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Generative Models for Low-Dimensional Video
Representation and Reconstruction

Rakib Hyder and M. Salman Asif

Abstract—Generative models have received considerable at-
tention in signal processing and compressive sensing for their
ability to generate high-dimensional natural image using low-
dimensional codes. In the context of compressive sensing, if the
unknown image belongs to the range of a pretrained generative
network, then we can recover the image by estimating the
underlying compact latent code from the available measurements.
In practice, however, a given pretrained generator can only
reliably generate images that are similar to the training data.
To overcome this challenge, a number of methods have been
proposed recently to use untrained generator structure as prior
while solving the signal recovery problem. In this paper, we
propose a similar method for jointly updating the weights of the
generator and latent codes while recovering a video sequence
from compressive measurements. We use a single generator to
generate the entire video. To exploit the temporal redundancy in
a video sequence, we use a low-rank constraint on the latent codes
that imposes a low-dimensional manifold model on the generated
video sequence. We evaluate the performance of our proposed
methods on different video compressive sensing problems under
different settings and compared them against some state-of-the-
art methods. Our results demonstrate that our proposed methods
provide better or comparable accuracy and low computational
and memory complexity compared to the existing methods.

Index Terms—Compressive sensing, generative model, video
reconstruction, manifold embedding.

I. INTRODUCTION

DEEP generative networks, such as autoencoders, gen-
erative adversarial networks (GANs), and variational

autoencoders (VAEs), are now commonly used in almost every
machine learning and computer vision task [1]–[4]. One key
idea in these generative networks is that they can learn to
transform a low-dimensional feature vector (or latent code)
into realistic images and videos. The range of the generated
images is expected to be close to the true underlying distribution
of training images. Once these networks are properly trained
(which remains a nontrivial task), they can generate remarkable
images in the trained categories of natural scenes.

In this paper, we propose to use a deep generative model
for compact representation and reconstruction of videos from
a small number of linear measurements. We assume that a
generative network structure is available, which we represent
as

x = Gγ(z) ≡ gγL ◦ gγL−1
◦ · · · ◦ gγ1(z). (1)
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Gγ(z) denotes the overall function for the deep network with
L layers that maps a low-dimensional (latent) code z ∈ Rk
into an image x ∈ Rn and γ = {γ1, . . . , γL} represents all the
trainable parameters of the deep network. Gγ(·) as given in (1)
can be viewed as a cascade of L functions gγl for l = 1, . . . , L,
each of which represents a mapping between input and output
of the respective layer. An illustration of such a generator with
L = 5 is shown in Figure 1.

We consider a general problem of recovering a video
sequence from its linear measurements. Suppose we are given
a sequence of measurements for t = 1, . . . , T as

yt = Atxt + et, (2)

where xt denotes the tth frame in the unknown video sequence,
yt denotes its observed measurements, At denotes the respec-
tive measurement operator, and et denotes noise or error in the
measurements. Our goal is to recover the video sequence (xt)
from the available measurements (yt). The recovery problem
becomes especially challenging as the number of measurements
(in yt) becomes very small compared to the number of
unknowns (in xt). To ensure quality reconstruction in such
settings, we need a compact (low-dimensional) representation
of the unknown signal. Thus, we use the given generative
model to represent the video sequence as xt = Gγ(zt) and
seek to recover the unknown sequence xt by optimizing over
xt, zt, and γ.

We demonstrate that even if we do not have a pretrained
generative network, we can still reconstruct it by jointly
optimizing over network weights γ and the latent codes zt.
We observe that when we optimize over latent code alongside
network weights, the temporal similarity in the video frames is
reflected in the latent code representation. To exploit similarities
among the frames in a video sequence, we also include low-
rank constraints on the latent codes. An illustration of different
representations we use in this paper are shown in Figure 2.

A. Related Work
Compressive sensing refers to a broad class of problems

in which we aim to recover a signal from a small number
of measurements [5]–[7]. The canonical compressive sensing
problem in (2) is inherently underdetermined, and we need to
use some prior knowledge about the signal structure. Classical
signal priors exploit sparse and low-rank structures in images
and videos for their reconstruction [8]–[20]. However, the
natural images exhibits far richer nonlinear structures than
sparsity alone. We focus on a newly emerging family of data-
driven representation methods based on generative models that
are learned from massive amounts of training data [21]–[26].
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Fig. 1: A candidate architecture we use in our experiments with one fully
connected and four fractionally strided convolutional layers. Generative model:
x = Gγ(z) maps a vector z ∈ Rk into an image x ∈ Rn.

Deep generative models have been extensively used for
learning good representations for images and videos. Generative
adversarial networks (GANs) and variational autoencoders
(VAEs) are two popular classes of deep generative networks
that learn a function that maps vectors drawn from a certain
distribution in a low-dimensional space into images in a high-
dimensional space [1], [27]–[29]. An attractive feature of
autoencoders [27], [30], [31] and GANs [1], [3], [32]–[37] is
their ability to transform feature vectors to generate a variety
of images from a different set of desired distributions. A
number of generative models have been proposed to learn
latent representation of an image with respect to a generator
[38]–[40]. The learning process usually involves solving a
nonlinear problem using gradient decent over latent codes to
find the best approximation of the given image [40], [41].

The generative model and optimization problems we use
are inspired by recent work on using generative models for
compressive sensing in [41]–[47]. Compressive sensing using
generative models was first introduced in [42], which used a
trained deep generative network as a prior for image recon-
struction from compressive measurements; the reconstruction
problem involves optimization over the latent code of the
generator. Since the generator is fixed, this approach works
well only if the unknown image/video belongs to the range of
the generator used. Deep image prior (DIP) is a related method
in which an untrained convolutional generative model is used
as a prior for solving inverse problems such as inpainting and
denoising because of their tendency to generate natural images
[47]; the reconstruction problem involves optimization of
generator network parameters. Inspired by these observations, a
number of methods have been proposed for solving compressive
sensing problem by optimizing generator network weights
while keeping the latent code fixed at a random value [44],
[45]. Both DIP [47] and deep decoder [45] update the network
parameters to generate a given image; therefore, the generator
can reconstruct wide range of images. One key difference
between the two approaches is that the network used in DIP is
highly overparameterized, while the one used in deep decoder
is underparameterized.

