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ABSTRACT

The Dantzig selector is a near ideal estimator for recovery of sparse signals from linear measurements in the
presence of noise. It is a convex optimization problem which can be recast into a linear program (LP) for real
data, and solved using some LP solver. In this paper we present an alternative approach to solve the Dantzig
selector which we call “Primal Dual pursuit” or “PD pursuit”. It is a homotopy continuation based algorithm,
which iteratively computes the solution of Dantzig selector for a series of relaxed problems. At each step the
previous solution is updated using the optimality conditions defined by the Dantzig selector. We will also discuss
an extension of PD pursuit which can quickly update the solution for Dantzig selector when new measurements
are added to the system. We will present the derivation and working details of these algorithms.

Keywords: compressive sensing, `1 norm minimization, sparse signal recovery, statistical estimation, online
observations

1. INTRODUCTION

The theory of compressive sensing provides us with a general framework under which a sparse signal can be
recovered from a small number of linear measurements.1–4 The general setup is as follows: Suppose there is
an unknown signal x ∈ Rn and we have its m measurements given as y = Ax, where A is an m × n matrix
and m � n. If x is sparse i.e., it has a small number of non-zero elements, and the columns of A obey some
incoherence property,5 then we can recover x exactly, even though in general it is not possible. We do so by
solving the following convex optimization problem

minimize
x̃

‖x̃‖1 subject to Ax̃ = y. (1)

In real world systems the measurements will never be free of noise. To account for such inaccuracies, consider
the following model with noisy measurements: y = Ax+e, where e ∈ Rm is the stochastic or deterministic noise.
To accommodate this noise we can replace the equality constraint in (1) with a relaxed data fidelity constraint.
The Dantzig selector (DS)6 is a robust estimator for this purpose. The approximation error for DS is within
a logarithmic factor of the error achieved by an ideal estimator (for details see Ref. 6). It replaces equality
constraint in (1) with the bounded residual error correlation constraint, given as

minimize
x̃

‖x̃‖1 subject to ‖AT (Ax̃− y)‖∞ ≤ τ, (2)

for some suitable τ > 0. It is also a convex program which can be recast as an LP, and is essentially as easy to
solve as (1). A typical way to solve such problems is via interior point methods. The main computational cost of
such optimization methods comes from solving a complete n × n system of linear equations several times, each
of which costs O(n3) flops.

In this paper we will present a fast and efficient scheme to solve (2), which we call “Primal Dual pursuit”
or “PD pursuit”.7 It is a homotopy continuation based algorithm which successively builds the solution of (2)
in a fashion of “one element at a time”. So instead of solving a complete system of equations, we just need a
simple rank one update at each step. In particular, if we use explicit matrices then this method is very fast
compared to the conventional LP solvers. Another advantage of the homotopy algorithm is that it provides
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us with a series of solutions to (2) for a range of τ . Whereas, in LP framework one has to solve (2) for each
value of τ separately. In addition to solving (2), our algorithm illuminates how DS works; it is essentially like a
soft thresholding for under-determined systems.8 Our proposed algorithm is similar in nature to the homotopy
method for LASSO9,10 and its approximation LARS;11 a relation which we will explore later. There also exists
another homotopy algorithm for (2) called DASSO,12 which is based on sequential simplex-like algorithm.

In the second part of this paper we will discuss another homotopy scheme, based on PD pursuit, which can
quickly update the solution of DS as new measurements are added to the system. The problem setup is as follows:
Assume that we have solved (2) for a given value of τ and then we receive a new measurement w = bx+d, where
b is a new row in the measurement matrix and d represents error in the new measurement. This gives us the
following updated system [

y
w

]
=
[
A
b

]
x+

[
e
d

]
. (3)

In order to estimate x from this new system we want to solve the following updated version of (2)

minimize
x̃

‖x̃‖1 subject to ‖AT (Ax̃− y) + bT (bx̃− w)‖∞ ≤ τ, (4)

for the same value of τ . Our goal here is to find the solution of (4) without having to solve this new optimization
problem from scratch. We will present a homotopy algorithm which serves this purpose; instead of solving (4)
from scratch it builds a homotopy path from the already computed solution of (2) to that of (4).

