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Abstract—Recovery of sparse signals from noisy observations
is a problem that arises in many information processing contexts.
LASSO and the Dantzig selector (DS) are two well-known
schemes used to recover high-dimensional sparse signals from
linear observations. This paper presents some results on the
equivalence between LASSO and DS. We discuss a set of
conditions under which the solutions of LASSO and DS are
same. With these conditions in place, we formulate a shrinkage
procedure for which LASSO and DS follow the same solution
path. Furthermore, we show that under these shrinkage condi-
tions the solution to LASSO and DS can be attained in at most S
homotopy steps, where S is the number of nonzero elements in the
final solution. Thus the computational cost for finding complete
homotopy path for an M ×N system is merely O(SMN).

I. INTRODUCTION

In recent years, there has been tremendous progress in the
area of sparse signal approximation and reconstruction, with
applications in wide ranging disciplines. Compressive Sensing
(CS) theory has played a significant role in this regard by
providing general conditions under which it is possible to
recover sparse signals from a limited number of observations
[1]–[3].

The general sparse recovery problem can be formulated as
follows. Suppose we are given a data vector y ∈ RM which
obeys the linear model

y = Ax0 + e, (1)

where x0 ∈ RN is the unknown S-sparse vector (i.e., it has
at most S nonzero components), A is an M ×N matrix with
M < N , and e is a noise vector. The goal is to reliably
estimate x0 from y. This problem has received a good deal of
attention recently in two different signal processing contexts.
In the CS framework, we view x0 as an unknown signal of
interest which we wish to recover from indirect observations
through A. In the sparse approximation framework, we view
y as an observed signal, A as an overcomplete dictionary, and
x0 as a sparse decomposition of y in terms of the columns of
matrix A [4].

In this paper we discuss two well-known convex programs
commonly used to recover sparse signals from noisy measure-
ments, namely LASSO [5] and the Dantzig Selector (DS) [6].
Given the observations y, LASSO solves1

minimize τ‖x‖1 +
1
2
‖Ax− y‖22, (2)

1This problem formulation is actually Lagrangian form of the LASSO in
[5], also known as Basis Pursuit DeNoising (BPDN) [7].

and DS solves

minimize ‖x‖1 subject to ‖AT (Ax− y)‖∞ ≤ τ, (3)

where τ > 0 is some suitably chosen threshold parameter,
which essentially controls the trade-off between the sparsity
of the solution to these problems and its fidelity to the
measurements y. There are number of performance guarantees
associated with both (2) and (3) [6], [8]–[12]. In a nutshell, if
the underlying signal x0 is sufficiently sparse and the matrix
A obeys some incoherence or restricted isometry conditions,
then the reconstruction error for the estimates of both (2) and
(3) comes within a small factor of the minimum achievable
error.

These sparse recovery results are usually given in terms
of two properties of the matrix A: the coherence or the
restricted isometry constants. The coherence of a matrix A,
with normalized columns aj , is defined as

µ(A) = max
i6=j
|〈ai, aj〉|. (4)

The matrix A is called incoherent if µ(A) is small; a typical
case of interest is µ ∼ 1/

√
M . Low coherence means that

the columns of A are very different from one another, which
helps disambiguate short linear combinations when finding the
sparse vector x0 in (1) [8], [13]. A matrix A is said to obey the
restricted isometry property (RIP) of order 2S if there exists
a constant δ2S < 1 such that for all 2S-sparse signals

(1− δ2S)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ2S)‖x‖2. (5)

If the RIP constant δ2S is sufficiently small, then any S-sparse
signal can be reliably estimated using some suitable recovery
scheme, such as (2) and (3) [14], [15].

The main contribution of this paper is to outline a set of
general conditions, in terms of the sparsity of the underlying
vector x0 and the coherence parameter µ, under which LASSO
and DS have the same solutions. Further, we show that
under similar conditions LASSO and DS follow the same
homotopy paths as the regularization parameter τ changes,
and that their final solutions can be achieved in at most S
homotopy steps, where S is the number of nonzero elements
in the final solution. Lastly, we discuss the types of incoherent
matrices that obey the conditions required for the equivalence
of LASSO and DS.



