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ABSTRACT

Signal recovery from nonlinear measurements involves solving
an iterative optimization problem. In this paper, we present a frame-
work to optimize the sensing parameters to improve the quality of the
signal recovered by the given iterative method. In particular, we learn
illumination patterns to recover signals from coded diffraction pat-
terns using a fixed-cost alternating minimization-based phase retrieval
method. Coded diffraction phase retrieval is a physically realistic
system in which the signal is first modulated by a sequence of codes
before the sensor records its Fourier amplitude. We represent the
phase retrieval method as an unrolled network with a fixed number
of layers and minimize the recovery error by optimizing over the
measurement parameters. Since the number of iterations/layers are
fixed, the recovery runs under a fixed cost. We present extensive
simulation results on a variety of datasets under different conditions
and a comparison with existing methods. Our results demonstrate
that the proposed method provides near-perfect reconstruction us-
ing patterns learned with a small number of training images. Our
proposed method provides significant improvements over existing
methods both in terms of accuracy and speed.

Index Terms— Coded diffraction imaging, fourier phase re-
trieval, optimization, illumination pattern.

1. INTRODUCTION

The problem of signal recovery from nonlinear measurements arises
in various imaging and signal processing tasks [1–3]. Conventional
methods for solving such inverse problems use iterative methods
to recover the signal from given measurements. In this paper, we
present a framework to optimize the measurement parameters to
improve the quality of signals recovered by the given iterative method.
In particular, we learn illumination patterns to recover the signal
from coded diffraction patterns (CDP) using a fixed-cost alternating
minimization method.

We can model the sensor measurements for coded diffraction
imaging as follows. Let us denote the signal of interest as x ∈ Rn or
Cn that is modulated by T illumination patterns D = {d1, . . . , dT },
where dt ∈ Rn or Cn. The amplitude of sensor measurements for tth

illumination pattern can be written as

yt = |F(dt � x)|, (1)

where F denotes the Fourier transform operator and � denotes an
element-wise product. We note that real sensor measurements are
proportional to the intensity of the incoming signal (i.e., square of the
Fourier transform). In practice, however, solving the inverse problem
with (non-square) amplitude measurements provides better results
[4, 5]; therefore, we use the amplitude measurements throughout this
paper.

To recover the signal x from the nonlinear measurements, we can
solve the following optimization problem:

min
x

T∑
t=1

‖yt − |F(dt � x)|‖22. (2)

In recent years, a number of iterative algorithms have been proposed
for solving the problem in (2), which includes lifting-based convex
methods, alternating minimization-based nonconvex methods, and
greedy methods [6–9].

Our goal is to learn a set of illumination patterns to optimize
the recovery of an alternating minimization (AltMin) algorithm for
solving the problem in (2). The AltMin method can be viewed as an
unrolled gradient descent network, where we fix the steps at every
iteration and the total number of iterations for AltMin. One forward
pass through the unrolled network is equivalent to K iterations of
the AltMin algorithm. We can increase or decrease the number of
iterations for better accuracy or faster run-time. To minimize the
computational complexity of the recovery algorithm, we keep the
total number of iterations small (e.g., K = 50). At the training stage,
we optimize over the illumination patterns to minimize the error
between the AltMin outputs after K iterations and the ground truth
training images. At the test time, we solve the problem in (2) using
K AltMin iteration with the learned illumination patterns (equivalent
to one forward pass). We evaluated our method on different image
datasets and compared against existing methods for coded diffraction
imaging. We demonstrate that our proposed method of designing
illumination patterns for a fixed-cost algorithm outperforms existing
methods both in terms of accuracy and speed.

The key contributions of this paper are summarized as follows.

• We learned illumination patterns for a non-linear inverse problem
(coded diffraction imaging) using unrolled network formulation of
a classical AltMin method.

• We showed that with our designed patterns and unrolled AltMin
method outperform computationally complex algorithms and pro-
vide superior image reconstruction.

• Our algorithm requires only a small number of training images to
learn the illumination patterns. It is crucial in applications because
finding training samples is difficult in practice.