We observe two main limitations in the DIP and deep
decoder-based video recovery that we seek to address in this
paper. (1) The latent codes in DIP and deep decoder methods
are initialized at random and stay fixed throughout the recovery
process. Therefore, we cannot infer the structural similarities
in the images from the structural similarities in the latent codes.
(2) Both of these methods train one network per image. A
naı̈ve approach to train one network per frame in a video will

(a) (b) (c)

Fig. 2: An illustration of different generative priors discussed in the paper:
(a) Optimizing latent codes can only reconstruct images in the range of the
generative network. (b) Jointly optimizing latent code and network weights
enables recovery of a larger range of images. (c) Low-rank and similarity
constraints on latent code further regularize the problem and potentially explain
other structures in data.

be computationally prohibitive, and if we train a single network
to generate the entire video sequence, then their performance
degrades.

B. Main Contributions
In this paper, we propose joint optimization of latent codes

and generator weights along with low-rank constraint on the
latent codes to solve video compressive sensing problems. We
use a generative model, as described in (1), to find compact
representation of videos in the form of zt. To reconstruct a
video sequence from the compressive measurements in (2),
we jointly optimize over the latent codes zt and the network
parameters γ. Since the frames in a video sequence exhibit
rich redundancies in their representation, we impose a low-rank
constraint on the latent codes to represent the video sequence
with a more compact representation of the latent codes.

The key contributions of this paper are as follows.
• Latent code optimization can only reconstruct a video

sequence that belong to its range. We demonstrate that by
jointly optimizing the latent codes with the network weights,
we can expand the range of the generator and reconstruct
images that the given initial generator fails on. We show
that even though the network has a very large number of
parameters, the joint optimization still converges to a good
solution.

• Consecutive frames in a video sequence share lot of similar-
ities. To encode similarities among the reconstructed frames,
we introduce low-rank constraints on the generator latent
codes. This enables us to represent a video sequence with
a very small number of parameters in the latent codes and
reconstruct them from a very small number of measurements.

II. TECHNICAL APPROACH

Let us assume that xt ∈ Rn for t = 1, . . . , T is a
sequence of video frames that we want to reconstruct from the
measurements yt = Atxt + et as given in (2). The generative
model as given in (1) maps a low-dimensional representation
vector, zt ∈ Rk, to a high-dimensional image as xt = Gγ(zt).
Thus, our goal of video recovery is equivalent to solving the
following optimization problem over zt:

yt = AtGγ(zt) + et, (3)
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which can be viewed as a nonlinear inverse problem. Below
we discuss three different methods for solving this inverse
problem.
(a) Latent code optimization: fixed γ, update zt.
(b) Joint latent code and generator optimization: update γ, zt
(c) Joint optimization with lowrank constraints: update both

γ, zt with additional low-rank constraints on zt.

A. Latent Code Optimization
In latent code optimization, we assume that the function

Gγ(·) approximates the distribution of the set of natural images
that contains our desired image. Thus, we can restrict our search
for the underlying video sequence, xt, within the range of the
generator. In other words, we fix the network parameters, γ,
and update only the latent codes, zt. This is the same problem
studied in [42] for image compressive sensing using generative
models.

Given a pretrained generator, Gγ , measurement sequence,
yt, and the measurement matrices, At, we solve the following
optimization problem to recover the low-dimensional latent
codes:

minimize
z1,...,zT

T∑
t=1

‖yt −AtGγ(zt)‖22. (4)

The reconstructed video sequence can be computed as x̂t =
Gγ(ẑt), where ẑ1, . . . ẑT denote the solution of the problem
in (4).

To solve the problem in (4), we use a gradient descent
approach by foward- and back-propagating the gradient w.r.t.
zt through the fixed generator network.

The latent code optimization in (4) can solve the compressive
sensing problem with high probability if the solution belongs
to the range of the generator [42]. Otherwise, its solution is a
poor estimate of the original image. Since the range of natural
images is very large, and it is difficult to represent all of them
with a single or a few generators, the latent code optimization
application is limited to the case when a pretrained generator
is available.

B. Joint Latent Codes and Generator Optimization
To jointly optimize the latent codes and generator parameters,

we use the same formulation as in (4) but optimize it over the
zt and γ. The resulting optimization problem can be written as

minimize
z1,...,zT ;γ

T∑
t=1

‖yt −AtGγ(zt)‖22. (5)

The reconstructed video sequence can be generated using the
estimated latent codes (ẑ1, . . . , ẑT ) and generator weights (γ̂)
as x̂t = Gγ̂(ẑt).

The joint optimization of latent code and network parameters
offers the optimization problem a lot of flexibility to generate a
wide range of images. We initialize latent codes with samples
drawn from a Gaussian distribution and normalize them to
have unit norm. We initialize γ with random weights using
the initialization scheme in [48]. Initilizing the generator with
a pretrained set of weights can potentially serve as a good
initialization and lead to good and faster convergence. We
test both variants, but observe little difference in performance;
therefore, we use random initialization of parameters in this

paper. Each iteration of joint optimization consists of two steps:
1) latent code optimization and 2) network parameter optimiza-
tion. After every gradient descent update of the latent codes,
zt, we update the model parameters with stochastic gradient
descent. In all of our experiments with joint optimization, we
learn a single set of network weights for the entire sequence.
We note that it is possible to divide a longer video sequences
into small segments and learn different sets of network weights
for each of them. At the end of our reconstruction process, we
have a single set of trained weights γ̂, reconstructed frames
x̂t and their corresponding optimal latent codes ẑt.

The range of any generator is quite limited and presumably
depends on the types of images used during training. To high-
light this limitation, we perform an experiment to reconstruct
a video sequence from its masked version where 80% of the
pixels are randomly missing under three different scenarios. The
results are summarized in Figure 3 using four video sequences:
‘Handwaving’ and ‘Handclapping’ sequences from KTH video
dataset and ‘Archery’ and ‘Apply Eye Makeup’ sequence from
UCF101 video dataset. We center, crop, and resize all the
frames to 64× 64 pixels. We only select the first 32 frames of
the entire video sequence for testing reconstruction performance.
We show the reconstruction under three different scenarios:

(a) In the first experiment, we train a generator using all but
the first 32 frames of the corresponding video sequences
that we call Generator1. Then we used Generator1 as a
prior for the reconstruction of the 32 test frames from
their masked measurements. Since the training and test
frames belong to the same video sequence and share
lot of similarities, we can recover the test frames using
Generator1 in (4).

