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ABSTRACT

Fourier phase retrieval problem is equivalent to the recovery of a
two-dimensional image from its autocorrelation measurements. This
problem is generally nonlinear and nonconvex. Good initialization
and prior information about the support or sparsity of the target im-
age are often critical for a robust recovery. In this paper, we show
that the presence of a known reference image can help us solve the
nonlinear phase retrieval problem as a sequence of small linear in-
verse problems. Instead of recovering the entire image at once, our
sequential method recovers a small number of rows or columns by
solving a linear deconvolution problem at every step. Existing meth-
ods for the reference-based (holographic) phase retrieval either as-
sume that the reference and target images are sufficiently separated
so that the recovery problem is linear or recover the image via non-
linear optimization. In contrast, our proposed method does not re-
quire the separation condition. We performed an extensive set of
simulations to demonstrate that our proposed method can success-
fully recover images from autocorrelation data under different set-
tings of reference placement and noise.

Index Terms— Sequential recovery, linear inverse problem,
reference-based phase retrieval, holographic phase retrieval.

1. INTRODUCTION

Fourier phase retrieval problem appears in diverse applications such
as X-ray crystallography, diffraction imaging, ptychography, and as-
tronomical imaging [1–6] as the only measurable quantity in these
systems is the squared magnitude of the Fourier transform. The
Fourier phase retrieval problem can be viewed as the recovery of
an unknown signal or image from the amplitude of its Fourier trans-
form, which is also equivalent to the recovery of a signal/image from
its autocorrelation [2, 7].

Classical phase retrieval methods, such as error reduction and
alternating minimization, exploit prior knowledge about the non-
negativity and support of the target image [4, 8]. Convex relaxation-
based methods, such as PhaseLift [9, 10] and PhaseCut [11], lift the
problem to a high-dimensional space. Other methods solve a convex
problem for phase retrieval without lifting the problem into higher
dimensions [12,13]. Methods proposed in [14–18] directly solve the
nonconvex optimization problem and require careful initialization
to avoid local minima. Alternating minimization methods require
prior knowledge about the target signal. The most popular signal
domain constraints in 2D phase retrieval include positivity, support,
and sparsity constraints [19–22]. In addition, adding a known ref-
erence signal has been shown to improve the Fourier phase retrieval
performance [23–27].

Our work builds upon recent work on holographic phase re-
trieval [24,25,28], in which the presence of a known reference signal
in the image makes the recovery problem tractable. In [24, 25], the

Fig. 1: (Left to right): Autocorrelation of cameraman image with a refer-
ence “pinhole” image placed at a distance; recovered images using nonlinear
method in [28], linear method in [24], and the proposed sequential method.
(Top row) Separation condition between target and reference image is sat-
isfied, which provides sufficient linear measurements in the autocorrelation
(shown by a green box). (Bottom row) Separation condition is not satisfied
and the linear method in [24] cannot recover the image, but the nonlinear
method in [28] and the proposed method can recover the target image.

Fourier phase retrieval problem becomes a linear problem if we place
a reference image at large distance from the target image. In our pre-
vious work [28], we demonstrated that adding a reference image at
arbitrary locations in the image can significantly improve the recov-
ery performance even if the separation condition is not satisfied. The
resulting Fourier phase retrieval problem remain nonlinear, which
we solved using gradient descent and alternating minimization. In
this paper, we propose sequential algorithm that recovers the target
image by solving a sequence of (small) linear deconvolution prob-
lems.

In this paper, we propose to solve Fourier phase retrieval with
side information as a sequence of deconvolution problems. We as-
sume that some parts of the image are known as a reference that can
be used to estimate the unknown parts. Given the location of known
pixels, we can find which samples in the autocorrelation are linear
measurements of the unknown parts. In general, we may not have
enough linear measurements in the autocorrelation to compute the
entire unknown part in one step. We show that, under certain mild
condition, we can estimate a small fraction of the image by solving
a linear deconvolution problem and use that estimate in subsequent
steps to estimate other unknown parts of the image. We conducted
several simulation experiments to evaluate the performance of our
proposed method under different conditions of reference signal and
noise.

