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Abstract—Parallel magnetic resonance (MR) imaging techniques use
multiple receiver coils for data acquisition. Sensitivity responses of
these coils usually vary in space and must be estimated via a separate
calibration process. We present an algorithm for jointly estimating MR
images and coil sensitivity maps from subsampled k-space measurements.
We pose the joint estimation problem as the recovery of a rank-one matrix
from coded, linear measurements. We demonstrate the performance of
our method on cardiac MRI datasets with multiple receiver coils.

I. MOTIVATION

Accelerated MRI techniques reduce acquisition time by sampling
only a fraction of k-space. Parallel MR imaging techniques utilize
information provided by multiple receiver coils with varying spatial
profiles and recover images from undersampled k-space data provided
by each receiver [1]. However, the coil sensitivity responses need to
be measured for proper image reconstruction. Typically, a separate
scan is performed for calibration purposes, which increases the total
acquisition time. The goal of calibration-free methods is to recover
MR images directly from the under-sampled k-space data without
performing a separate scan for calibration.

II. PROBLEM FORMULATION

Consider a parallel, dynamic MRI system that contains C receiver
coils and observes a sequence with T images. The measurements
acquired by a coil c at time t can be written as

yc
t = RΩtF(sc � xt), (1)

where xt denotes an N ×D complex-valued MR image, sc denotes
an N×D coil sensitivity map, � denote element-wise multiplication,
F denotes 2D discrete Fourier transform operator, and RΩt denotes
a downsampling operator on the Fourier (k-space) data along a
trajectory denoted by Ωt that yield the measurement vector yc

t . In
our experiments, we use phase-encoding along cartesian trajectory; in
particular, we sample M rows out of the N ×D k-space and denote
R = N/M as the acceleration factor. However, the method can be
generalized to arbitrary sampling trajectories.

We can describe a linear system of measurements for all the coils
and MR frames in a rank-one matrix form as follows. Let us first
denote the measurements corresponding to the MR image xt as
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 (2)

≡ yt = At(xts
∗), (3)

where s denotes a vector of size CND that contains all the coil
sensitivity maps, {sc}Cc=1; At denotes an operator that performs
Fourier transform and subsampling on the diagonal entries of the
submatrices [xts

∗
1 xts

∗
2 · · · xts

∗
C ] in the rank-one matrix xts

∗.
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Fig. 1: Motivation. (a) A sequence of images in a dynamic MRI sequence
(red bounding boxes denote the region that contains most of the temporal
variations). (b) Receiver coils have spatially varying sensitivity responses.
(c) Modulated images are subsampled in k-space (Fourier domain) for
acceleration. Our goal is to reconstruct the MR images from subsampled
k-space data without the knowledge of coil sensitivity maps.

Similarly, by combining all the yt, we can write the complete system
of measurements as

y = A(xs∗), (4)

where x denotes a vector of size TND that concatenates all the
MR images, {xt}Tt=1; A denotes an operator that performs Fourier
transform and subsampling on all the diagonal blocks of the rank-one
matrix xs∗ and yields the measurement vector y of size TCMD.

The system in (4) corresponds to linear measurements of a rank-
one matrix in which x, s appear in a bilinear form. We jointly estimate
x and s by posing the estimation problem as the low-rank matrix
recovery from coded, linear measurements [2]. Instead of using the
nuclear norm as a proxy for low rank and solving a semidefinite
program, we solve the following optimization problem, based on low-
rank factorization and augmented Lagrangian method in [3]:

min
X,S
‖X‖2F + ‖S‖2F s.t. y = A(XS∗), (5)

where X and S represent low-rank matrices of size TND × L and
CND×L, respectively, and L is a small number close to the rank of
the unknown matrix, which in our case is one. This problem can also
be viewed as multi-channel blind deconvolution in which a signal of
interest x̂ passes through different, unknown channels ŝ before being
sampled using multiple receivers [4].

In addition to the rank-one structure in (4), we can exploit multiple
spatial and temporal redundancies in dynamic MRI. For instance, in
dynamic MR images (e.g., cardiac MRI), changes occur only in a
small part of the image (e.g., beating heart), while the rest of the
image remains static. To exploit this temporal structure, we can divide
each image in the sequence {xt}Tt=1 into static and dynamic regions
(i.e., xt = [xstatic | xdynamic

t ]), such that the static regions are fixed
in all xt and the dynamic regions change from frame to frame. We
can easily incorporate such a partition in (4) and (5) by including an
operator that maps static and dynamic parts to the complete image
sequence. An advantage of such partitioning is that the number of
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Fig. 2: Reconstruction results for short-axis scan with R = 4. (a) Fully
sampled MR images. (b,c,d) Images reconstructed from subsampled k-
space. (b) Uses known sensitivity maps in (5). (c) Jointly estimates MR
images and coil sensitivities in (5). (d) Uses static and dynamic partitions
in (5). Images reconstructed while jointly estimating coil sensitivity maps,
shown in (c,d), have comparable quality to those reconstructed with
perfect knowledge of coil sensitivity maps, as shown in (b).

unknowns reduce by the same factor as the number of pixels in the
static region.