(b) In the second experiment, we use a generator pretrained on
CIFAR10 dataset that we call Generator2. We reconstruct
the test frames using latent code optimization with
Generator2 as a prior. As CIFAR10 contains images
from diverse categories, the pretrained generator should
have some generalization but it cannot reconstruct the test
frames with good quality.

(c) In the third experiment, we initialize the generator with a
random set of weights using the initialization technique
in [48] and jointly optimize the latent codes and network
parameters. As we can observe from Figure 3, joint
optimization with random initialization provides similar
or better reconstruction quality than the latent code
optimization with network pretrained on the target class
of images.

The latent code optimization results presented in Figure 3
should not be surprising for the following reasons: We are
providing a measurements yt of a video sequence to the
generator Gγ(zt) that has k degrees of freedom for each zt;
therefore, the range of sequences that can be generated by
changing the zt is quite limited for a fixed γ. The surprising
thing, however, is that we can also recover quality images by
jointly optimizing the latent codes zt and network weights γ
while solving the compressive sensing problem. If we let γ
change while we learn the zt, then the network can potentially
generate any image in Rn because the network has very large



4

Original 
Frames
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Optimization 
(Generator1)

Joint 
Optimization

Measured 
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pixels missing)

Latent 
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(Generator2)

Handwaving Archery Apply Eye MakeupHandclappingFig. 3: Joint optimization versus latent code optimization. First row is the true images of the videos sequences. The second row contains the masked samples
of the sequences. In the third row, we reconstruct frames with latent code optimization using a generator trained on some other frames of the same video
sequence (Generator1). In the fourth row, we use latent code optimization with a generator trained on CIFAR10 dataset (Generator2). The fourth row is the
reconstruction with joint optimization of generator initialized with random weights. We can observe that latent code optimization does not perform well (row 4)
when we do not have generator pretrained on similar distribution. However, joint optimization performs as good as as or better than latent code optimization
without any pretrained weights.

degrees of freedom. Note that in our generator, the number of
parameters in γ is significantly larger than the size of xt, yt
or zt. In other words, we can overcome the range limitation
of the generator by optimizing network parameters alongside
latent code to get a good reconstruction from compressive
measurements as well as good representative latent codes
for the video sequence even though the network is highly
overparameterized.

C. Low Rank Constraint
As we optimize over the latent codes and the network

weights in joint optimization, the latent codes capture the
temporal similarity of the video frames. To further exploit
the redundancies in a video sequence, we assume that the
variation in the sequence of images are localized and the latent
codes sequence can be represented in a low-dimensional space
compared to their ambient dimension. Let us define a matrix
Z with all the latent codes as

Z = [z1 z2 . . . zT ],

where zt is the latent code corresponding to tth image of
the sequence. To impose a low-rank constraint, we solve the
following constrained optimization:

minimize
z1,...,zT ;γ

T∑
t=1

‖yt −AtGγ(zt)‖22 s.t. rank(Z) = r. (6)

We solve (6) using a projected gradient descent method in
which we project the latent code estimates after every iteration
to a manifold of rank-r matrices. To do that, we compute Z
matrix and its rank-r approximation using principal component
analysis (PCA) or singular value decomposition (SVD).

In this manner, we can express each of the latent codes in
terms of r orthogonal basis vectors u1, . . . , ur as

zi =

r∑
j=1

αijuj (7)

where αij is the weight of the corresponding basis vector.
We can represent a video sequence with T frames with r
orthogonal codes, and the lowrank representation of latent
codes requires r × k + r × T parameters compared to T × k.
This offers r( 1

T + 1
k ) times compression to our latent code

representation. As we observe later, we use r = 4 for k = 256
and T = 32 which gives us compression of 0.14 in latent code
representation.

Algorithm 1 Generative Models for Low Rank Representation
and Recovery of Videos

Input: Measurements yt, measurement matrices At, A gener-
ator structure Gγ(·)
Initialize the latent codes zt and generator weights γ
randomly and normalize zt with its 2-norm.
repeat

Compute gradients w.r.t. zt via backpropagation.
Update latent code matrix Z = [z1 · · · zT ].
Truncate Z to a rank-r matrix via SVD or PCA.

Compute gradients w.r.t. γ via backpropagation.
Update network weights γ.

until convergence or maximum epochs
Output: Latent codes: z1, . . . , zT and network weights: γ

III. EXPERIMENTAL SETUP

In this section, we describe our experimental setup and
empirical results. We focus our experiments on three different
compressive sensing problems: denoising, inpainting, and
spatial compression by random projection. We also show some
empirical results for coded flutter shutter problem where our
algorithm is especially suitable. For a video sequence of T
frames, we generate T independent measurement matrices. For
color images, we use the same measurement matrix for each
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TABLE I: Reconstruction performance measured in terms of PSNR for different compressive sensing problems. We show comparison with TVAL3D (3D
extension of TVAL3 [49]) and deep decoder [45]. The results are averaged over five experiments with different random measurement matrices (or noise in the
case of denoising).