Figure 1 illustrates our proposed method using a “pinhole” ref-
erence image. Figure 1 shows the autocorrelation of the image after
adding a pinhole reference to the right side of the image in two sce-
narios. In the first scenario, as shown in Fig. 1 (a), the separation
condition is satisfied and the Fourier phase retrieval problem turns
into a linear inverse problem. The target image can be directly es-
timated from a selected region in the autocorrelation. Note that in
this specific example, the linear measurement region of autocorre-



lation (highlighted in a green box) is the target image itself. In a
general setting, the linear measurements correspond to the autocor-
relation of the target and reference images. In the second scenario,
as shown in Fig. 1 (b), the pinhole reference is closer to the target
image and the separation condition is not satisfied. Existing linear
methods such as [24] cannot estimate the entire image because very
few entries in the autocorrelation represent linear measurements of
the target image (shown in a green box). In this situation, we can re-
cover the target image either by solving the standard nonlinear phase
retrieval problem or by using our proposed sequential method. In
our proposed method, instead of estimating the entire unknown im-
age in one step, we use the available linear measurements to estimate
a small patch of the unknown image (e.g., two columns at a time).
Then we remove the nonlinear contributions of the estimated patch
from the correlation data, which provides us linear measurements of
another patch of the unknown image. We repeat this procedure until
we recover the entire unknown image.

2. FOURIER PHASE RETRIEVAL AS A SEQUENTIAL
DECONVOLUTION PROBLEM

2.1. Problem formulation

In this paper, we focus on reconstructing an image from its auto-
correlation measurements assuming that some parts of the image are
known and can be used as a reference. In general, we can formulate
the Fourier phase retrieval as the following nonlinear deconvolution
problem:

min
X
‖R−X ?X‖22, (1)

where R ∈ R(2p−1)×(2q−1) denotes the observed autocorrelation,
X ∈ Rp×q denotes the unknown 2D image, and ? represents the 2D
cross-correlation operator.

The optimization problem in (1) is nonlinear and nonconvex in
general. However, if some parts of the signal X are known, then
some entries in the autocorrelation can be represented as linear mea-
surements of the unknown parts [24]. We first formulate the problem
as a blind deconvolution problem and then show how the known ref-
erence signal can convert it into a linear problem under some con-
ditions. The autocorrelation of X can be written in a matrix form
as

vec(R) = CXvec(X), (2)

where CX is block Toeplitz matrix created using X, vec(X) and
vec(R) denote vectorized version of X and R, respectively. Let
us also assume that X has q columns that can be written as X =[
x1 x2 x3 . . . xq

]
and R =

[
r1 r2 r3 . . . r2q−1

]
,

where xi and ri are the ith columns of X and R, respectively. Note
that due to the symmetry in the autocorrelation, half of the columns
in the autocorrelation are redundant; therefore, we only keep the
first half of the columns in the autocorrelation. The equation in (2)
can be written as

r1
r2
r3
...
rq

 =


Cxq 0 0 . . . 0
Cxq−1 Cxq 0 . . . 0
Cxq−2 Cxq−1 Cxq . . . 0

...
...

... . . .
...

Cx1 Cx2 Cx3 . . . Cxq




x1

x2

x3

...
xq

, (3)

where Cxi is a Toeplitz matrix created using column xi. For exam-
ple, if z is an arbitrary column vector, we can write Cxiz = z ? xi.
We can also write a similar equation based on the rows in the im-
age and their autocorrelation. In this paper, we focus on formulating

the Fourier phase retrieval problem as a sequential recovery of the
columns of the unknown image. Based on (3), the problem is non-
linear in general. However, if some of the columns are known, we
can linearize the problem in a sequential manner.

2.2. Sequential deconvolution method

In this section, we will discuss how we can solve the problem in (3)
as a sequence of small (linear) deconvolution problems. If a small
number of columns on left and/or right side of the image are known
as a reference, then instead of solving a nonlinear phase retrieval
problem to recover the unknown image, we can sequentially recover
a few columns of the unknown image at every step.

2.2.1. Reference as known columns on both sides

Let us assume that the first and last columns of X (i.e., x1 and
xq) are known apriori and we want to estimate other columns
(x2, . . . ,xq−1) from R. The known variables in (3) are highlighted
in green. Although the overall system in (3) is jointly nonlinear
for all the columns in X, but if we know the green parts, we can
recover x2,xq−1. Subsequently, we can recover x3,xq−2. In other
words, we can develop a forward substitution method by which we
can recover two columns using a linear system of equations at every
step.

We discuss the steps to estimate all the columns of the image in
a sequential manner below.
Step 1: The first row in (3) does not provide any new information
as x1,xq are known. The second row in (3) gives us the following
equation:

r2 = Cl
x1
xq−1 + Cxqx2 =

[
Cl

x1
Cxq

] [xq−1

x2

]
, (4)

where we define the left correlation matrix as Cl
xi
z = xi ? z.

