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ABSTRACT

Compressive sensing (CS) provides a general signal acquisition
framework that enables the reconstruction of sparse signals from
a small number of linear measurements. To reduce video-encoder
complexity, we present a CS-based video compression scheme.
Modern video-encoder complexity arises mainly from the transform-
coding and motion-estimation blocks. In our proposed scheme, we
eliminate these blocks from the encoder, which achieves compres-
sion by merely taking a few linear measurements of each image in
a video sequence. To guarantee stable reconstruction of the video
sequence from only a few measurements, the decoder must effec-
tively exploit the inherent spatial and temporal redundancies in a
video sequence. To leverage these redundancies, we consider a
motion-adaptive linear dynamical model for videos. Recovery pro-
cess involves solving an `1-regularized optimization problem, which
iteratively updates estimates for the video frames and motion within
adjacent frames.

1. INTRODUCTION

Current video coding technology has developed assuming that a
high-complexity encoder in a broadcast tower would support mil-
lions of low-complexity decoders in receiving devices. However,
with the proliferation of inexpensive video recording devices, such
as camcorders and cellphones, user-generated content has become
commonplace. Therefore, there is a need for low-complexity encod-
ing technology that can be deployed in these low-cost, low-power
devices [1]. Because power consumption is proportional to the en-
coder complexity, current high-complexity encoders consume much
power to provide high compression ratios. Therefore, to increase
battery life in mobile devices, a low-complexity encoder with good
coding efficiency is highly desirable.

In this paper, we discuss a general video compression frame-
work, where the encoder is very simple, and most of the computa-
tional complexity is shifted to the decoder. Note that decoders are
usually located in mains-connected devices such as set-top boxes,
TVs and computers; hence complexity and consequently higher
power consumption are tolerable. The main complexity in stan-
dardized video encoders arises from the motion estimation and
transform-coding blocks. To reduce complexity, we eliminate these
blocks in our proposed video encoder. We assume that the encoder
compresses a video sequence by taking a small number of linear
measurements for each image in the sequence, either by processing
each reading on the conventional CCD sensor or directly observing
the scene with modified imaging hardware [2]. At the decoder, we
reconstruct the video sequence from the compressed measurements
by exploiting the inherent spatial and temporal structure in the video
signals. We model the measurements and the underlying video se-
quence in the form of a linear dynamical system, where adjacent

frames are related to each other via (unknown) inter-frame motion.
To aide the recovery process, we assume that the images in the video
sequence and the motion-compensated differences have sparse rep-
resentation. As we discuss later in detail, our proposed encoding
and decoding schemes leverage ideas from standard video coding
and compressive sensing.

Current video coding schemes achieve compression using a
high-complexity encoder that exploits the spatial and temporal struc-
ture in the video sequence [3]. At the encoder, typically we first esti-
mate motion between adjacent frames (e.g., using block-matching),
and then we use transform coding (e.g., DCT or wavelets) on the
inter-frame motion-compensated differences and a reference frame.
Motion estimation and transform coding blocks often dominate the
computational complexity of the encoder. The decoder, in contrast,
is much simpler. Its only task is to use the inter-frame motion infor-
mation (transmitted by the encoder) to combine the reference frame
with the motion-compensated residuals to reconstruct the video
sequence.

Compressive sensing (CS) provides a signal acquisition frame-
work in which only a small number of (non-adaptive) linear mea-
surements are required to recover a (structured) sparse signal [4].
Conventional compression schemes often require fully sampled sig-
nals at the encoder, and they compress signals by keeping a small
amount of data after some processing (e.g., motion estimation and
transform coding in MPEG and H.264 video coding), and discarding
the rest. In contrast, CS combines compression with acquisition by
acquiring only as many measurements as would be necessary for the
signal recovery. The number of measurements required for the signal
recovery depends on the sparse structure of the signal (also related
to the degrees of freedom in the signal). This combined acquisition
and compression reduces the burden on the sensing devices in two
ways: 1) full signal acquisition is not required and 2) any additional
compression is not required. Furthermore, the computational burden
shifts to the decoder. It is the decoder’s task to reconstruct the signal
from the compressed measurements, using any available information
about the signal structure. CS decoders typically recover signals by
solving an optimization problem that promotes sparsity in the signals
while maintaining fidelity to the measurements.