The organization of this paper is as follows, in section 2 we will present the derivation and working details of
PD pursuit, along with the optimality conditions which are used to derive the homotopy algorithm. Section 3
discusses the homotopy algorithm for dynamic update of measurements. We will conclude with a brief summary
of our findings in section 4.

2. PRIMAL DUAL PURSUIT

2.1 Problem Formulation
In the formulation of this homotopy algorithm we use strong duality between primal and dual objectives of DS.
We will first present the dual form of (2) and then derive the optimality conditions needed to be satisfied by any
of its primal and dual solution for a particular value of τ . Then we will see that by changing τ we can construct
the homotopy continuation for (2).

The dual problem to (2) can be written as

maximize
λ

− (τ‖λ‖1 + 〈λ,AT y〉) subject to ‖ATAλ‖∞ ≤ 1, (5)

where λ ∈ Rn is the dual vector. Using strong duality between the primal and dual objectives in (2) and (5)
respectively at any optimal primal-dual solution pair (x∗, λ∗) we get the following equality

‖x∗‖1 = −τ‖λ∗‖1 − 〈λ∗, AT y〉,

which can equivalently be written as

‖x∗‖1 + τ‖λ∗‖1 = −〈x∗, ATAλ∗〉+ 〈λ∗, AT (Ax∗ − y)〉. (6)

The complementary slackness condition implies that at any optimal solution point only those elements in the
dual vector will be non-zero for which the corresponding primal inequality constraints are active (i.e., hold with
equality), similarly for the dual constraints and elements in the primal vector.13 So using (6) and the feasibility
conditions in (2) and (5):

‖AT (Ax− y)‖∞ ≤ τ (7a)

‖ATAλ‖∞ ≤ 1, (7b)

we get the following four optimality conditions which must be obeyed by the solution pair (x∗, λ∗) to (2) and
(5) at any given τ :



K1. ATΓλ(Ax∗ − y) = τzλ

K2. ATΓxAλ
∗ = −zx

K3. |aTγ (Ax∗ − y)| < τ for all γ ∈ Γcλ

K4. |aTγAλ∗| < 1 for all γ ∈ Γcx,

where Γx and Γλ is the support of x∗ and λ∗, zx and zλ are the sign sequences of x∗ and λ∗ on their respective
supports. It can be shown that (K1-K4) are necessary and sufficient conditions for any primal-dual pair (x̂, λ̂)
to be the unique solution of (2) and (5), with respective supports and sign sequences at any given value of τ . So
solving (2) is simply finding a primal-dual pair which satisfies (K1-K4). The homotopy method for the Dantzig
selector can now be derived using these optimality conditions.

The working principle of homotopy methods (in general) is to trace the solution path of an optimization
problem parameterized by some homotopy parameter. We start from an easily computable initial solution and
iteratively move towards the desired solution by gradually changing the homotopy parameter. In PD pursuit we
select τ as the homotopy parameter. Let k ∈ {1, 2, . . .} to be the homotopy iteration index. In our method this
implies following the path traced by a sequence of primal-dual pairs (xk, λk) towards the final solution (x∗, λ∗),
while changing τ . We start from a very large value of τ (e.g., τ1 > ‖AT y‖∞ where solution x1 is a zero vector) and
reduce it towards the final desired value, while updating the primal-dual solution pair (xk, λk). It is important
to note from (K1-K4) that at any value of τk, the active primal constraints determine the support (Γλ) and
sign sequence (zλ) for the dual vector (λk) and the active dual constraints determine the support (Γx) and sign
sequence (zx) for primal vector (xk). Moreover, (Γλ,Γx, zλ, zx) for every τk completely define the homotopy path
for the Dantzig selector, as depicted by the following equations

xk = τk(ATΓλAΓx)−1zλ + (ATΓλAΓx)−1ATΓλy (8a)