We define the system matrix as H =
[
Cl

x1
Cxq

]
. This matrix

needs to be well-conditioned, otherwise we will have large error in
estimation of xq−1 and x2. In this step, we recover xq−1 and x2 by
solving the linear inverse problem in (4). Let us denote the recovered
columns in this step as x̂q−1 and x̂2.
Step 2: In this step, we use the equations in the third row in (3)
assuming that we know the estimated columns from the previous step
shown as x̂q−1 and x̂2. Based on the definition of the left correlation,
we can write

r3 − Ĉxq−1 x̂2 ≈
[
Cl

x1
Cxq

] [xq−2

x3

]
. (5)

By solving the linear inverse problem in (5), we estimate the two
other columns of the image as x̂q−2 and x̂3.
Step k: The number of steps we need to recover the image depends
on the width of the image. However, we generally estimate one col-
umn from the right and one column from the left side of the image.
At any step k, by solving the linear inverse problem in (6), we esti-
mate two columns x̂q−k and x̂k+1.

rk+1 −
i=k−1∑
i=1

Ĉxq−k+i x̂i+1 ≈
[
Cl

x1
Cxq

] [xq−k

xk+1

]
. (6)

A pseudocode of the proposed method is presented in Algo-
rithm 1. In our experiments, K is computed based on the total num-
ber of columns in the image (q) and the number of known columns.
We observed that if a small number of columns from both sides of
an image are known as a reference, the conditioning of the overall
system in (3) improves, which results in stable recovery. SVD or



Algorithm 1 Proposed sequential recovery method

Inputs: r2, ..., rK+1, x1, xq , and K
for k = 1,. . . K do[

x̂q−k

x̂k+1

]
=
[
Cl

x1
Cxq

]−1
(rk+1 −

i=k−1∑
i=1

Ĉxq−k+i x̂i+1)

end for
Output: x̂2, ..., x̂q−1

QR decomposition of the system matrix, which is the same at each
iteration, can be used to implement Algorithm 1. Overall, the main
computational cost involves computing the residual in (6) and solv-
ing the resulting least squares problem using precomputed SVD or
QR factors.

2.2.2. Reference as known columns on one side

In this scenario, we assume that the known columns are on the right
side of the image. If we only know one column, xq , the only differ-
ence compared to the previous section is the estimation of column
x1. We can estimate x1 from the first line in (3), then the remaining
steps are similar to what we discussed in the previous section.

If we know a large number of columns on one side of the image,
the estimation becomes even simpler. In this scenario, we estimate
the first few columns by solving a linear inverse problem, then we
estimate the other columns using the proposed sequential method.
For example, if the known patch has h columns at the right side of
the image, we can first estimate h columns from the left side us-
ing a linear approach, then we can employ the sequential method to
estimate the remaining columns.

2.3. Stability and Recovery Conditions

In this section, we discuss required conditions for stable recovery.

2.3.1. Stability of the algorithm at each step

Stability of the recovery algorithm at each iteration depends on the
conditioning of the matrix H =

[
Cl

x1
Cxq

]
. For matrix H to be

invertible and well-conditioned, the matrices Cl
x1

and Cxq need to
be well-conditioned and incoherent with respect to each other. This
condition is a necessary condition for perfect reconstruction; how-
ever, it is not sufficient. We can either design this matrix by choos-
ing the reference signal appropriately or verify that this condition is
satisfied by the given reference. One special example is two pinhole
columns. In this case, matrix H is a full-column rank matrix. If
we also know some rows of the image, we can further improve the
conditioning of the system.

2.3.2. Stability of the overall system

The stability of the overall system is a necessary condition for the
sequential method to be successful. The overall system, as shown in
(3), depends on the pixel values in the unknown image. In contrast,
the stability of the system at each step (H) only depends on the pixel
value of the first and last columns of the image. For the overall
matrix to be well-conditioned, we may need all the columns to be
incoherent.

2.3.3. Stability of the proposed sequential method

As shown in Algorithm 1, at every step, we use the estimates from
all the previous steps. Presence of measurement noise and finite pre-
cision of multiplications and additions in the cross-correlation terms
causes an accumulation of error, which can cause instability if the

Fig. 2: Fourier phase retrieval reconstruction for sample images when we
add a known reference border around the images.

system is not well-conditioned. To avoid this, we include an `∞
regularization on the estimated pixel value. This regularization is
implemented by a hard-thresholding that limits the range for the es-
timated pixel values. Our empirical results show that adding a small
border of all-zero columns to the left and right sides of the image
can improve the condition of the overall system matrix in (3) and
provide stable reconstruction.