II. PRELIMINARIES ON LASSO AND DANTZIG SELECTOR

A. Optimality conditions

We start with a discussion of the optimality conditions for
LASSO and DS which must be satisfied by their respective
solutions at any given value of τ .

LASSO: To be a solution to (2), a vector x? must obey
the following condition:

‖AT (Ax? − y)‖∞ ≤ τ. (L)

We can view (L) as a set of n different constraints, one on
each entry of the vector of residual correlations AT (Ax?−y),
which can be derived by taking subgradient of the objective in
(2) [16]. In addition, a sufficient condition for the optimality
of x? is that the set of locations for which the constraints in
(L) are active (i.e., equal to τ ) will be the same as the support
of x? (the set of locations on which x? is non-zero) [16].
Denoting this set by Γ, we can write the optimality conditions
for any given value of τ as
L1. ATΓ (Ax? − y) = −τz
L2. ‖ATΓc(Ax? − y)‖∞ < τ ,
where AΓ is the m×|Γ| matrix formed from the columns of A
indexed by elements in Γ, and z is a |Γ|-vector containing the
signs of x? on Γ. From this we see that x? can be calculated
directly from the support Γ and sign sequence z as

x? =

{
(ATΓAΓ)−1(ATΓy − τz) on Γ
0 otherwise.

(6)

Dantzig Selector: On the other hand, the solution to (3)
obeys a similar set of optimality conditions, with the addition
of a dual variable. The dual problem to (3) can be written as

maximize − (τ‖λ‖1 + 〈λ,AT y〉) (7)

subject to ‖ATAλ‖∞ ≤ 1,

where λ ∈ Rn is the dual optimization variable. We can
derive the optimality conditions by recognizing that at the
solution, the objectives in (3) and (7) will be equal, due to
strong duality [17]. This fact, along with the complementary
slackness property, tell us that x?, λ? are solutions to (3)
and (7) for a given value of τ if they satisfy the following
optimality conditions [18]:
DS1. ATΓλ(Ax? − y) = τzλ
DS2. ATΓxAλ

? = −zx
DS3. ‖ATΓcλ(Ax? − y)‖∞ < τ

DS4. ‖ATΓcxAλ
?‖∞ < 1,

where Γx and Γλ are the supports of x? and λ? respectively,
zx and zλ are the sign sequences of x? and λ? on their
respective supports. We call (DS1,DS3) the primal constraints,
and (DS2,DS4) the dual constraints. It can be shown using
standard convex optimization that these four conditions are
necessary and sufficient for (x?, λ?) to be the unique primal-
dual solution pair. Furthermore, the active primal constraints
correspond to the support of dual variable and the active
dual constraints correspond to the support of primal vari-
able. Therefore, from these optimality conditions we can see

that the primal and dual solutions can be calculated using
the knowledge of primal-dual supports and sign sequences
(Γx,Γλ, zx, zλ) as

x? =

{
(ATΓλAΓx)−1(ATΓλy + τzλ) on Γx
0 otherwise

(8)

λ? =

{
−(ATΓxAΓλ)−1zx on Γλ
0 otherwise.

(9)

Note that the essential difference between the LASSO and
DS optimality conditions (L1-L2) and (DS1-DS4), and their
respective solutions (6) and (8), comes from the fact that in
DS the primal and dual support (Γx,Γλ) and sign sequence
(zx, zλ) can be very different from each other. However, if at
the given value of τ the solution of DS has same primal and
dual supports, i.e., Γλ = Γx, and the primal and dual sign
sequences are opposite to each other, i.e., zλ = −zx, then for
that particular value of τ the solutions of LASSO and DS will
be identical. We pursue this line of reasoning further in the
following sections.

B. Homotopy paths

Some further insight into the working of LASSO and DS
can be gained by looking at the solutions of (2) and (3) for
different values of τ . Homotopy methods provide an efficient
way to trace the solution paths of these problem for a range
of values of τ [18]–[23].