To recover video from compressed measurements, our proposed
decoder exploits both spatial and temporal structures in the video
signal. The inter-frame motion provides a very good model for the
temporal structure. However, in our compression framework, the
inter-frame motion is not readily available at the decoder. Therefore,
we use a two-step approach to iteratively update the estimates for
the images in the video sequence and the inter-frame motion. At
every iteration, we estimate images in the video sequence using any
available motion (or temporal) information, and then refine the inter-
frame motion estimates using the recovered images. Similar two-
step approach has been used in [5, 6].



2. BACKGROUND

2.1. Video coding principles

A typical video encoder divides a video sequence into disjoint
groups of T frames. Out of the T frames in each group, one frame is
designated to be the I (intra-coded) frame and the rest are designated
to be P (predictive) frames (or some times B (bi-predictive) frames
too). The I-frame is encoded as a static image. P-frames are encoded
in terms of motion-compensated residuals between the original P-
frames and their respective motion-compensated predictions from
the neighboring frames. Since adjacent frames in a video sequence
are very similar to each other, the prediction error is usually very
sparse and allows efficient encoding. Inter-frame motion between
pairs of two images is typically estimated using block-matching. To
predict an image A from an image B, block matching first divides
A into non-overlapping blocks of equal size (e.g., 8x8 or 16x16),
and then finds the closest matching block of same size in B for
every block in A. The motion-compensated predicted image A is
constructed by replacing each block in A with its closest matching
block from B. The relative locations of the blocks are stored in the
form of motion vectors. I-frame, motion-compensated residuals,
and the associated motion vectors constitute the compressed data for
a group of T frames.

2.2. Compressive sensing (CS)

The CS theory suggests that a (structured) sparse signal can be re-
covered from a small number of linear, incoherent measurements.
Consider a signal of interest x ∈ RN that is measured as

y = Ax + e, (1)

where A is anM×N measurement matrix withM � N , and e de-
notes noise in the measurements. In the CS framework, signal recov-
ery from the underdetermined system in (1) is possible if the signal x
has sparse representation in some known basis Ψ (i.e., α = ΨTx is a
sparse vector) and the measurement matrix A satisfies certain inco-
herence conditions. A typical `1-regularized optimization problem
used for the recovery can be written as

minimize τ‖ΨTx‖1 +
1

2
‖Ax− y‖22, (2)

where τ > 0 is a regularization parameter. The `1 regularization
term in (2) promotes Ψ-domain sparsity in the solution and the `2
term keeps the solution close to the measurements. Note that CS
can be viewed as a universal encoding scheme that is not tied to
any specific representation basis. We can use any sparse basis Ψ
that gives the best signal reconstruction for the given set of mea-
surements. For instance, if x is an image, we can apply `1 regular-
ization in the spatial domain by selecting Ψ as a wavelet transform
or a finite difference (total variation) transform [4]. Similarly, if x
is a video sequence, we have the freedom to choose whichever Ψ
gives the best results. One possibility is to recover each image in the
video sequence independently, using only the spatial regularization;
however, this does not take any advantage of the inherent temporal
structure in the video signals. Another approach is to assume that the
inter-frame differences are sparse, and add an `1 regularization term
for inter-frame differences in the recovery problem [7]. However, the
temporal variations in video sequences are not fully captured by the
inter-frame differences. Inter-frame motion provides a much better
representation for the temporal variations in a video sequence.

In the next section, we discuss our proposed optimization prob-
lem for the video recovery, which uses an inter-frame motion based
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Fig. 1: Distribution of measurements in a group of T frames.
(a) Uniform distribution. (b) One boundary frame gets more mea-
surements (analogous to I and P frames). (c) Custom distribution.

model for the temporal variations, and uses `1 regularization in both
spatial and temporal directions.

3. VIDEO COMPRESSIVE SENSING

3.1. Encoder design

Our goal is to have a simple encoder with low computational com-
plexity. Therefore, we assume just one task from the encoder; that is,
it compresses each image in a video sequence by taking a small num-
ber of linear measurements. This task can be performed either us-
ing some modified imaging hardware (e.g., single-pixel camera [8])
without explicitly capturing and storing the original images or by
post-processing the full-resolution acquired images.

Consider a video sequence x1,x2, . . ., where each xi ∈ RN is
an N -pixel image in the video sequence. The encoder generates a
set of measurements yi = Aixi + ei for every image xi, where Ai

denotes the measurement matrix of size Mi × N for the ith image,
and ei denotes noise in the measurements. The ratio of N and Mi is
the compression rate for the ith image.