3. SIMULATION RESULTS

We performed a number of simulations to evaluate the performance
of our proposed method in different settings for reference and mea-
surement noise levels. The main motivation behind our experiments
comes from “looking around the corner problem,” in which we es-
timate the reflectivity of the target objects in the scene that are hid-
den from the camera view. The imaging system captures correla-
tion of the entire scene that includes objects within the direct line
of sight and those hidden around the corner. In our experiments,
we assume that some parts of the scene, such as the background or
border around the object, are known apriori. Another motivation is
related to the Fourier phase retrieval for a video sequence in which
we may perfectly know parts of the scene that are static (e.g., back-
ground) and can be incorporated as side information. The reported
SSIM and PSNR are calculated only based on the unknown parts of
the image.

3.1. Sequential recovery with a known border

In this experiment, we evaluate the performance of our method as-
suming that a border around the image is known.

In the first experiment, we assume we can design such a border
to make sure that the system is well-conditioned. One example of
such a reference border is using two pinholes on both sides of the
image. Sample reconstructions using our proposed method in this
scenario are shown in Fig. 2. In Fig. 2, the border width is set to 8
pixels and the experiment is performed in the presence of different
amounts of Gaussian measurement noise. Figure 3 presents PSNR
and SSIM curves to show the performance of our proposed method
in the presence of different amounts of measurement noise. Figure 4
shows a comparison to our proposed method with classical alternat-
ing minimization method with and without reference for a sample
image.



Fig. 3: Reconstruction performance of the proposed method when a known
reference border is added around the image for different noise levels.

Fig. 4: Recovered images using (a) alternating minimization without side
information [4], (b) nonlinear method in [28], and (c) our proposed sequential
method. For each reconstructed image, the values of PSNR and SSIM are
shown as (PSNR, SSIM). For a baboon image, we added a pinhole at location
h = 16 as side information and for the KTH video sequence, we considered
a border of width 15 pixels to be known.

In the second experiment, we solve Fourier phase retrieval for a
video sequence where a border around the object-of-interest in the
scene is known. In this case, we can use the region around the ob-
ject as a reference in our proposed sequential method. As shown in
Fig. 5, the reconstruction performance improves as we increase the
size of reference. Known area in Fig. 5 is defined as the ratio of the
number of pixels in the known border to the total number of pixels.
Each frame of the videos from KTH dataset has 120 × 160 pixels.
Figure 4 shows a comparison to our proposed method with classi-
cal alternating minimization method with and without reference for
a sample video sequence.

3.2. Sequential recovery with a known patch

In this section, we evaluate the performance of our proposed se-
quential method when a small patch is known and the Fourier phase
retrieval problem is considered nonlinear. Figure 6 shows sample
reconstructions for the scenario where the known patch is concate-
nated to the right side of the image. The known patch contains a pin-
hole and multiple all zero columns. The number of columns in the
known patch which also defines the separation between the pinhole
and the unknown image is shown by h. Figure 7 summarizes the
performance of the proposed method for this scenario. The SSIM
and PSNR values for recovered images confirm that the proposed
method perform well even if the separation condition is not satisfied.
Figure 4 shows a comparison with the existing methods in recon-
struction of the baboon image in this scenario where h = 16.

Fig. 5: Reconstruction performance of our proposed sequential method for
three sequences in KTH dataset. Sequences 1 to 3 used in this experiment are
person 1 boxing, person 1 handwaving, and person 10 handclapping videos
respectively. PSNR and SSIM are averaged over 10 frames.

Fig. 6: Sample reconstructions using the proposed method for different sep-
aration, defined as h, between the reference and the unknown image of size
64× 64.

Fig. 7: Reconstruction performance of the proposed method for different
positions of the pinhole reference.

4. CONCLUSION

We proposed a sequential method to solve Fourier phase retrieval
problem with a known reference. Existing methods either assume
a minimum separation between reference and unknown image that
converts phase retrieval into a linear problem or solve a nonlinear
problem to recover the entire image at once. Our method solves the
(nonlinear) phase retrieval problem using a sequence of small lin-
ear deconvolution problems over small parts of the unknown image.
Our simulation results demonstrate that our method can reliably re-
cover images from Fourier amplitude measurements under different
settings for reference and measurement noise levels.
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