LASSO: The complete solution path for LASSO can be
traced by starting from a large value of τ where the solution
of (2) is known (e.g., τ > ‖AT y‖∞, where solution is a
zero vector), and reduce it towards zero while updating the
intermediate solutions. Suppose we are at an intermediate
solution along the homotopy path, given as x? in (6). As we
reduce τ , the solution moves along a line with direction

∂x =

{
(ATΓAΓ)−1z on Γ
0 otherwise

(10)

until one of two things happens: an element in x? shrinks to
zero, removing it from the support of the new solution x?, or
another constraint in (L) becomes active, adding a new element
to the support of x?. At these so-called critical points, both the
support of x? and the direction of the solution path change.
Also, at any point on the solution path it is straightforward to
calculate how much we need to vary τ to take us to a critical
point in either direction. Therefore, we start with a solution
x? at τ with support Γ and sign z, and reduce τ to the desired
value while hopping from one critical point to the next. At
each critical point along this path, a single element is either
added to or removed from Γ, and the new direction can be
computed from the old using a rank-1 update. Thus multiple
solutions over a range of τ can be calculated at very little
marginal cost.



Dantzig Selector: The homotopy path for DS can be
traced in a similar way, with the additional requirement of
keeping track of dual variable, and its support and signs.
We start from a large value of τ and reduce τ gradually by
updating the primal-dual supports and sign sequences at every
critical point. As we change τ , the solution moves along a line
in the direction

∂x =

{
−(ATΓλAΓx)−1zλ on Γx
0 otherwise

(11)

until one of the two things happens at a new critical point:
an element in x? shrinks to zero (removing an element from
the support of x?) or an inactive primal constraint becomes
active (adding an element to the support of λ?). We call this
first phase the primal update. This gives us the value of x? at
the new critical point but the value of λ? is still unknown. We
use the information about the change in the support from the
primal update phase to find the new value for the dual solution
λ? at this critical point, during which either an existing element
in λ? shrinks to zero (removing an element from the support
of λ?) or an inactive dual constraint becomes active (adding
an element to the support of x?). We call this second phase
the dual update. For further details on the DS homotopy see
[18], [23].

Note that the solutions of both LASSO and DS follow
piecewise linear paths, in the respective directions (10) and
(11) which depend only on the supports and signs at critical
points. Therefore, the intuition tells us that if the solution of
DS has same primal and dual support and opposite primal and
dual signs at every value of τ , then the entire solution paths
for LASSO and DS will be identical.

III. SHRINKABILITY AND S-STEP RECOVERY

In the previous section we observed that the solutions of DS
and LASSO will be identical whenever the supports for primal-
dual solution pair of DS are same and the sign sequences
are opposite to each other. In this section we derive a set of
conditions, under which LASSO and DS are guaranteed to
have identical solution paths and the number of homotopy
steps required for the recovery is same as the number of
nonzero components in the sparse signal, i.e., S-steps for S-
sparse signal recovery. We start with the case of noiseless
measurements.

A. Noiseless measurements

Suppose we have noiseless measurements y = Ax0 of the
signal supported on the set Γ with sign sequence z on Γ. The
following lemma gives us a set of conditions which ensure
that (2) and (3) have same solution for small values of τ .

Lemma 1. Let x0 ∈ RN be supported on a set Γ with z :=
sign[xΓ]. Set y = Ax0. Suppose that A obeys following three
conditions with Γ and z:
H1. AΓ is full rank,
H2. ‖ATΓcAΓ(ATΓAΓ)−1z‖∞ < 1,
H3. sign[(ATΓAΓ)−1z] = z.

Take

λ? =

{
−(ATΓAΓ)−1z on Γ
0 on Γc

,

and

x?τ = x0 + τλ?. (12)

Then for all τ in the range

0 ≤ τ ≤ τcrit = min
γ∈Γ

(
x0(γ)
−λ∗(γ)

)
,

x?τ is the unique solution to (2) and (3), and λ? is the unique
solution to (7).

Proof: If AΓ is full rank (H1), then the proposed λ? is
well-defined. We need to show that the proposed pair (x?, λ?)
obeys optimality conditions in L1-L2 and DS1-DS4. First note
that Γx = Γλ = Γ. If H3 holds, then also −zλ = zx = z,
and DS2 is satisfied. In addition, this makes H2 same as DS4.
Finally, with x?τ as in (12),

AT (Ax?τ − y) = −τATAΓ(ATΓAΓ)−1z,

and so H2 implies L1, L2, DS1, and DS3.
Under the conditions H1-H3, we can interpret the solutions

of (2) and (3) as “shrinkage” of x0. As τ increases, the
magnitude of all the nonzero entries in x?τ decrease. Although,
unlike soft-thresholding, the rate of decrease is not the same,
the decrease at component γ is proportional to λ?(γ). τcrit is
the value of τ for which one of the components in x0 shrinks
to zero.