Video Sequence Rotating
MNIST Handclapping Handwaving Walking

Apply
Eye

Makeup
Archery Band

Marching

Denoising for additive Gaussian noise of 20dB SNR
TVAL3D 35.8 32.2 30.4 30.5 34.5 31.5 30.6
UP Deep Decoder 28.9 28.4 25.6 28.3 28.1 29.6 28.1
OP Deep Decoder 36.6 31.1 30 31 34.4 33 31.6
Joint Optimization 36.9 32.7 30.7 31.2 36.1 32.1 31.3
Joint Opt + Low Rank 36.8 32.3 30.8 30.7 36.4 32 31.7

Inpainting with 80% pixels randomly missing
TVAL3D 21.1 29.2 23.4 24.5 28.2 27.1 24.8
UP Deep Decoder 25.5 26.5 23.3 26.3 27.2 29 23.3
OP Deep Decoder 30.1 30.2 26.7 27.9 32.4 32.5 26.2
Joint Optimization 29.3 34.9 28.1 28.9 35.8 32 26.8
Joint Opt + Low Rank 29.5 34.3 27.3 27.8 36.6 30.4 27.6

Spatial compressive sensing with compression rate = 0.2
TVAL3D 29.8 32.1 28.9 28 33.9 28.4 27.8
UP Deep Decoder 30 27 24.9 26.7 26.2 27.6 22.5
OP Deep Decoder 35.2 32.9 30.6 29 33.1 31.2 27.4
Joint Optimization 35.3 35.6 29.7 28.9 36 29.3 27.8
Joint Opt + Low Rank 35.4 34.7 29 29.1 35.9 28.8 29.1

color channels. The total number of frames in each video
sequence is 32, unless stated otherwise. For the low-rank
constraint, we select the mean of the latent matrix Z and top
3 principal components (i.e., we need 4 vectors to represent
the entire video sequence instead of 32.)

Choice of generator. We use the well-known DCGAN
architecture [34] for our generators, except that we do not
use any batch-normalization layer because gradient through the
batch-normalization layer is dependent on the batch size and
the distribution of the batch. As shown in Figure 1, in DCGAN
generator framework, we project the latent code, z, to a larger
vector using a fully connected network and then reshape it so
that it can work as an input for the subsequent deconvolutional
layers. Instead of using any pooling layers, the DCGAN
architecture uses strided convolution [34]. All the intermediate
strided convolution layers are followed by ReLU activation.
The last strided convolution layer is followed by Tanh activation
function to generate the reconstructed image x = G(z). In
our experiment, we use videos of different resolutions. To
generate those videos, we use different generators following
the DCGAN framework. In Table II, we report the detailed
structure of the generators we use in the experiments.

The latent code dimension for grayscale 64 × 64 video
sequence is 64. The latent code dimension for color 64× 64
video sequence is 256. The latent code dimension for 256×256
video sequence is 512. We use Adam optimizer for generator
weights optimization and SGD for latent code optimization.
The learning rate for latent code optimization was 10. We use
ADAM optimizer with β1 = 0.9 and β2 = 0.999 for network
parameters optimization. The initial learning rate for network
parameter optimization was 0.0025. We decay the learning rate
for network parameter by 25% every 500 iterations.

Comparison with existing methods. We show comparison
with classical total variation minimization based TVAL3D (3D
extension of TVAL3 [49]) algorithm and generative prior based
deep decoder [45] algorithm. As we mentioned earlier, deep
decoder does not optimize latent code, rather it uses fixed

latent codes which are drawn from Gaussian distribution. We
use deep decoder implementation from [50] and TVAL3D
implementation from [51].

We use two different deep decoder settings: underparameter-
ized deep decoder (UP deep decoder) and overparameterized
deep decoder (OP deepdecoder). The UP deep decoder was
proposed in the original deep decoder paper [45], but we
also report the results for OP deep decoder because it shows
better performance. We use default 6 layer architecture of deep
decoder. In the UP deep decoder, the number of parameters in
UP deep decoder is 11,304 and 11,288 for RGB and grayscale
images, respectively. The number of parameters in OP deep
decoder is 397,056 and 396,544 for RGB and grayscale images,
respectively. We need separate generator for every frame which
increases the effective number of parameters for the video
sequence by a factor T for T frames. As T=32 for most of
the experiments reported in the paper, the effective number of
parameters for OP deep decoder is 12,705,792 and 12,689,408
for RGB and grayscale images, respectively. We report the
qualitative reconstruction results for OP deep decoder only
because quantitative reconstruction results for UP deep decoder
are significantly worse. This effect is also recently observed
in [52].

We also show some comparison with video extension of
deep image prior [47] algorithm. We discuss details of this
approach later in the paper.

Video datasets. We test all the methods on different
synthetic and real video sequences. In this paper we report
the results for one synthetic sequence which we refer to as
‘Rotating MNIST’. In this sequence, we resize one MNIST
digit to 64× 64 and rotate by 2◦ per frame for a total of 32
frames. We experiment on different real video sequences from
publicly available KTH human action video dataset [53] and
UCF101 dataset [54]. In Table I, we report our results for
‘Handclapping’, ‘Handwaving’ and ‘Walking’ video sequences
from KTH dataset; ‘Archery’, ‘Apply Eye Makeup’ and ‘Band
Marching’ video sequences from UCF101 dataset. We center
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TABLE II: Generator structures and corresponding number of parameters for
different image sizes. h× w × c denote height , weight, and color channels,
respectively.

Network Parameters
Output size 64× 64 64× 64× 3 256× 256× 3
FC + ReLU 524,288 2,097,152 4,194,304
Conv 1+ ReLU 2,097,152 2,097,152 2,097,152
Conv 2+ ReLU 524,288 524,288 524,288
Conv 3+ ReLU 131,072 131,072 131,072
Conv 4+ Tanh/ReLU
or ReLU 1,024 3,072 32,768

Conv 5+ ReLU - - 8,192
Conv 5+ Tanh - - 768
Total # params 3,277,824 4,852,736 6,988,544

and resize every frame in KTH videos to 64× 64 and UCF101
videos to 256× 256 pixels.

Performance metric. We measure the performance of our
recovery algorithms in terms of the reconstruction error PSNR.
For a given image x and its reconstruction x̂, PSNR is defined
as

PSNR(x, x̂) = 20 log10
max(x)−min(x)√

MSE(x, x̂)

where max(x) and min(x) are the maximal and minimal values
in x, respectively, and MSE is the mean squared error. Unless
otherwise stated, all the results are averaged over 5 experiments
using different measurement matrices or noise.

