from the sensor plane. The measurements recorded on the sensor
thus represent superposition of shifted and scaled versions of the
mask shadows corresponding to light sources in different directions
and depths. Image and depth information about the scene is thus en-
coded in the measurements, and we can solve an inverse problem to
estimate both of them.

Joint estimation of intensity and depth is an ill-posed problem
that multiple solutions exist to fit the measurements. In addition,
estimation of depth by itself, even with known scene intensity, is a
non-convex problem. To jointly estimate depth and light distribution,
we propose a two step approach that consists of an initialization step
and an alternating gradient descent step to minimize our objective.
To preserve sharp edges in the image intensity and depth map, we
include an adaptive regularization penalty in our objective function.
An overview of the reconstruction framework is illustrated in Fig-
ure 1. We initialize the estimates of image intensity and depth using
a greedy algorithm proposed in [5]. Then we refine the estimates
by minimizing an objective function with respect to image intensity
and depth via alternating gradient descent. To simplify the recov-
ery algorithm, we assume that the mask pattern is smoothly chang-
ing and differentiable everywhere. We use adaptive weights to add
smoothness regularization on the intensity and depth estimates [6].
Even though the problem of joint estimation of intensity and depth is
non-convex, we observed that a simple regularization makes the al-
gorithm robust against local minima of the loss function and improve
the performance of the algorithm.

2. RELATED WORKS

The concept of pinhole camera has been known for a very long time.
However, the reconstruction quality of pinhole camera is severely
affected by noise since the amount of light collected is limited by
the pinhole aperture [7]. Mask-based cameras solve this problem
by increasing the number of pinholes and allowing more light to
reach the sensor [4, 8–10]. Mask-based lensless cameras are often
used for imaging light at wavelengths beyond the visible spectrum
[9, 10]. With recent advances in computational algorithms and re-
sources, mask-based cameras have been used in computational pho-
tography to capture and reconstruct natural images in visible spec-
trum [11–15].

The imaging model of mask-based camera can be viewed as a
linear transform of different points in the scene because the overall
measurements are the superposition of the shadow cast by each point
source lit alone [5, 8]. With the forward and backward operation
known, we can model the joint light and depth estimation problem
as an inverse problem. Linear inverse problems arise in various fields
such as direction-of-arrival estimation in radar [16], super resolution
[17] and compressed sensing [18–20].

The depth recovery algorithms for mask-based cameras have
been proposed in [5, 21, 22], all of which are based on on-the-grid
signal recovery methods. However, natural scenes contain many
light sources located at arbitrary depth and potentially located off-
the-grid. Off-the-grid signal recovery methods can be divided into
two main types. The first approach formulates the problem as a con-
vex program on a continuous domain and solve it using an atomic
norm minimization approach [23, 24]. The second approach models



(a) 1D imaging model for a planar sen-
sor with a coded mask placed at dis-
tance d. Light rays from a light source
at location (θ, z) are received by all the
sensor pixels. A light ray that hits sen-
sor pixel s passes through mask at lo-
cation m.

(b) An overview of the proposed intensity and depth estimation framework. Consider a natural scene as a
3D point cloud, where each point represents a light source located at a different depth. The camera consists
of a fixed, coded mask placed on top of an image sensor. Every point in the scene casts a shadow of the
mask on the sensor plane. Each sensor pixels records a linear combination of the scene modulated by the
mask pattern. The recovery algorithm consists of two steps. (1) Initialization using a greedy depth selection
method. (2) An alternating gradient descent-based refinement algorithm that jointly estimates the light
distribution and depth map on a continuous domain.

Fig. 1. The coded mask-based imaging model and an overview of the proposed continuous depth estimation framework.

the signal as a summation of an on-grid approximation and its first-
order expansion [17, 25]. Our proposed algorithm is inspired by the
second approach.

3. METHODS

3.1. Imaging Model

We assume a 3D scene model that can be divided into N × N uni-
formly spaced directions. We use θi and θj to denote the angular
direction of a light source with intensity li,j and depth zi,j with re-
spect to the center of the sensor. Figure 1(a) depicts the geometry of
such an imaging model. A coded-mask is placed on top of the bare
sensor array at a small distance d. TheM×M sensor array captures
lights coming from the scene modulated by the coded-mask. We use
su and sv to denote a sensor pixel on the mask.