• Our learned illumination patterns can also help other algorithms
achieve higher performance even though they are not used for
training.

2. RELATED WORK

Phase Retrieval and Coded Diffraction Patterns: Coded diffrac-
tion imaging is a physically realistic setup of Fourier phase retrieval
problem, where we can first modulate signal of interest and then col-
lect the intensity measurements [3, 10]. The presence of modulation



patterns makes this a more tractable problem compared to classical
Fourier phase retrieval [3]. The algorithms for solving phase retrieval
problem can be broadly divided into non-convex and convex methods.
Amplitude flow [11], Wirtinger flow [12], alternating minimization
(AltMin) [8] are recent methods that solve the non-convex problem.
Convex methods usually lift the nonconvex problem of signal recov-
ery from quadratic measurements into a convex problem of low-rank
matrix recovery from linear measurements [6, 13]. The PhaseLift
algorithm [6] and its variations [3, 7] can be considered under this
class. Other algorithms, such as PhaseMax [14] and PhaseLin [15],
use convex relaxation to solve non-convex phase retrieval problem
without lifting the problem to a higher dimension.

Data-Driven Approaches for Phase Retrieval: A number of
papers have recently explored the idea of replacing the classical (hand-
designed) signal priors with deep generative priors for solving inverse
problems [16–18]. Another growing trend is to apply deep learning
to solve inverse problems (including phase retrieval) in an end-to-end
manner, where deep networks are trained to learn a mapping from
sensor measurements to the signal of interest using a large number of
measurement-signal pairs.

While our method is partially driven by data, our goal is not
to learn a signal prior or a mapping from measurements to signal.
We use data to learn the illumination patterns for a fixed recovery
algorithm. The number of training images required by our method
is extremely small (128 images only). Furthermore, the patterns we
learn on one class of images provide good results on other types
of images. Apart from the great flexibility, our method uses a well-
defined AltMin routine, where we know exact steps for every iteration
as opposed to the black-box deep models.

Unrolled Network for Inverse Problem: Iterative methods for
solving the inverse problems, such as AltMin or other first-order
methods, can be represented as unrolled networks. Every layer of
such a network performs the same steps as a single iteration of the
original method [19,20]. Some parameters of the iterative steps can be
learned from data (e.g., step size, denoiser, or threshold parameters)
but the basic structure and physical forward model are kept intact. In
our recent work [21], we used the idea of unrolled network to solve
phase retrieval problem from the holographic measurements.

Learn to Sense: Deep learning methods have also been recently
used to design the sensing system; especially in the context of com-
pressive sensing and computational imaging [22, 23]. The main
objective, similar to ours, is to select sensor parameters to recover
best possible signal/image from the sensor measurements. This may
involve selection of samples/frames or illumination patters as we
discuss in this paper. In contrast to most of the existing methods that
learn a deep network to solve the inverse problem, our method uses
a predefined iterative method as an unrolled network while learning
the illumination patterns using a small number of training images. In
principle, the sensor can be treated as the first layer of the network
with some physical constraints on the parameters [24]. The method
in [24] uses unrolled network to learn the sensing parameters for
quantitative phase imaging problem under the “weak object approx-
imation”. This approximation turns the original nonlinear problem
into a linear inverse problem. In our setup, we do not make any such
assumptions on target object and solve the nonlinear inverse problem.

3. PROPOSED METHOD

We use N training images (x1, . . . , xN ) to learn T illumination pat-
terns that provide best reconstruction using a predefined (iterative)
phase retrieval algorithm. Furthermore, to ensure that the illumina-
tion patterns are physically realizable, we constrain their values to

Algorithm 1 Learning illumination patterns

Input: Training set X with N images X = {x1, . . . , xN}.
Initialize: Initialize the optimization variables for T patterns as
Θ = {θ1, . . . , θT } from a uniform distribution.
for epoch = 1, 2, ...,M do . M epochs

Generate illumination patterns dt = sigmoid(θt)
for all t

for n = 1, 2, ..., N do . N samples
Y n = {yn1 , . . . , ynT | ynt = |F(dt � xn)|}
xKn (Θ)← solveCDP(Y n,D)

end for
LΘ =

∑N
n=1 ‖xn − x

K
n (Θ)‖22

Θ← Θ− β∇ΘLΘ . Update Θ with stepsize β
end for
Output: Learned illumination patterns

D = {d1, . . . , dT | dt = sigmoid(θt)}.