It is natural, then, to ask if this “shrinkage” property holds
for x?τcrit supported on Γ1 ⊂ Γ, and if so, can we continue
the shrinkage process until x? = 0. Note that since x0 has
only S elements, it will take exactly S steps to shrink it to
zero. Conversely, it will take S steps to move from zero to x0.
To make this precise, we call x0 δ-shrinkable with respect to
A, for some 0 < δ ≤ 1 if the following shrinkage procedure
terminates in Success:

1) Set k = 0, Γ0 = Γ, and z0 = z. Check that AΓ0 is full
rank; if so continue to 2, otherwise return Failure.

2) If xk = 0, return Success.
3) Check that

‖ATΓckAΓk(ATΓkAΓk)−1z‖∞ < δ (H2’)

sign[(ATΓkAΓk)−1z] = z (H3’)

If either condition fails, break and return Failure.
(Note that if AΓ0 is full rank, then AΓk will be full rank
for any Γk ⊂ Γ0.)



4) Set

λk =
{
−(ATΓkAΓk)−1zk on Γk
0 on Γck

,

εk+1 = min
γ∈Γk

(
xk(γ)
−λk(γ)

)
,

xk+1 = xk + εk+1λk,

γ′k+1 = arg min
γ∈Γk

(
xk(γ)
−λk(γ)

)
,

Γk+1 = Γk\γ′k+1,

zk+1 = zk restricted to Γk+1.

5) Set k ← k + 1, and return to step 2.
As x0 shrinks to zero in the procedure above, τ =

∑
k εk+1

increases and the solution xk follows the path of solutions to
(2) and (3), as shown in the next lemma.

Lemma 2. Suppose x0 is δ-shrinkable with respect to A, and
define xk, λk, εk as above. For any given τ ∈ [0,∞), let K
be the largest integer such that

τ ≥
K−1∑
k=0

εk+1 =: EK .

Then the solution to (2) and (3) will be exactly

x?τ = xK + (τ − EK)λK .

Proof: Set θ = τ −EK . Since x0 is δ-shrinkable, we can
write

x?τ = x0 +
K−1∑
k=0

εk+1λk + θλK

and

AT (Ax?τ−y) = AT (Ax0−y)+ATA

(
K−1∑
k=0

εk+1λk + θλK

)
.

Since ΓK ⊂ Γk for all k = 0, . . . ,K − 1, let zK denote sign
of xK on ΓK ,

ATΓK (Ax?τ − y) = −(
K−1∑
k=0

εk+1 + θ)zK

= −τzK .

Similarly, since

|aTγAλk| ≤ 1 for γ ∈ ΓcK and for all k = 1, . . . ,K − 1,

and
|aTγAλK | < 1 for all γ ∈ ΓcK ,

thus for all γ ∈ ΓcK∣∣∣∣∣aTγ (Ax0 − y) + aTγA

(
K−1∑
k=0

εk+1λk + δλK

)∣∣∣∣∣ < (EK+θ) = τ.

Hence L1, L2, and DS1,DS3 are satisfied. DS2 and DS4 are
automatically satisfied with our choice of λK .

Remark. An immediate consequence of Lemma 2 is that since
x0 is shrinkable and it takes S steps to shrink to zero, and the
path it takes coincides with the homotopy paths of LASSO and
DS. Thus a LASSO or DS homotopy algorithm starting from
zero will terminate in exactly S steps, recovering the original
signal x0 with total complexity O(SMN).

The shrinkability conditions (H2,H3) have a distinct effect
in the working of the homotopy algorithm. The correlation
condition (H2) ensures that only correct elements enter the
support, and once an element has entered the support the
sign condition (H3) ensures that it never leaves the support,
hence providing the solution of S-sparse signal in S homotopy
steps. Also note that, when the S-step solution property holds,
the homotopy algorithms for both LASSO and DS reduce to
LARS [20]. Conditions similar to H3 have also been studied
in [23], [24], to establish the equivalence between LASSO and
DS solutions.