Every light source in the scene casts a shadow of the mask on the
sensor array, which we denote using basis functions ψ. The shadow
cast by a light source with unit intensity at (θi, θj , zi,j) can be rep-
resented using the following basis function:

ψi,j(su, sv) = mask [αi,jsu+d tan(θi), αi,jsv+d tan(θj)], (1)

where mask[u, v] denotes transparency value of the mask pattern at
location (u, v) and αi,j is a variable that is related to the physical
depth zi,j via the following inverse relation

αi,j = 1− d

zi,j
, (2)

therefore, we will refer to αi,j as the inverse depth of point in the
direction (θi, θj) in the scene. Let us denote the intensity captured
at sensor pixel (su, sv) when the scene consists of a single point
source at 3D position (θi, θj , αi,j) with intensity li,j as

y(su, sv) = ψi,j(su, sv)li,j . (3)

The measurements recorded at every sensor pixel represent su-
perposition of measurements from all the point sources in the 3D
scene. The intensity of light captured at the sensor pixel (su, sv) is

given by the following summation

y(su, sv) =

N∑
i=1

N∑
j=1

ψi,j(su, sv)li,j . (4)

We can write this imaging model in a compact form as

y = Ψ(α)l + e, (5)

where y ∈ RM
2

is a vectorized form of an M ×M matrix that de-
notes sensor measurements, l ∈ RN

2

is a vectorized form of an
N × N matrix that denotes light intensity from all the locations
(θi, θj , αi,j), and Ψ is a matrix with all the basis functions corre-
sponding to θi, θj , αi,j . The basis functions in (5) are parameterized
by unknown α ∈ RN

2

. e is the potential noise existing in the obser-
vation.

With this imaging model, we formulate the following optimiza-
tion for fidelity of the imaging model:

α̂, l̂ = argmin
α,l

1

2
||y −Ψ(α)l||22. (6)

Note that if we know the true values of α (or we fix it to something),
then the problem in (6) reduces to a linear least-squares problem that
can be efficiently solved via standard solvers. On the other hand, if
we fix the value of l, the problem is nonlinear with respect to α.
In the next few sections we discuss our approach for solving the
problem in (6) via alternating minimization.

3.2. Image and Depth Estimation

The minimization problem in (6) is not convex, therefore we need
a proper initialization to start with. Our approach for initialization
is depth pursuit method proposed in [5]. Greedy algorithms are
widely used for sparse signal recovery [18–20]. Based on these algo-
rithms, [5] proposed a greedy depth pursuit algorithm for FlatCam
depth estimation by iteratively find the depth surface that matches
the observed measurements the best. Although this method may not



approximate off-grid point sources well, it produces a good prelimi-
nary estimate of the scene without any prior knowledge. We will use
its output as the initialization of our minimization problem.

To solve the minimization problem in (6), we alternately up-
date depth and light distribution using gradient information after we
obtain a preliminary estimate from the greedy algorithm. The loss
function of fidelity is

L =
1

2

M∑
u=1

M∑
v=1

(y(su, sv)−
N∑
i=1

N∑
i=1

ψi,j(su, sv)li,j)
2 (7)

Let us define Ru,v = y(su, sv) −
∑N
i,j=1 ψi,j(su, sv)li,j as the

residual approximation error at location (su, sv). The derivatives of
loss function with respect to the depth values αi,j can now be written
as

∂L

∂αi,j
= = −li,j

M∑
u=1

M∑
v=1

Ru,v
∂ψi,j(su, sv)

∂αi,j
(8)

Then we can compute ∂ψ(su,sv)
∂αi,j

as follows.

∂ψi,j(su, sv)

∂αi,j
=
∂ψi,j(su, sv)

∂ui,j
su +

∂ψi,j(su, sv)

∂vi,j
sv, (9)

where ui,j = αi,jsu + d tan(θi) and vi,j = αi,jsv + d tan(θj).
The terms ∂ψi,j(su,sv)

∂ui,j
and ∂ψi,jsu,sv

∂vi,j
represent the derivatives of

the mask pattern along respective spatial direction.
In our method we used a blurred version of the binary mask pat-

tern, which we assume is differentiable everywhere. This assump-
tion is valid because even though the mask pattern printed on the
transparency may not be differentiable, the shadow of the mask is
smooth and differentiable (mainly because of spreading caused by
diffraction). We compute the gradient using finite difference and lin-
ear interpolation. We used minFunc solver [26] with L-BFGS al-
gorithm [27] to solve the nonlinear optimization problem. We chose
the step size using strong Wolfe condition [28]. The algorithm stops
when the norm of approximation error converges or maximum num-
ber of iterations is reached.