IV. RESULTS AND ANALYSIS

A. Sequence Size vs Performance
To evaluate the effect of sequence size on the performance

of our method, we perform joint optimization experiments
with video sequences of different sizes. We report our results
for three different video sequences in Figure 4. We consider
three different tasks. The first task is video approximation,
where we approximate the original video sequences using a
generator (i.e., At is an identity matrix for all t). We observe
that as we increase the size of the video sequence, the quality of
approximated video sequences degrades. This intuitively makes
sense because a network with sufficient complexity should be
able to approximate a single image perfectly. However, as we
increase the size of the video sequence while keeping the same
network structure, our algorithm has to find a new set of optimal
weights that can generate the entire sequence. The reduction
in reconstruction performance is more pronounced when every
frame of the video is different. Our second task is image
inpainting with 80% randomly missing pixels and the third
task is compressive sensing with 20% available measurements.
In both cases, we have far fewer number of measurements
available than that in the approximation task. As the consecutive
frames of a video sequence are close to each other, the increased
size of the video sequence actually helps by providing more
effective measurements to the generator. However, the generator
capacity still remains a barrier. On one hand, we have more
(diverse) measurements available while optimizing over a larger
video sequence, which can provide a gain in the performance
with a longer sequence. On the other hand, we have to find a set
of network parameters that can generate all the (diverse) frames
at once, which can cause a loss in performance with longer
sequence. We observe in our experiments that the recovery
performance increases with the length of the video sequence

up to a certain point and then it saturates. We select the size
of the video sequences as 32 for our next experiments based
on these results.

B. Denoising
We first explore the potential of joint optimization on the

denoising problem. In our denoising setup, the measurement
matrix is identity and the noise, et, is drawn from zero mean
Gaussian distribution. We report the reconstruction results of
different video sequences for different algorithms in Table I.
We observe that joint optimization performs significantly better
than UP deep decoder and provides similar results as TVAL3D
and OP deep decoder. Note that we do not optimize over latent
code for deep decoder. We also need to train a separate network
for each frame, which requires huge computational power and
memory. We report the memory and computational complexity
comparison in Table III. We also observe that joint optimization
with low-rank constraint provides similar performance.

We present some denoising results for different techniques
with additive Gaussian noise at 20dB SNR on different
sequences in Figure 5. The performance curves in terms of
average PSNR over a range of SNR levels are presented in
Figure 6. We observe that reconstruction performance of joint
optimization is better than classical TVAL3D. For large noise,
joint optimization shows better or comparable performance
with the deep decoder. However, for small noise, deep decoder
seems to outperform joint optimization. In the case of deep
decoder, we learn a separate network for every frame, and as
we observe in the previous section that for a fixed generator,
image approximation performance is better for single image. In
the low noise regime, denoising problem is almost same as an
approximation problem. In the case of joint optimization, we
are learning a single set of network parameters for the entire
video sequence; therefore, joint optimization has a limitation
due to the representation capacity of the generator network.
We can also observe in Figure 6 that the curves corresponding
to UP deep decoder is flat, which is because of the fact that
the UP deep decoder has a certain representation capacity, and
once that capacity is reached for a single frame the results do
not improve even if the noise level decreases.

C. Inpainting
Our second experiment is on inpainting problem where we

randomly drop a fraction of the pixels from each frame and
reconstruct the original video sequence from available pixels.
We report the results for 80% missing pixels in Table I. We
observe that reconstruction performance of joint optimization
is significantly better than classical TVAL3D and deep decoder.
We also show some reconstructions of different video sequences
from 20% available pixels (80% pixels are randomly missing)
in Figure 7. From this figure, we can observe that even
though the reconstruction results of deep decoder is similar
to joint optimization in terms of PSNR, deep decoder fails to
reconstruct high frequency details reliably (see Archery results).
Since we optimize the generator using a number of frames in
joint optimization, the missing information in one frame may
be available in a neighboring frame, and that can potentially
help the joint optimization perform better in reconstructing the
high frequency details as shown in Figure 7.
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Fig. 4: Sequence size vs performance for video approximation and compressive sensing tasks. Here the results corresponds to joint optimization. We can
observe that increasing video length improves compressive sensing performance for joint optimization. This effect diminishes with the increased size of video
sequences.
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Fig. 5: Reconstruction of different video sequences using different algorithms for denoising problem. Handclapping and Handwaving video sequences are
64× 64 and Archery and Apply Eye Makeup video sequences are 256× 256. The error bars are standard deviation intervals. The deep decoder reconstruction
here correspond to overparameterized deep decoder structure. All the comparing algorithms show very good reconstruction quality.
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Fig. 6: Reconstruction quality curves for denoising experiments with different algorithms for different levels of signal to noise ratio. The curves also show
standard deviation intervals. We compare the performance for (a) Handclapping (b) Handwaving (c) Archery (d) Apply Eye Makeup video sequences. All the
comparing methods other than UP deep decoder performs similarly. The curves suggest that UP deep decoder has reached its limit to generate the sequences.

We also show inpainting performance for different fractions
of missing pixels in Figure 8. From the comparison with
the other algorithms shown in Figure 8, we can observe that

joint optimization with/without low rank constraint outperforms
other comparing algorithms especially when we have very few
number of measurements available.
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Fig. 7: Some reconstruction results on inpainting problem. Handclapping and Handwaving video sequences are 64× 64 and Archery sequence is 256× 256.
The deep decoder reconstruction here correspond to overparameterized deep decoder structure. The boxed regions are zoomed for details. We can observe that
joint optimization gives better reconstruction than the comparing algorithms in terms of details.
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Fig. 8: Inpainting performance for different available measurement rate for (a) Handclapping (b) Handwaving (c) Archery (d) Apply Eye Makeup video
sequences. Measurement rate represents the available fraction of the total pixels. The error bars are standard deviation intervals. Other than Archery sequence,
joint optimization outperforms the other comparing methods especially at lower measurement rate.

D. Compressive Sensing
In this section, we discuss our experiments on recovery of

frames from their compressive random projections. In these
experiments, we use separable measurements, Y = PXQ,
where X,Y are reshaped versions of x, y as 2D matrices, P
and Q are left and right random projection matrix. In our
experiment, we use P = QT , and select their size so that
the total number of measurements in Y is m. We draw each
sample of P from N(0, 1√

m
) distribution.

