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Abstract—Sparse signal priors help in a variety of modern
signal processing tasks. In many cases, a sparse signal needs to
be recovered from an underdetermined system of equations. For
instance, sparse approximation of a signal with an overcomplete
dictionary or reconstruction of a sparse signal from a small
number of linear measurements. The reconstruction problem
typically requires solving an `1 norm minimization problem. In
this paper we present homotopy based algorithms to update the
solution of some `1 problems when the system is updated by
adding new rows or columns to the underlying system matrix.
We also discuss a case where these ideas can be extended to
accommodate for more general changes in the system matrix.

I. INTRODUCTION

Sparsity plays a major role in many modern signal process-
ing tasks; compression, denoising and signal restoration are
typical examples where we benefit from the signal sparsity.
In recent years, tremendous progress has been made in the
area of sparse signal recovery from underdetermined systems
[1], [2]. The sparse recovery problem can be formulated as
follows. Suppose we are given a signal y ∈ RM which obeys
the following linear model

y = Ax, (1)

where A is an M × N system matrix with M � N , and
x ∈ RN is the sparse vector we want to estimate. In the
sparse approximation framework, we view y as an observed
signal, A as an overcomplete dictionary, and x as a sparse
decomposition of y in terms of columns of A [1], [3]. A related
problem, commonly known as Compressive Sensing (CS) [4]–
[6], considers y as indirect measurements of the unknown
sparse signal x using the measurement matrix1 A.

Ideally we would like to find the sparsest vector x which
obeys the linear system in (1). Conceptually, it requires solving
the following optimization problem

minimize ‖x‖0 subject to Ax = y, (2)

where ‖x‖0 denotes the number of nonzero entries in x.
Unfortunately, it is a combinatorial problem and known to be
NP-hard [7]. In practice, we instead solve a convex relaxation
of (2), where `0 norm is replaced by `1 norm as follows

minimize
x

‖x‖1 subject to Ax = y. (3)

1We assume that the sparsity basis and measurement matrix are combined
together to form A.

It is a convex program and can be efficiently solved using
standard optimization routines [8], [9]. However, under some
conditions on the sparsity of the signal x and incoherence
or restricted isometry of the matrix A, solving the relaxed
problem (3) can indeed recover the original sparse signal [1],
[2].

A more general system model can be defined as

y = Ax+ e, (4)

where e denotes the system noise and x can be nearly-sparse
or compressible. In such systems, we typically solve the basis
pursuit denoising (BPDN) [10] (or LASSO [11]):

minimize
x

τ‖x‖1 +
1

2
‖Ax− y‖22, (5)

with some suitable choice of regularization parameter τ > 0,
which controls the tradeoff between the sparsity of the solution
and data fidelity. Over the last few years, a number of efficient
schemes have been devised to efficiently solve (5) [12]–[14].

Most of the sparse recovery algorithms focus on solving
problems like (3) and (5) for a fixed system. Recently, some
homotopy based schemes have been proposed to update the
solution of (5) when new measurements are sequentially added
to the system (i.e., one new entry added to y and one row
added to A) [15], [16], or when y is replaced with a completely
new set of measurements of a closely related signal while
keeping A the same [17], [18]. These algorithms are derived
by introducing the new measurements into the optimization
program gradually, and tracking how the solution changes.
The problems are formulated such that the movement from
one solution to the next can be broken down into a series of
linear steps, with each link traversed using a low-rank update.
The motivation behind these dynamic updating schemes is
that when the underlying system changes, the solution may
not change much from one instance to the next. Therefore,
update from current estimate to the solution of the updated
system would be substantially cheaper than solving a new
optimization problem from scratch.

In this paper we discuss dynamic updating schemes for two
types of changes in the system matrix. In Sec. III we discuss
the dynamic updating scheme when new rows are added to the
system. In Sec. IV we discuss the updating scheme when new
columns are added to the system matrix. In Sec. VI we briefly
discuss a special case where dynamic updating can be used for



more general modifications in the system matrix, under rather
restrictive, so-called incoherence condition.