3.3. Regularization Approaches

The optimization problem we are trying to solve (6) is non-convex
and the optimization process is sensitive to the initialization. To
tackle these issues, we impose a prior on the depth map that the gen-
eral variation of depth map should be small. To achieve this, we add
a quadratic regularization term on the spatial gradients of the depth
map to our loss function.

Even though smoothness regularization on depth map removes
local minima of loss function, it does not respect the sharp edges in
the depth map. To keep sharp discontinuities in depth intact while
still enforce the variation of depth to be small, we use an adaptive
weighted regularization for depth given as

RW (α) =

N∑
i,j=1

W c,α
i,j (αi,j − αi+1,j)

2 +W r,α
i,j (αi,j − αi,j+1)

2

(10)
and the weights are

W c,α
i,j = e

−
(αi,j−αi+1,j)

2

2σ2 ,W r,α
i,j = e

−
(αi,j−αi,j+1)2

2σ2 .

To highlight the effect of the weighted smoothness regulariza-
tion on depth, we plot the following weighted quadratic function
f(αi − αj) = exp(−(αi − αj)2/σ)(αi − αj)2 in Figure 2, where
αi, αj stand for inverse depth of neighboring pixels. We plot the
weighted function for different values of σ along with a normal
quadratic function. The plots show that the quadratic function
(without any weights) penalizes large values of depth difference;
however, weighted function add small penalty if the neighboring
pixels have large depth difference (which indicates the presence
of an edge). Thus, weighted regularization forces pixels that have
depth within a small range of one another to be smooth and does not
penalize the points that potentially lie across an edge. This helps
preserve sharp edges in the reconstructed depth estimates. This
weighting approach is analogous to bilateral filtering approach for
image denoising [29, 30].

Fig. 2. The weighted regularization function penalizes values that
are within a small distance of one another and does not penalize
those values that are above certain threshold.

In addition to `2-based methods, it is also well-known that the
`1 norm regularization of spatial gradient enforces sparsity of the
image variation [31]. Ideally, it keeps the edges while sets all the
other variations to zero. The `1-based TV regularization term is

RTV (α) =

N∑
i,j=1

|αi,j − αi+1,j |+ |αi,j − αi,j+1|. (11)

We solve the nonlinear optimization problem with `1 regularization
term using Split-Bregman steps [32].

Algorithm 1 Weighted TV-`2 regularized optimization

Input: Sensor measurements: y
Output: Light distribution and depth map of scene: l,α

Initialization via greedy algorithm
Compute αi,j and li,j with depth pursuit algorithm
Refinement via alternating gradient descent
for k = 1 : kmax do
α̂k = argmin

α

1
2
||y −Ψ(α)lk−1||22 + λRW (α)

l̂k = argmin
l

1
2
||y −Ψ(αk)l||22

end for
return l̂ and α̂

4. SIMULATION RESULTS

To validate the performance of our algorithm, we simulate an lens-
less imaging system that a separable MLS sequence is placed 4mm
away from the sensor array. The sensor contains 512 × 512 pixels



and the length of each pixel is 50µm. The chief ray angle of each
sensor pixel is ±20◦. We assume that there is no noise added to the
sensor measurements. We simulate a 3D scene using the depth data
from Middlebury dataset [33]. We sample the scene at uniform an-
gles to create a 128 × 128 image. We compute the physical depth
from α using (2). In our simulation, the depth of the scene ranges
from 1m to 1.8m. We use greedy algorithm as our initialization
method. We selected 15 candidate depths by uniformly sampling
from 1m to 1.8m. The scene and estimation results using conven-
tional methods and proposed methods are shown in Figure 3, along
with the root mean squared error (RMSE) of their depth maps. In
Figure 3, both image and depth estimation from Greedy [5] contain
many spikes due to the model mismatch of the pre-defined depth
grid. In contrast, our proposed method with weighted TV-`2 removes
most of the spikes and preserves the edges.

Original

Depth RMSE:

Greedy [5]

88.06mm

Gradient only

63.84mm

Weighted TV-`2

17.90mm

Fig. 3. Left to right: original image and depth of Cones scene (depth
range is 1m to 1.8m); image and depth initialized via greedy algo-
rithm [5]; continuous depth estimation via gradient descent without
regularization; depth estimation using weighted `2 regularization.

Comparison of regularization methods. Next, we present a com-
parison between the three different regularization approaches in Fig-
ure 4. As we observe, the optimization with `2 regularization on
spatial gradient is smooth but blur. In opposition to that, the esti-
matino from TV-`1 and weighted TV-`2 preserve the edges of depth
map well. Between these two approaches, we observe that weighted
TV-`2 converges faster in our experiment.