λk = −(ATΓxAΓλ)−1zx. (8b)

In PD pursuit we use (K1-K4) to continuously update the supports and sign sequences for primal and dual
vectors, while reducing τ towards the desired value. Along this homotopy path there are some critical values of
τ where the support of primal and/or dual vectors change. So our algorithm essentially traverses through this
homotopy path while updating the supports of primal-dual vectors on these critical values of τ .

2.2 Algorithm

This algorithm can be divided into two main parts: Primal update and Dual update. In primal update phase
we update the primal vector using the primal feasibility conditions in (7a). In dual update phase we use the
information from primal update phase to update the dual vector using the dual feasibility conditions in (7b);
hence the name “Primal Dual pursuit”. A pseudo-code for this algorithm is given in Algorithm 1.

Suppose at the beginning of kth step we have the solution (xk, λk) at a particular value of τk with corre-
sponding supports and sign sequences (Γλ,Γx, zλ, zx).

2.2.1 Primal update

Compute the update direction ∂x, which minimizes τ by most, as defined in (11) and set xk+1 = xk + δ∂x,
where δ > 0. As we increase δ from zero, primal constraints will change and all the active constraints will shrink
exactly by a factor of δ in magnitude. This can be thought of as “shrinkage” of the primal constraints.8 In
this way we can encounter two possibilities; either a new element enters Γλ (i.e., if an inactive primal constraint
becomes active) or a non-zero element of xk from within Γx shrinks to zero. This happens due to the fact that
the homotopy path for xk is piecewise linear14 w.r.t. τk, as shown in (8a). We choose δ depending on which case



appears first, as described in (9)

|aTγ (Axk+1 − y)| = τk+1 ∀ γ ∈ Γλ, |aTγ (Axk+1 − y)| ≤ τk+1 ∀ γ ∈ Γcλ
| aTγ (Axk − y)︸ ︷︷ ︸

pk(γ)

+δ aTγA∂x︸ ︷︷ ︸
dk(γ)

| ≤ τk − δ ∀ γ ∈ Γcλ

|pk(γ) + δdk(γ)| ≤ τk − δ ∀ γ ∈ Γcλ

δ+ = min
i∈Γcλ

(
τk − pk(i)
1 + dk(i)

,
τk + pk(i)
1− dk(i)

)
+

, δ− = min
i∈Γx

(
−xk(i)
∂x(i)

)
+

δ = min(δ+, δ−),

(9)

where min(·)+ denotes that minimum is taken over positive arguments only. Let us call the indices corresponding
to δ+ and δ− as i+ and i− respectively. So either i+ enters Γλ (if δ+ < δ−) or i− leaves Γx (if δ+ > δ−) and
signs are updated accordingly. The new value of homotopy parameter becomes τk+1 = τk − δ.

2.2.2 Dual update

The dual update works in almost same way as primal update except that here we use the additional information
from primal update phase. So similarly, compute update direction ∂λ in (12) and set λk+1 = λk + θ∂λ, where
θ > 0 is the step size. In contrast to the primal constraints, the dual constraints do not shrink and the path
taken by λk is piecewise constant. However, we can still use similar procedure to update the supports with some
extra checks while computing ∂λ (see sec. 2.2.3). So as θ increases from zero, either a new element enters Γx
(i.e., if an inactive dual constraint becomes active) or an element of λk from within Γλ shrinks to zero. And we
select step size accordingly as described in (10).

|aTν Aλk+1| = 1 ∀ ν ∈ Γx, |aTν Aλk+1| ≤ 1 ∀ ν ∈ Γcx
| aTν Aλk︸ ︷︷ ︸
ak(ν)

+θ aTν A∂λ︸ ︷︷ ︸
bk(ν)

| ≤ 1 ∀ ν ∈ Γcx

|ak(ν) + θbk(ν))| ≤ 1 ∀ ν ∈ Γcx

θ+ = min
j∈Γcx

(
1− ak(j)
bk(j)

,
1 + ak(j)
−bk(j)

)
+

, θ− = min
j∈Γλ

(
−λ(j)
∂λ(j)

)
+

θ = min(θ+, θ−).