We summarize the results for this experiment in Table I. We
select m = 29× 29 for 64× 64 images and m = 114× 114
for 256× 256 images, which gives us a compression of factor
of approximately 20%. We observe from Table I that joint
optimization with and without low-rank constraint slightly
outperforms TVAL3D. It performs similarly as deep decoder
with much lower memory requirement and computational
complexity.

We show some reconstructions for compressive sensing
with 20% compressive measurements in Figure 9. We can
observe that he reconstructions are comparable with other
algorithms. We also show reconstruction performance for
different compression ratio in Figure 10. We can observe

from Figure 10 that joint optimization with or without low
rank constraint outperforms TVAL3D and UP deep decoder.
However, it performs at par with if not better than OP deep
decoder.

E. Flutter Shutter
We also perform an experiment with a computational

photography problem known as coded flutter shutter [55]–[59]
in which a low-speed camera is used to capture a modulated
high-speed video. A single observed frame can be modeled as
coded and multiplexed version of a number of frames in the
sequence. Our goal is to recover the individual frames from
the multiplexed frame. Mathematically, we can formulate the
problem as

yp =

Mp+M−1∑
t=Mp

Atxt + ep, for p = 1, . . . , T/M, (8)

where we observe a single measurement frame for every M
consecutive frames. Thus, we have T

M measurement frames for
the entire video sequence. We choose Ai in a similar manner
as the inpainting mask (i.e., 50% pixels are randomly missing).
Our joint optimization can solve this problem because we
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Fig. 9: Some reconstruction results on spatial compressive sensing problem. Handclapping and Handwaving video sequences are 64× 64 and Archery and
Apply Eye Makeup video sequences are 256× 256. The compressive frames from Handclapping and Handwaving are 29× 29 whereas the compressive
frames from Archery and Apply Eye Makeup video sequences are 114× 114. The deep decoder reconstruction here correspond to overparameterized deep
decoder structure. We can observe that the reconstructions are similar for the comparing algorithms.
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Fig. 10: Compressive sensing performance for different available measurement rate for (a) Handclapping (b) Handwaving (c) Archery (d) Apply Eye Makeup
video sequences. Measurement rate (or compression ratio) represents the available fraction of the total measurements. The error bars are standard deviation
intervals. We can observe from the curves that joint optimization performs at par with the other comparing methods.

can jointly estimate multiple frames while solving a single
optimization problem. In contrast, if we train a separate network
for every single frame (as done in DIP and deep decoder), the
recovery problem will not be as straightforward. To estimate
the video sequence from coded, multiplexed measurements, we
solve the following recovery problem:

minimize
z1,...,zT ;γ

T/M∑
p=1

‖yp −
Mp+M−1∑
t=Mp

AtGγ(zt)‖2. (9)

We present some reconstructed images for coded flutter
shutter in Figure 11. Because of the high memory and
computational requirements, deep decoder is not suitable
for this problem. We present a comparison with TVAL3D
reconstruction. Joint optimization with and without low-rank
constraints successfully recover fast motion that TVAL3D fails
to recover.

F. Rank of the Latent Matrix
In this section, we evaluate the performance of joint

optimization with low-rank constraints for different choice of
the rank. We perform inpainting experiment with 80% missing
pixels using different values of rank. We plot the reconstruction
PSNR performance curves for different video sequences in
Figure 12. Rank-1 corresponds to using a fixed (mean) vector
as the latent code for all the frames, which would reconstruct
the same frame for the entire sequence. As we increase the
rank of the latent code matrix, we observe that reconstruction
quality improves and rank-4 reconstruction gives us a good
performance for all the sequences. Note that for rank-4, we
select the mean vector and top-3 principal components to
represent the entire sequence with 32 frames.

G. Computational Complexity
The computational complexity of our proposed methods

vary with the choice of the generator structure. We have
chosen DCGAN generator structure for our experiments. We
compare the computational complexity of our algorithm with
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Fig. 11: Some reconstructions for flutter shutter problem. Here we have a single measurements for every 4 non overlapping frames. We can observe that
TVAL3D suffers ghosting effect for the fast changing parts of the videos such as the hand or leg movement. However, they perform similarly in background
details reconstruction.
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Fig. 12: Effect of different value of rank for low rank constraint in inpainting
problem with 80% pixels randomly missing. We also show standard deviation
interval for each point.

UP and OP deep decoder [45]. The memory requirement
mentioned here is for a single frame. The memory requirement
is calculated using torchsummary package [60]. The time
consumption is recorded for the inpainting of RGB video
sequences with 32 frames from 80% missing pixels. We report
average time consumption over 5 experiments. The number of
iterations, measurement matrix and the videos sequences of
the corresponding size were kept the same. The experiments
for this comparison were run on the same CPU equipped with
Nvidia Titan Xp GPU.

From the memory requirement and time consumption, it
is evident that joint optimization is much less complex and
consumes much less memory compared to OP deep decoder.
Although the memory requirement and complexity of UP
deep decoder comes close to that of joint optimization, UP
deep decoder reconstruction performance is poor (Table I,
Figure 6,8,10).

TABLE III: Comparison of joint optimization with DCGAN and deep decoder
in terms of computational complexity and memory requirement. The memory
requirement is for each frame reconstruction. The average time consumption
is calculated for video sequences with 32 frames.

Size 64× 64 256× 256
Memory Requirement

(Forward and Backpropagation)
UP Deep decoder 2.75 MB 44.03 MB
OP Deep decoder 66.48 MB 1239.75 MB
Joint Opt with DCGAN 2.06 MB 10.88 MB

Average time consumed
(Forward and Backpropagation)

UP Deep decoder 120 sec 710 sec
OP Deep decoder 180 sec 3042 sec
Joint Opt with DCGAN 14.2 sec 203 sec

H. Comparison with Video DIP
In section IV-A, we have demonstrated that optimizing over a

video sequence improves reconstruction performance. However,
as we have mentioned before, DIP [47] trains one network per
image which puts it at a disadvantage while comparing with
joint optimization. So, we made an extension of DIP for video
sequence and refer to it as “Video DIP”. In this approach, we
draw entries in the latent matrix Z from a Gaussian distribution
and keep it fixed as we solve the following optimization:

γ̂ = argmin
γ

T∑
t=1

‖yt −AtGγ(zt)‖22 (10)

We use the same architecture for Video DIP as we use for
joint optimization.