One important feature we borrow from traditional video coding
literature in our encoder design is the flexibility to compress im-
ages in the video sequence with variable compression rate. Suppose
our desired compression rate allowsM measurements per T frames.
We allow the encoder to distribute the available measurement count
to T frames in any desired fashion. Figure 1 depicts three possi-
ble choices for measurement distribution in a group of T frames:
(a) Every image gets an equal number of measurements. (b) One
boundary image in every group of T images gets significantly more
measurements than the rest. This scheme is analogous to the I-frame
and P-frames concept in the standard video coding. (c) An arbitrary
non-uniform distribution of measurements. The motivation behind
using non-uniform distribution of measurements is that a few good
quality images help a lot to raise quality of the heavily compressed
neighboring images during the reconstruction. In the case of non-
uniform measurements, we define the compression ratio as TN/M ,
where M is the total number of measurements utilized by T frames.

The quality of reconstruction depends on two things: the number
of measurements (more the better) and the type of measurements.
We do not make any assumption on the specific type of measure-
ments. A general rule for CS applications is to use the measurements
that are spread out in the transform domain where the signal of inter-
est is sparse [9]. Some commonly used measurements for images in
the CS framework include subsampled DCT, subsampled noiselets,
and random convolution [2].



3.2. Decoder design

3.2.1. Motion-adaptive dynamical model

To model the temporal variations, we represent video frames in the
form of a linear dynamical system, where each frame is related to its
immediate neighbors via inter-frame motion, as depicted in Fig. 2.
The following linear system gives a combined model for the linear
measurements and inter-frame relationship:

yi = Aixi + ei (3a)
xi = Fi−1xi−1 + fi (3b)
xi = Bi+1xi+1 + bi, (3c)

where Fi−1 and Bi+1 denote the forward and the backward mo-
tion operators, and fi and bi denote the forward and the backward
motion-compensated residuals, respectively. Motion operators can
be viewed as interpolation operators that move the pixel values ac-
cording to the inter-frame motion.

3.2.2. Recovery algorithm

In our proposed recovery algorithm, we jointly recover a group of
images, following the linear dynamical model in (3). It helps to
select the groups at the decoder following the measurement distribu-
tion at the encoder. For instance, if the encoder uses measurement
distribution in Fig. 1(b), we divide the sequence at the decoder into
overlapping groups of T+1 images, where the two boundary frames
in each group have more measurements, and they are shared by the
adjacent groups. Such a group division provides one “free” addi-
tional high-quality frame in each group, which can be very beneficial
with motion regularization in both forward and backward directions.

Individual images in a natural video sequence have sparse
representation in spatial domain; for example, a wavelet trans-
form or total variation. The motion-compensated residual images
fi = Fi−1xi−1−xi and bi = Bi+1xi+1−xi also exhibit sparsity,
either in the pixel domain or with some spatial transform. We exploit
the sparsity of original images and motion-compensated residuals in
the recovery process. Note that Fi−1 and Bi+1 require information
about motion between xi and its immediate neighbors xi−1 and
xi+1, respectively. To estimate inter-frame motion, we need explicit
images; whereas we only have compressed measurements at the de-
coder. Therefore, we adopt an iterative approach for reconstruction,
where we alternate between estimating video frames using the avail-
able motion information, and using the estimated video frames to
refine the motion estimate. Video recovery algorithms with similar
alternating motion update principles have also appeared in [5, 6].

Our recovery algorithm consists of the following two-step itera-
tive procedure: 1) Initialization. 2) Motion adaptation.

Initialization: Solve the following `1 regularization problem to
get the initial frame estimates:

minimize
∑
i

‖Aixi − yi‖22 + τ‖xi‖Ψ + λ‖xi−1 − xi‖Ψ, (4)

where ‖ · ‖Ψ denotes `1 regularization term to promote spatial spar-
sity in the Ψ domain (i.e., ‖z‖Ψ = ‖ΨT z‖1); for example, wavelets
or total-variation. The first term promotes sparsity in the spatial
transform of each image, and the second term promotes sparsity in
the inter-frame difference.
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Fig. 2: Bi-directional inter-frame motion interpretation.

Motion adaptation: This step can be further divided into two in-
termediate steps, and can be repeated multiple times to improve the
reconstruction quality:

i. Motion estimation: Use reconstructed frames to estimate/refine
the inter-frame motion, and define/update the forward and back-
ward motion operators Fi and Bi, for all i.

ii. Motion compensation: Solve the following optimization prob-
lem for the dynamical system in (3):

minimize
∑
i

‖Aixi − yi‖22 + τ‖xi‖Ψ + . . .