(10)

Let us call the indices corresponding to θ+ and θ− as j+ and j− respectively. So either j+ enters Γx (if θ+ < θ−)
or j− leaves Γλ (if θ+ > θ−) and signs are updated accordingly.

2.2.3 Update directions

The update directions for primal and dual vectors can be derived using the optimality conditions (K1-K4).
Suppose we are at the vertex (xk, λk) corresponding to τk with supports and signs (Γλ,Γx, zλ, zx). For primal
vector; we want to update xk in the direction ∂x which causes maximum decrease in τk. So using (K1) we get
the following update direction for xk:

∂x =

{
−(ATΓλAΓx)−1zλ on Γx
0 elsewhere

. (11)

In order to derive the dual update direction ∂λ, we will use (K2) with the additional information from primal
update. Let us assume that a new element γ enters Γλ in the primal update phase. Then the update direction
for λk can be defined as

∂λ =


−zγ(ATΓxAΓλ)−1ATΓxaγ on Γλ
zγ on γ

0 elsewhere
, (12)



where aγ is the γth column of A, zγ is the sign of γth primal active constraint which in fact is sign of the new
element in λk+1.7 To see why this is true, assume that λk+1 = λk + θ̃∂̃λ, with the update direction ∂̃λ and step
size θ̃. Since the dual constraints are active on Γx along the homotopy path between τk and τk+1, for a small
step size θ̃ > 0 we can write those active constraints as

ATΓxAλ̃ = −zx
ATΓxAλk + θ̃ATΓxA∂̃λ = −zx
ATΓxAΓλu+ATΓxaγv = 0,

where u is the restriction of ∂̃λ on Γλ and v is the value of ∂̃λ on γth index. Since we already know the sign of
v from the primal update phase, we can write v = czγ , where c is some positive scalar. This gives

u = −czγ(ATΓxAΓλ)−1ATΓxaγ , v = czγ , (13)

which is precisely what is given in (12) with c = 1 (true value of c will be adjusted by the step size θ).

Now consider the case when an element of xk at index γx leaves Γx during primal update phase i.e., Γk+1
x =

Γkx\γx. Here we can pick an element γλ ∈ Γλ such that the matrix ATΓxAΓ̃λ
is invertible, where Γ̃λ := Γλ\γλ.

Invertibility of the new matrix can be easily checked by looking at inverse of its Schur complement; which must
be nonzero.7 Using (12) with γ = γλ, zγ = 1 and Γλ = Γ̃λ we can compute ∂λ. Since here we do not know the
actual sign of λk+1 at γth index, i.e., c can be negative in (13), so we may need to flip sign of ∂λ while computing
θ in (10) if sign[ak(γx)] = sign[bk(γx)]. Also note that λk(γλ) is not necessarily zero here, so it can also shrink.

2.2.4 Initialization

Start with x0 = 0, λ0 = 0,Γx = [ ],Γλ = [ ], zx = [ ], zλ = [ ]. For the first step pick τ1 = ‖ATλ‖∞, because for
any large value x = 0. This gives Γλ = {γ}, where γ corresponds to the only active primal constraint. After this
perform the dual update∗ as described in Algorithm 1.