II. HOMOTOPY

Our proposed dynamic updating schemes are based on
the homotopy continuation principle [19]. Homotopy methods
provide a general framework for transforming an optimization
problem into a simpler (easily solvable) form, where the
transformation is parameterized by the so-called homotopy
parameter. In `1 problems, as the homotopy parameter is
varied, the solution traverses a piecewise linear homotopy path
towards the final solution, where each intermediate homotopy
step requires a low rank update. The homotopy path is fol-
lowed by ensuring that certain optimality conditions are being
maintained.

Let us consider the standard LASSO homotopy [19], [20]
for (5), where τ is the homotopy parameter. To be a solution
of (5) at any given value of τ , a vector x? must obey the
following set of N conditions (constraints)

‖AT (Ax? − y)‖∞ ≤ τ, (L)

more precisely

L1. ATΓ (Ax? − y) = −τz
L2. ‖ATΓc(Ax− y)‖∞ < τ ,

where Γ is the support (index set for nonzero elements) of x?,
AΓ is the M×|Γ| matrix formed from the respective columns
in A and z is the sign sequence of x? on Γ. From this we
see that x? can be calculated directly from the support Γ and
signs z using

x? =

{
(ATΓAΓ)−1(ATΓy − τz) on Γ

0 otherwise.

As we change τ , the solution moves along a line with direction
(ATΓAΓ)−1z until one of two things happens: an element
of x? is shrunk to zero, removing it from the support of
x?, or another constraint in (L) becomes active, adding a
new element to the support of x?. At these so-called critical
points, both the support of x? and the direction of the solution
path change. Also, at any point on the solution path it is
straightforward to calculate how much we need to vary τ to
take us to a critical point in either direction. Since there is
only one element change in the support, computing new update
direction requires a rank one update of the inverse (ATΓAΓ)−1.

III. ADDING ROWS TO THE SYSTEM MATRIX

Suppose we have solved the optimization problem (5) for
a given value of τ to get the solution x0 with support Γ and
sign sequence z. Now suppose we get P new measurements,
given as w = Bx+d, where B is a P×N matrix and d ∈ RP
denotes noise in the new measurements. We now want to solve
the following updated problem

minimize
x

τ‖x‖1 +
1

2

(
‖Ax− y‖22 + ‖Bx− w‖22

)
. (6)

As described in [15], [16], one new measurement can be
incorporated by introducing a homotopy parameter ε as

minimize
x

τ‖x‖1 +
1

2

(
‖Ax− y‖22 + ε‖Bx− w‖22

)
.

However, this homotopy scheme does not work with more than
one new measurement. We propose the following homotopy
scheme to incorporate multiple measurements

min.
x

τ‖x‖1 +
1

2

(
‖Ax− y‖22 + ‖Bx− (1− ε)Bx0 − εw‖22

)
,

(7)
where x0 is the solution of (5). Note that as ε varies from 0
to 1, we move from the old problem (5) to the new one (6).

The homotopy algorithm for (7) closely resembles the ho-
motopy algorithm for dynamic update of time-varying signal,
detailed in [17], [18]. By adapting the optimality conditions L1
and L2, we see that for any vector x? to be the solution of (7)
at any given value of ε it must obey the following conditions

‖AT (Ax? − y) +BT (Bx? − (1− ε)Bx0 − εw)‖∞ ≤ τ, (8)

or more precisely

ATΓ (Ax? − y) +BTΓ (Bx? − (1− ε)Bx0 − εw) = −τz (8a)

‖ATΓc(Ax? − y) +BTΓc(Bx
? − (1− ε)Bx0 − εw)‖∞ ≤ τ,

(8a)

where Γ is the support of x? and z is its sign sequence on Γ.
We can see from (8a) that the solution to (7) follows piecewise
linear path as ε varies; critical points occur when an element
is added to or removed from the solution x?. Suppose we are
at a solution xk (with support Γ and sign sequence z) to (7)
at some value of ε = εk. As we increase ε by a small amount
from εk to εk + θ, the solution moves to x+

k = xk + θ∂x,
where

∂x = (ATΓAΓ +BTΓBΓ)−1BTΓ (w −Bx0). (9)