+ α‖Fi−1xi−1 − xi‖Ψ + β‖Bi+1xi+1 − xi‖Ψ. (5)

The regularization parameters: τ , λ, α, and β can be adapted
according to the problem at hand. We found it useful to start α and
β with a small value at the first iteration, and increase them as the
motion estimate improves. We have purposely written all the reg-
ularization terms as a general norm ‖ · ‖Ψ to emphasize that any
suitable transform Ψ can be used with the `1 regularization. Fur-
thermore, we do not restrict ourselves to any particular motion esti-
mation scheme either. However, since we estimate motion from the
reconstructed images, and not the original images, motion estimation
scheme should be robust to noise and other artifacts. In our experi-
ments, we found that block matching algorithms do not perform very
well. We found phase-based motion estimation schemes to be more
useful [10]. Optical flow based schemes work well too [11].

4. EXPERIMENTS AND RESULTS

To evaluate performance of our proposed compression scheme we
performed various experiments on four standard test sequences:
coastguard, container, foreman, and hall. Figure 3 presents one
image from each of the four sequences. The coastguard sequence
contains the most abrupt temporal variations among the four, fore-
man ranks second, followed by hall, and the container sequence has
the least and the slowest scene variations. In all our experiments,
we used 128x128 center portion of the first 129 frames of the four
sequences.

In our experiments, we evaluated the performance of our pro-
posed recovery scheme with non-adaptive, linear measurements. We
compared results with two conventional low-complexity encoders:
standard JPEG1 and linear DCT approximation. Our experiment
setup is as follows: We divided 129 frames into 16 overlapping
groups of 9 frames, where the frames at indices 9, 17, . . . , 121 are

1For a fair comparison with CS, we do not use entropy coding with JPEG.



coastguard container foreman hall

Fig. 3: Snapshots of original test sequences.

shared by two adjacent groups.We encoded each group according to
the scheme in Fig. 1(b), where the number of measurement for the
boundary frames were double the number of measurements for the
rest. Linear measurements for each frame comprised of two parts: a
16x16 block of scaling coefficients from discrete wavelet transform
(using Daubechies 4 filters), while the remaining measurements con-
sist of subsampled noiselet coefficients. Every group of 9 images
was then reconstructed from compressed measurements using the
recovery method outlined in Sec. 3.2.2. We used 2-D dual-tree com-
plex wavelet transform [12] as the sparsity basis Ψ for spatial `1
regularization in (4) and (5). The dual-tree wavelet transform is a
nearly shift-invariant, overcomplete transform, with good direction-
ality properties, and works significantly better than standard orthog-
onal wavelets. We estimated motion using phases of the subband co-
efficients from the complex dual-tree wavelets, using the hierarchi-
cal method described in [10]. We solved the optimization problems
in (4) and (5) using the `1-analysis formulation in the NESTA tool-
box [13]. All the experiments were performed on the PACE cluster
operated by OIT at Georgia Tech.

The recovery results for the four sequences at different com-
pression rates are presented in Fig. 4. The performance curves
plot average peak signal to noise ratio (PSNR) of all the recon-
structed images at the given compression ratio. CS-MC (solid blue
line with ∗ marker) represents the results for our proposed motion-
compensation based recovery method after 3 motion-adaptation
iterations. CS-DIFF (broken blue line with + marker) represents re-
sults for the initial reconstruction with frame-difference. CS (broken
blue line × marker) represents results for frame-by-frame recon-
struction (without frame-difference in (4)). We compared recovery
results with JPEG compression, which compressed every image by
thresholding its block-DCT coefficients using the so-called quan-
tization mask. The compression ratio for JPEG at any value of
quality factor was calculated as the ratio of N and the number of
nonzero block-DCT coefficients. The results are presented as qJPEG
(broken magenta line with o marker). We also recorded results for
linear DCT approximation, which compresses an image by keep-
ing only low frequency DCT coefficients, selected in a predefined
zigzag order; the results are presented as ldct (dashed red line with
lower-triangle marker).

As we can see in Fig. 4, PSNR quality of the reconstructed
videos increases significantly by adding temporal regularization in
the recovery process (see the improvement of CS-MC (or CS-DIFF)
over CS). Furthermore, motion-compensated reconstruction (CS-
MC) outperforms qJPEG, even though qJPEG is a data-adaptive
compression scheme. qJPEG comes close to CS-MC in perfor-
mance only for the coastguard sequence, which has quite complex
motion, especially around frame 70.
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