2.3 Numerical Implementation

The main computational cost of this algorithm comes from computing the update directions ∂x and ∂λ, and
respective step sizes δ and θ. We have to solve a system of equations at every step involving inversion of the
square matrix Gk := ATΓxAΓλ or its transpose. Since our algorithm constructs the solution by adding or removing
“one element at a time”, so we do not need to solve a complete system of equations at every step; each of which
will cost O(S3

k +S2
km) flops, where Sk is the size of support at kth step. Instead we can easily update the inverse

of Gk, whenever Γx and/or Γλ change, using matrix inversion lemma with a cost of about O(Skm) flops. The
cost associated to compute step sizes is about O(mn). So the computational cost at each step is essentially same
as a few matrix-vector multiplications, which cannot be reduced if we use matrices explicitly. The total cost of
Algorithm 1 is bounded above by O(dmn), where d is total number of homotopy iterations.

MATLAB files for this implementation are available on this webpage: http://users.ece.gatech.edu/∼sasif

2.4 S-step Solution Property

In7 we presented some conditions under which any S-sparse signal x can be recovered from its noiseless measure-
ments in exactly S-steps of Algorithm 1; also called S-step solution property. The conditions essentially require
that any element which once enters the support never leaves it and only correct elements enter the support at
each step. We also showed that in case of random matrix A (Gaussian or Bernoulli), S-step solution property
holds with high probability if

m & S2 log n.

However, in simulations we have observed that S-step solution property holds even for about S log n measure-
ments. If S-step solution property holds then the computational cost of Algorithm 1 becomes O(Smn), whereas
we do not have any such guarantee if we solve (2) using linear programming.
∗support of x and λ will be same for the first step



Algorithm 1 Primal Dual Pursuit Algorithm
Initialize xk, λk,Γx,Γλ, zx, zλ and τk for k = 1 as described in sec. 2.2.4
repeat

k ← k + 1
Primal update:
compute the primal update direction ∂x as in (11)
compute pk, dk and δ as in (9)
xk+1 = xk + δ∂x
εk+1 = εk − δ
if δ = δ− then

Γx ← Γx \ i− {remove i− from supp(x) and update Γx}
Γ̃λ = Γλ {store the current Γλ in a dummy variable}
Γλ ← Γλ \ γ {select an index γ from supp(λ) and remove it from Γλ}
zγ = zλ(γ) {treat γ as the new element to supp(λ)}
update zx, zλ {update sign sequences on updated supports}

else
Γ̃λ = Γλ ∪ {i+} {store i+ but do not update Γλ}
zλ = sign[AT

Γ̃λ
(Axk+1 − y)] {update zλ}

γ = i+

zγ = zλ(γ)
end if
Dual update:
compute the dual update direction ∂λ as in (12)
compute ak and bk as in (10)
if δ = δ− & sign[ak(i−)] = sign[bk(i−)] then

∂λ← −∂λ {a check needed due to uncertainty in sign}
bk ← −bk {flip the sign of ∂λ and in turn bk}

end if
compute θ as in (10)
λk+1 = λk + θ∂λ
if θ = θ− then

Γλ ← Γ̃λ \ j− {remove j− from supp(λ) and update Γλ}
update zλ {update sign sequence on updated support}

else
Γx ← Γx ∪ {j+} {add j+ to supp(x) and update Γx}
Γλ ← Γ̃λ {set Γλ to supp(λ) determined in Primal update}
zx = sign[ATΓxAλk+1] {update zx}

end if
until τk+1 ≤ τ

2.5 Comparison with LARS and LASSO
The presented homotopy algorithm for DS is very similar to the homotopy method for LASSO. An equivalent
formulation for LASSO (also known as Basis pursuit Denoising15) can be written as the following unconstrained
minimization problem

minimize
x̃

τ‖x̃‖1 +
1
2
‖Ax̃− y‖22. (14)

In order to derive homotopy method for (14), we can write its optimality conditions16 for any solution x∗ at a
particular value of τ as follows

L1. ATΓ (Ax∗ − y) = −τz

L2. |aTγ (Ax∗ − y)| < τ for all γ ∈ Γc



where Γ is the support of x∗ and z is its sign sequence on Γ. This gives the following update direction