Moving in the direction of ∂x by increasing the step size θ, we
eventually hit a critical point where either one of the entries
in xk shrinks to zero or one of the constraints in (8a) becomes
active (equal to τ ). The smallest amount we can move ε so
that the former is true is simply

θ− = min
j∈Γ

(
−xk(j)

∂x(j)

)
+

, (10)

where min(·)+ denotes that the minimum is taken over positive
arguments only. For the latter, set

pk = AT (Axk − y) +BT (Bxk − εkw − (1− εk)Bx0)

dk = (ATA+BTB)∂x−BT (w −Bx0).

We are now looking for the smallest stepsize ∆ε so that
pk(j) + ∆ε · dk(j) = ±τ for some j ∈ Γc. This is given
by

θ+ = min
j∈Γc

(
τ − pk(j)

dk(j)
,
τ + pk(j)

−dk(j)

)
+

. (12)

The stepsize to the next critical point is

θ = min(θ+, θ−). (13)



With the direction ∂x and stepsize θ chosen, the next critical
value of ε and the solution at that point become

εk+1 = εk + θ, xk+1 = xk + θ∂x.

The support for new solution xk+1 differs from Γ by one
element. Let γ− be the index for the minimizer in (10) and
γ+ be the index for the minimizer in (12). If we chose θ−

in (13), then we remove γ− from the support Γ and the sign
sequence z. If we chose θ+ in (13), then we add γ+ to the
support, and add the corresponding sign to z. This procedure
is repeated until ε = 1.

The main computational cost at every homotopy step comes
from solving a |Γ| × |Γ| system of equations to compute
the direction in (9), and two matrix-vector multiplications to
compute the dk for the stepsize. Since the support changes by
a single element at every homotopy step, the update direction
can be computed using rank-1 update methods [21].

IV. ADDING COLUMNS TO THE SYSTEM MATRIX

Suppose we have solved (5) for a given value of τ to get the
solution x0 with support Γ and sign sequence z. Now suppose
we modify the system in (4) by adding P new columns in the
system matrix. The modified system can be written as

y = Ax+Bu+ e, (14)

where B is an M×P matrix and u ∈ RP is a vector denoting
the respective decomposition coefficients. Consequently, we
want to solve the following updated BPDN problem

minimize
x,u

τ(‖x‖1 + ‖u‖1) +
1

2
‖Ax+Bu− y‖22. (15)

In the context of sparse approximation using overcomplete
dictionary, adding B amounts to adding new atoms to the
dictionary. For the case of compressive sensing, this update
can be considered as adding columns to the underlying spar-
sity inducing dictionary. The intuition behind this update is
that adding new columns to the dictionary may enhance the
sparsity of the solution. For example, suppose our signal is a
superposition of spikes and sinusoids, whereas our representa-
tion basis A only contains sinusoidal elements. In such case,
adding new columns with time-localized content will improve
the reconstruction quality. As another example, consider the
face recognition setup in [22], where each column in B would
correspond to a new face in the face directory and may
improve the feature extraction performance.

Our proposed update algorithm is a simple extension of the
standard LASSO homotopy algorithm. We use the following
homotopy formulation for (15)

minimize τ(‖x‖1 + ε‖u‖1) +
1

2
‖Ax+Bu− y‖22, (16)

where τ is fixed and ε is the homotopy parameter. Note that
for a very large value of ε (e.g., ετ > ‖BT (Ax0 − y)‖∞) the
solution of (16) is same as x0, and the solution of (16) reaches
the solution of (15) as ε is reduced to 1.

The optimality conditions for any solution x? and u? to (16)
at the given values of τ and ε can be written as

ATΓx(Ax? +Bu? − y) = −τzx,
‖ATΓcx(Ax? +Bu? − y)‖∞ < τ

BTΓu(Ax? +Bu? − y) = −τεzu,
‖BTΓcu(Ax? +Bu? − y)‖∞ < τε,

where Γx and Γu denote the support of x? and u?, and zx
and zu denote their signs on respective supports. With these
optimality conditions in hand, we can develop the update
homotopy algorithm similar to the standard LASSO homotopy.
Suppose xk and uk are the solutions to (16) at τ and ε = εk,
with supports and sign sequence Γx, Γu, zx and zu. Let us

denote D = [A B], qk =

[
xk
uk

]
and Γ = Γx∪Γu and z =

[
zx
zu

]
.