B. Noisy measurements

The analysis for the shrinkability in the presence of noise is
very similar to the noiseless case. The main difference is that
we cannot recover the original signal exactly. Therefore, we
start with some other shrinkable signal as the starting point of
the shrinkage procedure, while the remaining steps are almost
identical to the noiseless case.

Consider the noisy measurements in (1), where x0 is sup-
ported on the set Γ0. We assume that

‖ATΓc0(I − P [Γ0])e‖∞ ≤ ρ, (13)

where P [Γ0] denotes projection onto the space spanned by
columns in AΓ0 . The choice of final threshold parameter τ in
(2) and (3) depends on the noise level. The following lemma
shows that if the threshold τ in (2) and (3) is chosen safely
above the noise level, the LASSO and DS have same solution.

The following is a variation of a lemma from [25].

Lemma 3. Given noisy measurements y = Ax0 + e of the
signal x0 supported on Γ0, where e satisfies (13). Let xorc be
the oracle estimate

xorc =

{
(ATΓ0

AΓ0)−1ATΓ0
y on Γ

0 otherwise.
(14)

If xorc is δ-shrinkable with respect to A, then for τ > ρ
1−δ the

solution x?τ obtained by running (2) and (3) will be identical.

Proof: The proof is quite similar to the argument in
Lemma 2, where we replace x0 with xorc in the shrinkage
procedure. Since λ? is a dual solution to (2) by construction,
therefore it obeys DS2,DS4. We only need to show that
the solution x? obeys L1,L2, and DS1,DS3. Since xorc is
δ-shrinkable, let us first write x?τ with support Γ at some
τ > ρ

1−δ as

x?τ = xorc +
K−1∑
k=0

εk+1λk + θλK ,



where τ =
∑K−1
k=0 εk+1 + θ. This gives us

Ax?τ − y = Axorc +A

(
K−1∑
k=0

εk+1λk + θλK

)
− y

= A

(
K−1∑
k=0

εk+1λk + θλK

)
− (I − P [Γ0])e.

Recall that Γ ⊂ Γ0. Suppose first that γ ∈ Γ0 but γ /∈ Γ. Then
〈aγ , (I − P [Γ0])e〉 = 0 and

|〈aγ , A

(
K−1∑
k=0

εk+1λk + θλK

)
〉| < δτ.

Now suppose that γ ∈ Γc0. Then we are guaranteed that

|〈aγ , A

(
K−1∑
k=0

εk+1λk + θλK

)
〉| < δτ.

and
|〈aγ , Ax?τ − y〉| < δτ + ρ < τ,

where the last inequality follows from (13). Similar procedure
can be used to show that in at most S steps xorc shrinks to
zero.

Although in Lemma 3 we only discuss the equivalence
between LASSO and DS solutions and the S-step property, but
similar conditions can be used to prove various near-optimality
results for both LASSO and DS solutions, where we need
some conditions (very similar to H1-H3) only for the final
support of the solution [12], [25].

IV. SHRINKABILITY CONDITIONS AND INCOHERENCE

In this section we examine the types of signals and matrices
which satisfy the shrinkability conditions. In particular, we
show that an incoherent matrix satisfies δ-shrinkability condi-
tions for any S-sparse signal.

In order to show that a vector x with support Γ and sign
sequence z on Γ is δ-shrinkable for some given value of δ ≤ 1
with respect to the matrix A, we need to show that conditions
H1-H3 are satisfied on every Γk ⊂ Γ and respective sign
sequence. If we assume that AΓ is full rank2 then AΓk will also
be full rank for any Γk ⊂ Γ [26]. Let us define G = I−ATΓAΓ.
We claim that condition (H2) and (H3) will be satisfied if
‖G‖ < 1 and

max
γ∈{1,...,n}

|〈(ATΓAΓ)−1Yγ , z〉| < δ, (15)

with

Yγ =

{
ATΓaγ γ ∈ Γc

ATΓaγ − 1γ γ ∈ Γ
, (16)

where aγ is the column of A indexed by γ, and 1γ is a vector
which is equal to 1 at γ and zero elsewhere.