∂x =

{
(ATΓAΓ)−1z on Γ
0 on Γc

. (15)

Its homotopy steps will be same as the primal update phase in Algorithm 1. Note that Lasso optimality conditions
(L1-L2) are exactly same as the Dantzig selector optimality conditions (K1-K4) when Γλ = Γx and zλ = −zx. So
in Algorithm 1 if we perform only the primal update, set Γx = Γλ and zλ = −zx, then it is same as the homotopy
method for LASSO.17 In addition, if we omit the step which removes an element from the support as well, then
it is same as LARS.11 So Algorithm 1, actually a homotopy for the Dantzig selector, can be considered as a
generalization of homotopy for LASSO and LARS. This similarity is also discussed by James et al. in Ref. 12 for
DASSO. In addition to this, it can also be shown that if S-step solution property holds then Dantzig selector,
LASSO and LARS all have exactly same homotopy path7 and vice versa.

3. DYNAMIC MUEASUREMENT UPDATE

3.1 Problem Formulation

In this section we will present the homotopy algorithm which can quickly update the solution of DS when new
measurements are added, as described in (3). In order to solve (4), by using the already computed solution of
(2), we propose the following homotopy formulation

minimize
x̃

‖x̃‖1 subject to ‖AT (Ax̃− y) + εbT (bx̃− w)‖∞ ≤ τ, (16)

where τ is fixed and ε ∈ [0, 1] is the homotopy parameter here. Note that at ε = 0 the solution to (16) is same as
that for (2). As ε changes from 0 to 1 the solution to (16) traces a homotopy path towards the solution of (4).

In order to derive the homotopy scheme we need the optimality conditions for (16) as well. Similarly, we can
write the required optimality conditions for any solution pair (x∗, λ∗) at any given value of ε as follows:

D1. ATΓλ(Ax∗ − y) + εbTΓλ(bx∗ − w) = τzλ

D2. ATΓxAλ
∗ + εbTΓxbλ

∗ = −zx

D3. |aTγ (Ax∗ − y) + εbTγ (bx∗ − w)| < τ for all γ ∈ Γcλ

D4. |aTγAλ∗ + εbTγ bλ
∗| < 1 for all γ ∈ Γcx,

where Γx and Γλ is the support of x∗ and λ∗, zx and zλ are the sign sequences of x∗ and λ∗ on their respective
supports. Similarly, homotopy path for this problem is also completely defined by the primal-dual supports and
sign sequences (Γλ,Γx, zλ, zx) for every value of ε. Along this homotopy path there are some critical values of ε
where the support of primal and/or dual vectors change, and our algorithm essentially finds those critical values
and updates supports at those points along the homotopy path.

3.2 Algorithm

The algorithm we discuss here for dynamic measurement update in DS is (in principle) similar to the dynamic
update for Lasso presented in Ref. 18, along with the fact that here we need to update both primal and dual
vectors at every homotopy step and take care of both primal and dual constraints. This algorithm can also be
divided into two main parts: In the first phase we change both primal and dual vectors (x, λ) in their respective
update directions (∂x, ∂λ), which increase ε by most, until there is some change in the support of primal or dual
vector; this determines the new critical value of ε. Then depending on the outcome of this phase i.e., whether
the support is changed by the primal or dual vector, we fix the vector which caused the change and update the
other one.