We observe that even if we extend DIP for video sequence, it
still suffers from two main drawbacks that we mentioned earlier.
First drawback is the dependence on the initialization of latent
matrix as it remains fixed. If the initialization is bad, Video
DIP will fail to provide good reconstruction. We demonstrate
this effect with an example. We force the latent codes to fall on
a line by fixing two of the latent codes z1 and zT , each drawn
from N(0, 1) and initialize the other latent codes by linear
interpolating between z1, zT . We expect Video DIP to perform
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TABLE IV: Effect of initial latent matrix for different inverse problems. We have drawn latent matrix in way that the initial latent codes form a line. The
results are averaged over fifteen experiments with five different random measurement matrices and three different initializations. We use same measurement
matrices and initializations for both approaches.

Rotating
MNIST Handclapping Handwaving Walking Apply Eye

Makeup Archery Band
Marching

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Inpainting
(80% missing) 28.6 30.1 31 34.1 23 26.8 23.8 26.5 34.8 37 30.5 31.9 28.8 29

Compressive
Measurements
(20%)

33.8 35.5 33.1 35.5 24.6 30.1 23.9 28.6 32.9 36.1 29.2 29.9 28.3 29.3

TABLE V: Performance analysis between Video DIP and joint optimization
when all the frames in the video sequence are not close to each other. The results
are averaged over twelve experiments with four different random measurement
matrices and three different initializations. We use same measurement matrices
and initializations for both approaches.

Handclapping
+ Handwaving

Handclapping
+ Walking

Handwaving
+ Walking

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Inpainting
(80% missing) 31.5 33.3 32 33 27.9 29.4

Compressive
Measurements
(20%)

29 32.7 29.4 32.4 26.5 29.6

worse in this case because we are forcing the network to map
frames to a line in a 2D plane whereas the videos contain much
complex motions. We report the reconstruction results for both
Video DIP and joint optimization in Table IV. We experiment
on inpainting and compressive sensing with 20% available
measurements. Joint optimization performs better than Video
DIP in all the cases.

The second drawback is that Video DIP does not assume or
retain any similarity structure in the latent code representation.
This will in turn affect the reconstruction quality if the
frames in the videos are very different from one another. To
demonstrate this effect, we create a video sequence with 64
frames temporally concatenating 32 frames from two different
sequences one after another. In Table V, we report average
results of four experiments with different measurement matrices.
We perform experiments for inpainting and compressive sensing
problems. For both Video DIP and joint optimization, latent
matrices are initialized with elements drawn from N(0, 1)
distribution. Since we initialize the latent matrix at random, it
is possible that similar latent codes are assigned to frames that
are quite different. As the latent codes are fixed in Video DIP,
finding the network parameters that map very different frames
to latent codes that are very similar can be a challenging task.
In contrast, joint optimization method updates both the latent
codes and network parameters; therefore, it can adjust the
latent codes so that similar latent codes are mapped to similar
frames and vice versa. From Table V, it is evident that joint
optimization is better suited for such videos as it outperforms
Video DIP in each case.

The latent codes obtained from joint optimization also reserve
the similarities among video frames. We demonstrate this
property using a compressive sensing experiment, where we
capture 20% measurements of each frame with an independent
random matrix. We use 400 frames of ‘Handwaving’ sequence
for this experiment instead of 32 frames. In the sequence, the

handwaving action is repeated multiple times, each of which
takes around 45 frames. We compute a cosine similarity matrix
between all the image pairs, which is plotted in Figure 13(a).
Since compressive measurements are independent of one
another, we do not expect any similarity between them, as
seen in Figure 13(b). Latent codes in Video DIP are also
independent and randomly selected, and they do not reflect
the similarity structure of the video frames, as shown in
Figure 13(c). We optimize the latent codes in joint optimization,
and they preserve the similarity structure as we can observe
from Figure 13(d). From Figure 13(e), we can observe that
low rank constraint further enhances the similarity structure in
latent code matrix.

To further investigate the similarity structure in the latent
codes obtained by joint optimization, we perform another
experiment in which we concatenate 16 frames from each of
the six different video sequences (‘Handwaving’, ‘Handclap-
ping’, ‘Walking’, ‘Archery’, ‘Apply Eye Makeup’, and ‘Band
Marching’, in the same order) to create a new sequence with
96 frames. We perform compressive sensing experiment on this
video sequence with 20% measurements. The reconstruction
PSNR for joint optimization is 29.12 dB, joint optimization
with low-rank is 27.9 dB, and Video DIP is 26.4 dB. The
cosine similarity matrices for the video frames, compressive
measurements, latent codes for Video DIP, latent codes for
joint optimization, and latent codes for joint optimization with
low-rank are presented in Figure 14(a)–(e). We can distinguish
the video sequences from the pairwise similarity matrices of the
latent codes we estimate with joint optimization. We observe
that the low-rank constraint improves the similarity matrix.

V. CONCLUSION

In all our experiments, we observe that joint optimization
performs remarkably well for compressive measurements. Even
though the number of measurements are extremely small
compared to the number of parameters in γ, the solution
almost always converges to a good sequence. Introducing low-
rank constraint in the optimization, we get additional degree
of compression with comparable performance. We also show
comparison with classical and generative prior based techniques
in terms of reconstruction performance. Furthermore, we
report comparison of computational complexity between joint
optimization and deep decoder for video reconstruction. We
also demonstrate one application of joint optimization in coded
flutter shutter problem where its tractable memory requirement
and lower computational cost makes it more suitable than other
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Fig. 13: Pairwise cosine similarity between frames, measurements or latent codes for extended Handwaving video sequence where Handwaving action is
repeated in an interval of around 45 frames. Blue indicates highest similarity whereas yellow indicates lowest similarity. We can observe that the similarity
pattern in the original frames are not maintained in the compressive frames. As the Video DIP latent codes are drawn at random, we do not observe any
similarity pattern in them (c). However, the corresponding latent matrix for joint optimization (d) captures the similarity structure. Low rank constraint (e)
further enhances this similarity.
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Fig. 14: Pairwise cosine similarity between frames, measurements or latent codes for extended mixed video sequence where 16 frames of 6 different video
sequences (Handwaving, Handclapping, Walking, Archery, Apply Eye Makeup, Band Marching in order) are concatenated in the temporal dimension. Blue
indicates highest similarity whereas yellow indicates lowest similarity. We observe that adding low rank constraint further bolster the similarity observed in the
frames of same video sequences found by joint optimization.

generative prior based approaches. We made an implementation
of our algorithm available at https://github.com/CSIPlab/gmlr.
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[39] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative
visual manipulation on the natural image manifold,” in Proc. European
Conf. Comp. Vision (ECCV), 2016.