Algorithm 2 solveCDP(Y,D) via alternating minimization using
single-step gradient descent

Input: Measurements Y = {y1, . . . , yt} and illumination patterns
D = {d1, . . . , dT }.
Initialization: Zero initialization of estimate x0.
for k = 1, 2, ...,K do . K iterations of AltMin

pk−1
t ← phase(F(dt � xk−1) for all t.
∇xLx,p = 2

T

∑T
t=1[|dt|2 � xk−1 − d∗t �F∗(pk−1

t � yt)]
xk ← xk−1 − α∇xLx,p

Project xk onto feasible range.
end for
Output: Estimated signal xK .

be in the range [0, 1]. We use a sigmoid function over unconstrained
parameters Θ = {θ1, . . . , θT } to define the illumination patterns;
that is, dt = sigmoid(θt) for all t = 1, . . . , T .

Our proposed method for learning illumination patterns can be di-
vided into two parts: The first (inner) part involves solving the phase
retrieval problem with given coded diffraction patterns using AltMin
as an unrolled network; Second part is updating the illumination pat-
terns based on backpropagating the image reconstruction loss. These
two parts provide optimized image reconstruction and illumination
patterns. Pseudocodes for both parts are listed in Algorithms 1,2.

Phase retrieval as alternating minimization (AltMin): Given
measurements Y = {y1, . . . , yT } and illumination patterns D =
{d1, . . . , dT }, we seek to solve the CDP phase retrieval problem by
minimizing the loss function defined in (2) as

Lx =
1

T

T∑
t=1

‖yt − |F(dt � x)|‖22. (3)

Even though the loss function in (3) is nonconvex and nonsmooth with
respect to x, we can minimize it using the well-known alternating
minimization (AltMin) with gradient descent [8, 25]. We define
a new variable for the estimated phase of linear measurements as
pt = phase(F(dt � x)) and reformulate the loss function in (3) into

Lx,p =
1

T

T∑
t=1

‖pt � yt −F(dt � x)‖22. (4)



The gradient with respect to x can be computed as

∇xLx,p =
2

T

T∑
t=1

|dt|2 � x− d∗t �F∗(pt � yt), (5)

where F∗ denotes the inverse Fourier transform and d∗t is the con-
jugate of pattern dt. We can update the estimate at every iteration
as

xk = xk−1 − αk−1∇xLx,p, (6)

where αk−1 denotes the step size. Another way is to directly solve
for xk such that∇xLx,p = 0. The closed-form solution is

xk = (

T∑
t=1

|dt|2)−1 � [

T∑
t=1

d∗t �F∗(pk−1
t � yt)]. (7)

We compared these 2 strategies and found that single-step gradient
descent tends to work well in practice and the closed-form solution
does not show advantage over the single-step gradient descent. In
our implementation, we used the former strategy (Algorithm 2) and
fixed a step size α for all iterations. The unrolled network has K
layers that implement K iterations of the gradient descent, and the
final estimate is denoted as xK .

Choice of initialization is important, and our method can handle
different types of initialization. Zero initialization, where every pixel
of the initial guess of x0 is 0, is the simplest and cost-free method.
Many recent phase retrieval algorithms [12, 25–27] use spectral ini-
tialization, which tries to find a good initial estimate. However, it
requires computing the principal eigenvector of the following positive
semidefinite matrix,

∑T
t=1 diag(d∗t )F∗diag(|yt|2)Fdiag(dt). In our

experiments, we observed that spectral initialization does not provide
a significant improvement in terms of image reconstruction, and that
our algorithm can perform very well using the overhead-free zero
initialization.