To see why this is true, first note that (H2) is same as

max
γ∈Γc

|〈aγ , AΓ(ATΓAΓ)−1z〉| < δ.

2Gers̆gorin’s disc theorem [26] can be used to show that ‖I−ATΓ AΓ‖ < 1
if S < 1 + 1

µ
, which implies that AΓ has full rank.

Whenever ‖G‖ < 1, the Neumann’s series
∑∞
`=0G

l converges
to the inverse (I −G)−1. Thus we can write (ATΓAΓ)−1z as

(ATΓAΓ)−1z = (I −G)−1z =
∞∑
`=0

G`z =

(
z +

∞∑
`=1

G`z

)
,

and condition (H3) will be satisfied for any δ ≤ 1 if

‖(ATΓAΓ)−1z − z‖∞ =

∥∥∥∥∥
∞∑
`=1

G`z

∥∥∥∥∥
∞

< δ. (17)

We can rewrite (17) as

max
γ∈Γ

∣∣∣∣∣〈1γ ,
∞∑
`=1

G`z〉

∣∣∣∣∣ = max
γ∈Γ

∣∣∣∣∣〈
∞∑
`=1

G`1γ , z〉

∣∣∣∣∣
= max

γ∈Γ

∣∣∣∣∣〈
∞∑
`=1

G`−1gγ , z〉

∣∣∣∣∣
= max

γ∈Γ

∣∣〈(ATΓAΓ)−1gγ , z〉
∣∣

where gγ is the column of G indexed by γ, gγ = 1γ −ATΓaγ .
The first equality above comes from the self-adjointness of G,
the second comes from simple fact that gγ = G1γ , and the
third because

∑
`≥1G

`−1 =
∑
`≥0G

` = (ATΓAΓ)−1.
The following theorem gives conditions on coherence of

matrix A and sparsity S of signal x under which (15) is
satisfied for Γ. The argument can be easily extended to
any support Γk ⊂ Γ; a crucial step needed to satisfy the
shrinkability conditions H1-H3.

Theorem 1 ( [16]). Let A be the incoherent matrix with
coherence µ. Let x be an S-sparse signal supported on Γ
with sign sequence z, and Yγ be as defined in (16).

S ≤ δ

1 + δ

(
1 +

1
µ

)
(18)

then
max

γ∈{1,...,n}
|〈(ATΓAΓ)−1Yγ , z〉| < δ. (15)

Proof: This result can be proved easily by following
the arguments in [16, Theorem 3], where the left side in
(15) can be bounded by the absolute values of the individual
components as

〈Yγ , (ATΓAΓ)−1z〉 ≤ 〈|Y Tγ |, |(ATΓAΓ)−1||z|〉.

The only difference is that our definition of Yγ is slightly
different. For the case when γ /∈ Γ, the argument is exactly
same. For the case where γ ∈ Γ, we can use similar
argument because γth component of Yγ will become zero
(since ‖aγ‖2 = 1).

V. DISCUSSION

In the last section we showed that if S ≤ δ
1+δ (1 + 1

µ ) then
both LASSO and DS have identical solution paths and that
the final solution can be recovered in at most S homotopy
steps. The result, although aimed at the incoherent matrices,
is not yet optimal for the random matrices usually used in
CS, e.g., Gaussian or Bernoulli. The CS results for random



matrices suggest that for an S-sparse signal typically M =
O(S · logN) measurements are sufficient to reliably recover
the signal. Whereas, the coherence based results for similar
matrices would unfortunately require M = O(S2 · logN)
measurements. Although this comparison is not fair, as we
not only guarantee signal recovery but recovery in S-steps,
but it would still be desirable to improve the results for S-
step recovery.