Using the active constraints in the optimality conditions (17),
we can write the optimality conditions at ε+ = εk − θ for a
diminishingly small value of θ > 0, with new optimal solution
q+, as follows

ATΓx(Ax+ +Bu+ − y) = −τzx
BTΓu(Ax+ +Bu+ − y) = −τε+zu

≡ DT
Γ (Dq+ − y) = −

[
τ
τε+

]
z. (18)

The update direction ∂q = q+ − qk can therefore be written
as

∂q =

(DT
ΓDΓ)−1

[
0

zu

]
on Γ

0 otherwise.

(19)

We move qk in this update direction to a critical point where
support changes, similar to the standard LASSO homotopy—
either an inactive constraint becomes active or an element in
q shrinks to zero. Assuming that the support changes with a
step size τθ, the new value of homotopy parameter ε will be
ε+ = ε− θ. We repeat the homotopy iterations until ε is 1.

Note that the very first iteration of update homotopy can be
initialized with u = 0 at ε = ‖BT (Ax0 − y)‖∞/τ , with one
support element Γu = γ with sign zu = zγ where BTγ (Ax0−
y) = −τεzγ .

V. EXPERIMENTS

A. Row update

In this experiment we test the performance of our proposed
homotopy algorithm when multiple measurements are added to
the system. Our experiment setup is as follows. The underlying
sparse signal x contains ±1 spikes at K randomly chosen
locations. The M × N matrix A and P × N matrix B have
Gaussian entries with distribution Normal(0, 1/(M+P )). We
observe y = Ax+e and w = Bx+d with e and d as Gaussian
noise vectors whose entries are distributed Normal(0, 0.012).
We start by solving (5) for a given value of τ . Then we solve
(6) with the additional P measurements, using the algorithm
described in Sec. III. The results of 50 simulations with N =



TABLE II
COMPARISON OF ITERATION COUNT FOR THE DYNAMIC UPDATE AND

LASSO WITH COLUMN ADDITION AT τ = 0.02.

Signal type dynamic update LASSO

Blocks 9.88 69.37
HeaviSine 4.29 22.23
Piece-Polynomial 8.25 59.74
Ramp 5.17 30.93

1024, M = 512, K = M/5 are summarized in Table I for
different values of P and τ . We chose τ = λ‖AT y‖∞ with
λ ∈ {0.5, 0.1, 0.05, 0.01}. The experiments were run on
a standard desktop PC, and we recorded the average number
of times we needed to apply2 AT and A (nProdAtA). The
results are summarized in Table I, and are compared against
the standard BPDN homotopy algorithm (LASSO), GPSR [12]
with a warm start, and FPC AS [13] with a warm start.

The average number of homotopy iterations taken for the
update varies with the sparsity of the solution. At large values
of τ , the solution has a small number of non-zero entries and
the update requires lesser homotopy steps. For smaller values
of τ , the solution has many more non-zero terms and the
number of iterations in the update increases. The number of
iterations scale nicely with the number of new measurements
(P ) too.

B. Column update

In this experiment we test the performance of homotopy
update scheme when columns are added in the system matrix.
We construct an M×2M overcomplete dictionary D by taking
union of M -dimensional DCT and orthogonal Wavelet bases
(using Daubechies 8 filter). For a given signal y of length M ,
we start by solving (5) using an M × M matrix A whose
columns are chosen at random from D. Then we sequentially
add remaining columns to the system, one at a time, and solve
(20) using the previous solution in the homotopy algorithm
described in Sec. IV. We tested our algorithm for four differ-
ent signals y, taken from WaveLab toolbox [23], which are
normalized to have maximum magnitude of 1. Snapshots of
the original signals along with approximations with a random
subset of columns are shown in Fig. 1. The results over 20
simulations for M = 128 are tabulated in Table II, where
we compare the average number of iterations taken by the
dynamic update algorithm and standard LASSO homotopy
algorithm (run from scratch).