Learning illumination patterns: To learn a set of illumination
patterns that provide the best reconstruction with the predefined it-
erative method (or the unrolled network), we seek to minimize the
difference between the original training images and their estimates.
In this regard, we minimize the following quadratic loss function with
respect to Θ:

LΘ =

N∑
n=1

‖xn − xKn (Θ)‖22, (8)

where xKn (Θ) denotes the solveCDP estimate of nth training image
for the given values of Θ. Note that for given values of Θ, we
can define illumination patterns as dt = sigmoid(θt) and sensor
measurements for xn as ynt = |F(dt � xn)| for t = 1, . . . , T and
n = 1, . . . , N . We use Adam optimizer in PyTorch [28, 29] to
minimize the loss function in (8). A summary of the algorithm for
learning the illumination patterns is also listed in Algorithm 1.

4. EXPERIMENTS

Datasets. We used MNIST digits and CelebA datasets for training
and testing in our experiments. We used 128 images from each of
the datasets for training and another 1000 images for testing. Images
in CelebA dataset have 218× 178 pixels, we first converted all the
images to grayscale, cropped 178 × 178 region in the center, and
resized to 200× 200. Furthermore, we report the performance of our
method on images used in [5] in Fig. 2.
Measurements. We used the amplitude of the 2D Fourier trans-
form of the images modulated with T illumination patterns as the

measurements. Unless otherwise mentioned, we used noiseless mea-
surements.
Computing platform. We performed all the experiments using a
computer equipped with Intel Core i7-8700 CPU and NVIDIA TITAN
Xp GPU.

4.1. Setup and hyper-parameter search

The hyper-parameters include the number of iterations (K), step size
α, and the number of training samples N . We set the default value
of K = 50, but K can be adjusted as a trade-off between better
reconstruction quality and shorter run time. We tested all methods
for T = {2, 3, 4, 8} to evaluate cases where signal recovery is hard,
moderate, and easy. Through grid search, we found that it provides
the best results over all datasets when α = 4/T .

4.2. Comparison between random and learned patterns

To demonstrate the advantages of our learned illumination patterns,
we compare the performance of learned and random illumination
patterns on five different datasets. We learn a set of T = {2, 3, 4, 8}
illumination patterns on 128 training images from a dataset and test
them on 1000 test images from the same dataset. For random patterns,
we draw T independent patterns from Uniform(0,1) distribution and
test their performance on the same 1000 samples that we used for
the learned case. We repeat this process 30 times and choose the
best result to compare with the results for the learned illumination
patterns. The average PSNR over all 1000 test image reconstructions
is presented in Table 1, which shows that the learned illumination
patterns perform significantly better than the random patterns for all
values of T . In addition to that, we can observe a transition in the
performance for T = 3, where random patterns provide poor quality
reconstructions and learned patterns provide reasonably high quality
reconstructions. Furthermore, the learned patterns provide very high
quality reconstructions for T ≥ 4.

To highlight this effect, we show a small set of reconstructed
images and histograms of PSNRs of all the reconstructed images
from learned and random illumination patterns in Fig. 1 for T = 4
patterns. The result suggests that the learned illumination patterns
demonstrate consistently better performance compared to random
illumination patterns.

4.3. Comparision with existing methods

We compare our method with various existing methods using different
datasets. These existing methods fall into 4 categories:

• Hybrid input output (HIO) [31] and Gerchberg-Saxton (GS) [32]
(alternating minimization methods)

• Wirtinger Flow [12] and Amplitude Flow [26] (non-convex, gradi-
ent descent-based methods)

• PhaseMax [27] (a convex method)
• Deep S3PR [30] (deep model-based method).

We compare the performance of our method with these methods in
terms of reconstruction quality.

For algorithms in [12, 26, 27, 31, 32], we used PhasePack [10]
package with default spectral initialization. In our comparison, we
used T = 4 illumination patterns and in value range of [0, 1]. To
make a fair comparison between our models in reconstruction quality,
we set the error tolerance (tol = 10−6) and run each algorithm till
convergence.

For deep generative models, we used a modified version of the
publicly available code and DCGAN model for MNIST from [30] and



Table 1: PSNR (mean ± std) for random and learned illumination patterns tested on different datasets.