Under the incoherence conditions in Theorem 1, shrinkage
conditions H1-H3 hold for all possible supports of size at
most S. Whereas, to prove the S-step solution property for
a signal supported on Γ0, we only need to show that (15)
holds for all subsets Γk ⊂ Γ0. Note that for a random matrix
A, we can show that for a fixed support Γ0 of size S and
random sign sequence z, if M = O(S · logN) then (15)
holds with very high probability [27]. The main challenge
we face while trying to prove the so-called S-step property
with O(S · logN) measurements for random ensembles, is the
independence of elements as the signal shrinks. We want to
show that (15) holds for all Γk ⊂ Γ0 after every shrinkage step,
but the independence between random sign sequence z and
(ATΓAΓ)−1Yγ , which is a crucial part in proving O(S · logN)
result for the Γ0, does not exist after the first shrinkage step.
On the other hand, if we use a union bound on all possible
supports (a set with 2S elements), the result would be again
on the order of S2 · logN . Although we know that there are
S possible supports involved in the shrinkage procedure, but
they are not fixed a priori.

REFERENCES

[1] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[2] E. J. Candès and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?,” Information Theory, IEEE
Transactions on, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[3] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-
tions on, vol. 52, no. 4, pp. 1289–1306, April 2006.

[4] D. Donoho and M. Elad, “Optimally sparse representation in general
(non-orthogonal) dictionaries via `1 minimization,” Proc. Nat. Aca. Sci,
vol. 100, no. 5, pp. 2197–2202, 2003.

[5] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288,
1996.

[6] E. Candès and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–
2351, 2007.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, 1999.

[8] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” Information
Theory, IEEE Transactions on, vol. 52, no. 1, pp. 6–18, 2006.

[9] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math,
vol. 59, no. 8, pp. 1207–1223, 2006.

[10] N. Meinshausen and B. Yu, “Lasso-type recovery of sparse represen-
tations for high-dimensional data,” Annals of Statistics, vol. 37, no. 1,
pp. 246–270, 2008.

[11] P. Bickel and A. T. Ya’acov Ritov, “Simultaneous analysis of Lasso and
Dantzig selector,” Annals of Statistics, vol. 37, no. 4, pp. 1705–1732,
2009.

[12] E. Candès and Y. Plan, “Near-ideal model selection by `1 minimization,”
The Annals of Statistics, vol. 37, no. 5A, pp. 2145–2177, 2009.

[13] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” Information Theory, IEEE Transactions on, vol. 47,
no. 7, pp. 2845–2862, Nov 2001.

[14] E. Candès and T. Tao, “Decoding by linear programming,” Information
Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, Dec.
2005.

[15] E. Candès, “Compressive sampling,” Proceedings of the International
Congress of Mathematicians, Madrid, Spain, vol. 3, pp. 1433–1452,
2006.

[16] J. Fuchs, “On sparse representations in arbitrary redundant bases,”
Information Theory, IEEE Transactions on, vol. 50, no. 6, pp. 1341–
1344, 2004.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, March 2004.

[18] M. S. Asif, “Primal Dual Pursuit: A homotopy based algorithm for
the Dantzig selector,” Master’s thesis, Georgia Institute of Technology,
August 2008.

[19] M. Osborne, B. Presnell, and B. Turlach, “A new approach to variable
selection in least squares problems,” IMA Journal of Numerical Analysis,
vol. 20, no. 3, pp. 389–403, 2000.

[20] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[21] D. Malioutov, M. Cetin, and A. Willsky, “Homotopy continuation
for sparse signal representation,” IEEE International Conference on
Acoustics, Speech, and Signal Processing,, vol. 5, pp. v/733–v/736,
March 2005.

[22] D. L. Donoho and Y. Tsaig, “Fast solution of `1-norm minimization
problems when the solution may be sparse,” IEEE Transactions on
Information Theory, vol. 54, no. 11, pp. 4789–4812, 2008.

[23] G. James, P. Radchenko, and J. Lv, “The DASSO algorithm for fitting
the Dantzig selector and the Lasso,” Journal of the Royal Statistical
Society, Series B, vol. 71, pp. 127–142, 2009.

[24] N. Meinshausen, G. Rocha, and B. Yu, “Discussion: A tale of three
cousins: Lasso, L2Boosting and Dantzig,” Annals of Statistics, vol. 35,
no. 6, pp. 2373–2384, 2007.

[25] J. Romberg, “The Dantzig selector and generalized thresholding,” In-
formation Sciences and Systems, (CISS). 42nd Annual Conference on,
pp. 22–25, March 2008.

[26] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press,
1985.

[27] E. Candès and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007.