VI. DISCUSSION

In Sec. III and IV we discussed updating schemes for two
specific types of modifications in the system matrix, namely

2Each iteration of the dynamic update algorithm requires an application
of A and AT along with several much smaller matrix-vector multiplies to
perform the rank-1 update, and an initial factorization of BΓ. Since these
smaller matrix-vector multiplies are so much cheaper, the numbers in the
table include only applications of AT and A.
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Fig. 1. Snapshots of different test signals. Solid line: original signal. Dashed
line: approximation with 160 columns.

when rows and columns are added to the system. In some cases
we may want to update the solution of (5) after a different
modifications in the matrix A. Suppose we have solved (5)
using matrix A and then we modify A to Ã and we want to
solve the following updated optimization problem

minimize
x

τ‖x‖1 +
1

2
‖Ãx− y‖22. (20)

We usually encounter such updates when we solve the
optimization problem of the above form simultaneously over
x and A. For example, dictionary learning [24], [25], blind
deconvolution [26], or simultaneous image/video transforma-
tion and sparse representation [27], where we simultaneously
estimate sparse coefficients and update the system matrix. Let
us consider the following dictionary learning problem

minimize
Xi=1,...,T ,A

τ

T∑
i

‖Xi‖1 +
1

2

∑
i

‖AXi − Yi‖22, (21)

where A is the representation dictionary, Xi denotes sparse
coefficients for observations Yi. This problem is separable for
each Xi and is typically solved by alternately minimizing over
all Xi and A. After each update of A we get a slightly different
matrix Ã, and we have to solve a problem of the form (20)
for each Xi.

So far, we do not have an updating algorithm for such matrix
updates for an arbitrary system. However, if we can find a
vector ỹ such that

ÃTΓ (Ãx0 − ỹ) = −τz (22a)

‖ÃTΓc(Ãx0 − ỹ)‖∞ < τ, (22b)

where x0 is the solution of (5) with system matrix A, having
support Γ and sign sequence z, then we can solve the following
homotopy formulation using update scheme similar to the one
described in Sec. III

minimize
x

τ‖x‖1 +
1

2
‖Ãx− (1− ε)ỹ − εy‖22. (23)

Note that as ε varies from 0 to 1, the solution of (23) follows
a homotopy path from x0 to the solution of (20). Although it



TABLE I
COMPARISON OF THE DYNAMIC UPDATE, LASSO, GPSR AND FPC WITH P NEW MEASUREMENTS.

P
λ dynamic update LASSO GPSR-BB FPC AS

(τ = λ‖AT y‖∞ ) nProdAtA nProdAtA nProdAtA nProdAtA

1

0.5 2.3 41.86 11.86 15.98
0.1 4.72 159.76 42.64 50.70

0.05 4.5 162.34 38.80 97.73
0.01 8.02 233.70 55.46 79.83

5

0.5 5.88 42.00 14.24 15.96
0.1 9.58 152.54 46.42 47.48

0.05 10.70 161.36 47.96 98.75
0.01 20.32 227.82 66.64 78.58

10

0.5 7.6 44.72 14.96 16.12
0.1 14.98 155.26 53.12 47.05

0.05 16.40 162.72 52.12 98.51
0.01 29.34 241.52 75.44 82.91

may not be possible to find such vector in every problem, but
in a very restrictive case, it is trivial to find such vector. Note

that if |Γ| < 1

2

(
1 +

1

µ

)
, where µ is the incoherence of Ã,

defined as µ = maxi 6=j |〈ãi, ãj〉|. Then it is guaranteed that
‖ÃTΓcÃΓ(ÃTΓ ÃΓ)−1z‖∞ < 1 [28], and

ỹ = Ãx0 + τÃΓ(ÃTΓ ÃΓ)−1z

would trivially satisfy (22), hence (20) can be solved efficiently
using the previous solution x0 in (23).
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