Dataset 2 Illumination Patterns 3 Illumination Patterns 4 Illumination Patterns 8 Illumination Patterns
Random Learned Random Learned Random Learned Random Learned

MNIST 14 ± 6 28 ± 9 20 ± 11 75 ± 19 32 ± 14 102 ± 10 61 ± 19 113 ± 11
CelebA 13 ± 2 19 ± 3 14 ± 4 28 ± 2 23 ± 5 81 ± 4 43 ± 8 98 ± 15
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Fig. 1: Selected ground truth (GT) images, corresponding reconstructed
images using random and learned illumination patterns. PSNR is shown on
top of every reconstruction. Below each dataset, we show the histograms of
the PSNRs of all images with random patterns (shown in blue) and learned
patterns (shown in orange). The dashed vertical line indicates the mean of all
PSNRs.

Table 2: Reconstruction PSNR (mean ± std) of different algorithms using
random patterns and our learned patterns. The number of patterns is 4 in each
case. Here we round the PSNR values to integers to fit the width of the page.
*For Deep Model [30] experiments, patterns are normalized to [−1, 1] range.
**For Deep Model, the image size for CelebA generator is 64×64.

MNIST CelebA
Random Learned Random Learned

HIO [31] 16 ± 9 37 ± 19 38 ± 5 102 ± 5
GS [32] 16 ± 9 37 ± 19 38 ± 4 102 ± 5

WirtFlow [12] 22 ± 16 48 ± 25 20 ± 2 39 ± 3
AmpFlow [26] 42 ± 32 74 ± 48 42 ± 8 138 ± 11
PhaseMax [27] 14 ± 4 24 ± 8 32 ± 2 148 ± 2

Deep Model [30]* 31 ± 2 32 ± 3 22 ± 3** 23 ± 2**
Ours - K=50 32 ± 14 102 ± 10 23 ± 5 81 ± 4

Ours - K=100 51 ± 19 186 ± 15 33 ± 4 132 ± 7

trained our DCGAN model for CelebA. This method is noticeably
time-consuming because it optimizes over the latent vector for the
deep model and uses 2000 iterations for each image where each itera-
tion requires a forward and backward pass through the deep model.
The reconstruction results for the Deep Model also directly depend
on the quality of the trained generative models. In our experiments,
we were not able to generate images with PSNR higher than 30dB
using the generative models.

For the case of Random illumination, we selected the best PSNR
from 5 independent trials and report the average computation time
for each experiment. In all the cases, we tuned the parameters that
provide best results.

The reconstruction PSNR (in dB) is reported in Table 2. We
observe that our proposed method with learned patterns performs
significantly better than all other algorithms in reconstruction quality.

An interesting attribute of our learned patterns is that they can
be used with different algorithms. We observe in Table 2 that our
learned patterns provide better results compared to Random patterns
with all the phase retrieval algorithms, even though the patterns were
not optimized for those algorithms.
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Fig. 2: First Row: Ground truth images from image processing standard test
datasets. Second Row: Reconstruction using random illumination patterns
with uniform random distribution [0, 1] (we selected T = 4 patterns that
provided best results on celebA test images in 30 trials). PSNR numbers are
shown on the top of reconstructed images. Third Row: Reconstruction using
the patterns trained on celebA dataset. Each image has 200× 200 pixels and
the number of illumination patterns is T = 4.

4.4. Generalization of learned patterns on different datasets

To explore the generalizability of our learned illumination patterns,
we use patterns learned on one dataset to recover several classical im-
ages. Some results are shown in Fig. 2. We used illumination patterns
learned on 128 celebA images, but we can see that the learned illumi-
nation patterns perform better than the randomly chosen illumination
patterns for classical images which supports the generalizability of
our learned illumination patterns.

5. CONCLUSION

We presented a framework to learn the illumination patterns for coded
diffraction imaging by formulating an iterative phase retrieval al-
gorithm as a fixed unrolled network. It only takes a small number
of training images to achieve near-perfect reconstruction whereas
random patterns fail. In addition, the learning process of our illumi-
nation patterns is highly data efficient and requires a small number of
training samples. The learned patterns generalize to different datasets
and algorithms that were not used during training.
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