Analysis of Noise. To investigate the effect of noise on our al-
gorithm, we present simulation results of reconstructions from the
same sensor measurements added with different levels of white
Gaussian noise. The plots recording Peak Signal-Noise Ratio
(PSNR) of image intensities and root mean squared errors of depth
maps are presented in Figure 5. As observed from Figure 5, the
quality of both estimated image and depth are improved when the
measurements are added with less noise. An example of reconstruc-
tion with different levels of noise is shown in Figure 6. As shown in
the figures, we are able to reconstruct the general shape of the scene
even with presence of noise.

5. CONCLUSION

We proposed a new computational framework for joint estimation
of light intensity and depth map from a single image of a mask-

Original

Depth RMSE

TV-`2

25.21mm

TV-`1

19.34mm

Weighted TV-`2

17.90mm

Fig. 4. Comparison between reconstructions using three different
regularization approaches from the same measurements.

(a) Image PSNR for different noise
levels

(b) Depth RMSE for different noise
levels

Fig. 5. Reconstruction from measurements with different levels of
noise, the PSNR of image intensities and RMSE of depth maps.

Original

Depth RMSE:

20dB SNR

66.98mm

30dB SNR

38.83mm

40dB SNR

34.28mm

Fig. 6. An example reconstruction from noisy measurements. The
sword scene depth range is from 0.6m to 1m.

based lensless camera. In contrast to existing methods that estimate
depth on a grid, our method estimates the depth on a continuous
range. Our algorithms consists of a careful initialization step based
on greedy pursuit and an alternating minimization step based on gra-
dient descent. We presented different regularization schemes that
offer robust recovery on a diverse dataset. Our simulation results
demonstrate a significant improvement over existing methods for 3D
imaging using coded mask-based lensless cameras.



6. REFERENCES

[1] S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor
- system description, issues and solutions,” in Conference on Computer
Vision and Pattern Recognition Workshop, June 2004, pp. 35–35.

[2] Richard Hartley and Andrew Zisserman, Multiple view geometry in
computer vision, Cambridge university press, 2003.

[3] Felix Heide, Matthias B Hullin, James Gregson, and Wolfgang Hei-
drich, “Low-budget transient imaging using photonic mixer devices,”
ACM Transactions on Graphics (ToG), vol. 32, no. 4, pp. 45, 2013.

[4] M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and
R. G. Baraniuk, “Flatcam: Thin, lensless cameras using coded aperture
and computation,” IEEE Transactions on Computational Imaging, vol.
3, no. 3, pp. 384–397, Sept 2017.

[5] M. S. Asif, “Toward depth estimation using mask-based lensless cam-
eras,” in 51st Asilomar Conference on Signals, Systems, and Comput-
ers, Oct 2017, pp. 1467–1470.

[6] Yan Liu, Jianhua Ma, Yi Fan, and Zhengrong Liang, “Adaptive-
weighted total variation minimization for sparse data toward low-
dose x-ray computed tomography image reconstruction,” Physics in
Medicine and Biology, vol. 57, no. 23, pp. 7923, 2012.

[7] Adam Yedidia, Christos Thrampoulidis, and Gregory Wornell, “Anal-
ysis and optimization of aperture design in computational imaging,”
IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pp. 4029–4033, April 2018.

[8] E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uni-
formly redundant arrays,” Appl. Opt., vol. 17, no. 3, pp. 337–347, Feb
1978.

[9] A. Busboom, H. Elders-Boll, and H. D. Schotten, “Uniformly redun-
dant arrays,” Experimental Astronomy, vol. 8, no. 2, pp. 97–123, Jun
1998.

[10] T. M. Cannon and E. E. Fenimore, “Coded Aperture Imaging: Many
Holes Make Light Work,” Optical Engineering, vol. 19, pp. 283, June
1980.

[11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sam-
pling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83–91,
March 2008.

[12] A. Zomet and S. K. Nayar, “Lensless imaging with a controllable aper-
ture,” in IEEE Computer Vision and Pattern Recognition, June 2006,
vol. 1, pp. 339–346.

[13] Dharmpal Takhar, Jason N. Laska, Michael B. Wakin, Marco F. Duarte,
Dror Baron, Shriram Sarvotham, Kevin F. Kelly, and Richard G. Bara-
niuk, “A new compressive imaging camera architecture using optical-
domain compression,” Proc.SPIE, vol. 6065, pp. 6065 – 6065 – 10,
2006.
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