III. EXPERIMENTS

In our experiments, we simulated an accelerated imaging setup
by downsampling full k-space data from multiple receiver coils;
detailed description of these datasets can be found in [5]. We present
reconstructed images for a short-axis MRI scan with R = 4 in Fig. 2
and a two-chamber view cine MRI scan with R = 8 in Fig. 3. The
size of the short-axis dataset is N = 224, D = 256, T = 16, and the
two-chamber dataset is N = 240, D = 200, T = 20; both datasets
were acquired with C = 5 element cardiac coil. In both datasets,
we subsampled k-space for each frame by first selecting 8 center
rows and then randomly selecting a total of M rows to achieve the
acceleration factor R = N/M .

The results are presented in Fig. 2 and Fig. 3. Fig. 2(a) and Fig. 3(a)
present three images selected from the respective sequences that were
reconstructed from fully sampled k-space data and known estimates
of the respective sensitivity maps. Fig. 2(b) and Fig. 3(b) present
images reconstructed from the down-sampled k-space data and known
estimates of the sensitivity maps in a least-squares problem. Fig. 2(c)
and Fig. 3(c) present images reconstructed by solving (5) jointly for
the MR images and the coil sensitivity maps. Fig. 2(d) and Fig. 3(d)
present images reconstructed by solving (5) with static and dynamic
partition in X. For the short-axis scan in Fig. 2 we designated 100×
75 pixels (the region inside the red bounding box in Fig. 2(a)) as
the dynamic part, which implies that the rest of the image remains
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Fig. 3: Reconstruction results for two-chamber scan with R = 8. (a)
Fully sampled MR images. (b,c,d) Images reconstructed from subsampled
k-space. (b) Uses known sensitivity maps in (5). (c) Jointly estimates MR
images and coil sensitivities in (5); these images are noisy because of
large R. (d) Uses static and dynamic partitions in (5); these images have
comparable quality to those reconstructed with perfect knowledge of coil
sensitivity maps, as shown in (b). The brigtness difference between static
and dynamic regions in (d) can be easily fixed in a post-processing step.

unchanged in all the frames. For the two-chamber scan in Fig. 3, we
used 100×100 pixels (highlieghted in Fig. 3(a)) as the dynamic part.

The images reconstructed with exact sensitivity maps, as shown
Fig. 2(b) and Fig. 3(b), can be considered the best reference that we
can achieve while jointly estimating the images and coil sensitivity
maps. We observed that the low-rank matrix reconstruction based
method for jointly estimating coil sensitivities and MR images pro-
vides comparable reconstruction for R = 4 (compare Fig. 2 (b) and
(c)). Adding static-dynamic partitions in (5) makes the reconstruction
for R = 8 comparable as well (compare Fig. 3 (b) and (d)).

We expect that including additional spatial regularization and
motion-adaptive constraints (similar to those in [5]) can further
improve the quality of reconstruction, and we intend to pursue that
in future work.

IV. COMPARISON WITH EXISTING AUTOCALIBRATION METHODS

A number of existing autocalibration schemes use cross-relation
consistency for estimating coil response filters in a multichannel
system. Consider the following multichannel model. Suppose we
observe a signal x using an array of filters hii=1,2,...,N as

yi = x~ hi.

The cross-relation consistency suggests that

yi ~ hj = yj ~ hi for all i, j = 1, . . . , N. (6)



The null-space of the matrix defined by these equations provides all
the feasible solutions. We expand the system in (6) as follows.

Cy1 −Cy2 0 . . . 0
Cy1 0 −Cy3 . . . 0
Cy1 0 0 . . . −CyN
−Cy1 Cy2 0 . . . 0

0 Cy2 −Cy3 . . . 0
0 Cy2 0 . . . −CyN
...

...
...

. . .
...

−Cy1 0 0 . . . CyN
0 −Cy2 0 . . . CyN
0 0 −Cy3 . . . CyN




h1

h2

h3

...
hN

 = 0, (7)

where Cyk denotes a circulant/toeplitz matrix created with yk. How-
ever, this scheme only works in the case of fully-sampled data.

Most of the existing MRI auto-calibration schemes use sidmilar
ideas to perform the coil calibration. A typical example of auto-
calibration in MRI involves learning a set of filters gc,k such that

yc =
∑
k

gc,k ~ yk, (8)

where yc denotes the k-space corresponding to the cth coil,
gc,1, . . . , gc,C denotes a set of filters that reproduce any sample in
yc(r) using all the samples within a small neighborhood N (∇), in
all the coils, such that gc,c(r) = 0.

Consider the following simple conversion from the cross-relation
model in (6) to the SPIRIT auto-calibration model in (8): Note that
we can us first describe the conversion matrix by
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