[40] A. Creswell and A. A. Bharath, “Inverting the generator of a generative
adversarial network,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–8, 2018.

[41] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing
the latent space of generative networks,” in Proc. Int. Conf. Machine
Learning, 2018.

[42] A. Bora, A. Jalal, E. Price, and A. Dimakis, “Compressed sensing using
generative models,” Proc. Int. Conf. Machine Learning, 2017.

[43] A. C. Gilbert, Y. Zhang, K. Lee, Y. Zhang, and H. Lee, “Towards
understanding the invertibility of convolutional neural networks,” in
Proceedings of the 26th International Joint Conference on Artificial
Intelligence. AAAI Press, 2017, pp. 1703–1710.

[44] D. Van Veen, A. Jalal, E. Price, S. Vishwanath, and A. G. Dimakis,
“Compressed sensing with deep image prior and learned regularization,”
arXiv preprint arXiv:1806.06438, 2018.

[45] R. Heckel and P. Hand, “Deep decoder: Concise image representations
from untrained non-convolutional networks,” Proc. Int. Conf. Learning
Representations (ICLR), 2018.

[46] V. Shah and C. Hegde, “Solving linear inverse problems using gan priors:
An algorithm with provable guarantees,” Proc. IEEE Int. Conf. Acoust.,
Speech, and Signal Processing (ICASSP), 2018.

[47] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
Proc. IEEE Conf. Comp. Vision and Pattern Recog. (CVPR), 2018, pp.
9446–9454.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” Proc.
Int. Conf. Comp. Vision (ICCV), pp. 1026–1034, 2015.

[49] C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian
method with applications to total variation minimization,” Computational
Optimization and Applications, vol. 56, no. 3, pp. 507–530, 2013.

[50] “Deep decoder,” available at github: https://github.com/reinhardh/
supplement deep decoder, Accessed: 19 Jul, 2019.

[51] “Tval3d- 3d extension of tval3,” available at github: https://github.com/
djkwon/TVAL3D, Accessed: 19 Jul. 2019.

[52] R. Heckel, “Regularizing linear inverse problems with convolutional
neural networks,” arXiv preprint arXiv:1907.03100, 2019.

[53] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a local
svm approach,” in Pattern Recognition, 2004. ICPR 2004. Proceedings
of the 17th International Conference on, vol. 3. IEEE, 2004, pp. 32–36.

[54] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[55] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography:
motion deblurring using fluttered shutter,” in ACM transactions on
graphics (TOG), vol. 25, no. 3. ACM, 2006, pp. 795–804.

[56] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video
from a single coded exposure photograph using a learned over-complete
dictionary,” in Proc. Int. Conf. Comp. Vision (ICCV). IEEE, 2011, pp.
287–294.

[57] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strobing pho-
tography: Compressive sensing of high speed periodic videos,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 4,
pp. 671–686, 2010.

[58] A. Agrawal, M. Gupta, A. Veeraraghavan, and S. G. Narasimhan,
“Optimal coded sampling for temporal super-resolution,” in Proc. IEEE
Conf. Comp. Vision and Pattern Recog. (CVPR). IEEE, 2010, pp.
599–606.

[59] G. Shi, D. Gao, X. Song, X. Xie, X. Chen, and D. Liu, “High-
resolution imaging via moving random exposure and its simulation,”
IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 276–282,
2010.

[60] “Keras style model.summary() in pytorch,” available at github: https:
//github.com/sksq96/pytorch-summary, Accessed: 7 August, 2019.

Rakib Hyder received the B.Sc. degree in electrical
and electronic engineering from the Bangladesh
University of Engineering and Technology, Dhaka,
Bangladesh in 2016. He is currently pursuing Ph.D.
degree at the University of California, Riverside,
Riverside,CA, USA. His research interests include
generative modeling, machine learning, computer
vision, inverse problems, and signal processing.

M. Salman Asif received his B.Sc. degree in 2004
from the University of Engineering and Technology,
Lahore, Pakistan, and the M.S.E.E degree in 2008,
and the Ph.D. degree in 2013 from the Georgia
Institute of Technology, Atlanta, GA, USA. He was
a Senior Research Engineer at Samsung Research
America, Dallas, TX, USA, from August 2012 to
January 2014, and a Postdoctoral Researcher at Rice
University from February 2014 to June 2016. He is
currently an Assistant Professor in the Department
of Electrical and Computer Engineering at the Uni-

versity of California, Riverside. He received Hershel M. Rich Outstanding
Invention Award in 2016, UC Regents Faculty Fellowship Award in 2017,
and Google Faculty Award in 2019. His research interests broadly lie in the
areas of information processing and computational sensing with applications
in signal processing, machine learning, and computational imaging.

https://github.com/reinhardh/supplement_deep_decoder
https://github.com/reinhardh/supplement_deep_decoder
https://github.com/djkwon/TVAL3D
https://github.com/djkwon/TVAL3D
https://github.com/sksq96/pytorch-summary
https://github.com/sksq96/pytorch-summary

	Introduction
	Related Work
	Main Contributions

	Technical Approach
	Latent Code Optimization
	Joint Latent Codes and Generator Optimization
	Low Rank Constraint

	Experimental Setup
	Results and Analysis
	Sequence Size vs Performance
	Denoising
	Inpainting
	Compressive Sensing
	Flutter Shutter
	Rank of the Latent Matrix
	Computational Complexity
	Comparison with Video DIP

	Conclusion
	References
	Biographies
	Rakib Hyder
	M. Salman Asif