3.2.1 Phase 1

Let us assume that we already have the primal-dual solution pair (xk, λk) to (16) at some critical value of ε = εk,
with respective supports and sign sequences (Γλ,Γx, zλ, zx). The corresponding optimality conditions in (D1-D4)
can be written as

ATΓλ(Axk − y) + εkb
T
Γλ

(bxk − w) = τzλ (17a)

ATΓxAλk + εkb
T
Γxbλk = −zx (17b)

‖ATΓcλ(Axk − y) + εkb
T
Γcλ

(bxk − w)‖∞ < τ (17c)

‖ATΓcxAλk + εkb
T
Γcx
bλk‖∞ < 1. (17d)

Now we need to find update directions (∂x, ∂λ) for primal-dual pair (xk, λk) such that ε increases by most. These
directions can be derived using (17a) and (17b). The update directions which change ε from εk to εk+1 can be
written as

∂̃x =

{
−(εk+1 − εk)(ATΓλAΓx + εk+1b

T
Γλ
bΓx)−1bTΓλ(bxk − w) on Γx

0 otherwise
,

∂̃λ =

{
−(εk+1 − εk)(ATΓxAΓλ + εk+1b

T
Γx
bΓλ)−1bTΓxbλk on Γλ

0 otherwise
.

Similarly the primal and dual constraints are changed with these update directions as follows:

‖AT [A(xk + ∂̃x)− y] + εk+1b
T [b(xk + ∂̃x1)− w]‖∞ ≤ τ,

‖ATA(λk + ∂̃λ) + εk+1b
T b(λk + ∂̃λ)‖∞ ≤ 1.

We can further simplify these equations using matrix inversion lemma,19 to separate the step size from the
update directions, which gives us the following update equations for primal-dual vectors and their constraints
(let u := bΓx(ATΓλAΓx + εkb

T
Γλ
bΓx)−1bTΓλ)

∂x1 =

{
−(ATΓλAΓx + εkb

T
Γλ
bΓx)−1bTΓλ(bxk − w) on Γx

0 otherwise
(18)

δx =
εk+1 − εk

1 + (εk+1 − εk)u
, (19)

‖AT (Axk − y) + εkb
T (bxk − w)︸ ︷︷ ︸

pk

+δx (ATA+ εkb
T b)∂x1 + bT (bxk − w)︸ ︷︷ ︸

dk

‖∞ ≤ τ, (20)

∂λ1 =

{
−(ATΓxAΓλ + εkb

T
Γx
bΓλ)−1bTΓxbλk on Γλ

0 otherwise
(21)

δλ =
εk+1 − εk

1 + (εk+1 − εk)u
, (22)

‖ATAλk + εkb
T bλk︸ ︷︷ ︸

ak

+δλ (ATA+ εkb
T b)∂λ1 + bT bλk︸ ︷︷ ︸
bk

‖∞ ≤ 1, (23)

where ∂x1 and ∂λ1 are the new primal-dual update directions, δx and δλ are their respective step sizes required
to change ε from εk to some nearby εk+1. Subscript 1 here is to denote the phase 1.

So if we move in direction ∂x1 by increasing δx (this is like primal update phase in PD pursuit), ε increases
and at some point either a new element will enter the support Γλ (i.e., an inactive primal constraint in (20) will
become active) or an existing element in Γx will leave (i.e., a non-zero element in xk will shrink to zero).

δ+
x = min

i∈Γcλ

(
τ − pk(i)
dk(i)

,
τ + pk(i)
−dk(i)

)
+

, δ−x = min
i∈Γx

(
−xk(i)
∂x1(i)

)
+

δx = min(δ+
x , δ

−
x ),

(24)



This gives us a critical value of ε, let us denote it as εx := εk +
δx

1− δxu
.

In exactly same way, for dual vector, as we move in direction ∂λ1 by increasing δλ, ε increases and at some
critical value either a new element will enter the primal support Γx or an existing element will leave Γλ.

δ+
λ = min

i∈Γcx

(
1− ak(i)
bk(i)

,
1 + ak(i)
−bk(i)

)
+

, δ−λ = min
i∈Γλ

(
−λk(i)
∂λ1(i)

)
+

δλ = min(δ+
λ , δ

−
λ ),

(25)

This gives us another critical value of ε, let us denote it as ελ := εk +
δλ

1− δλu
.

Now we check whether εx or ελ is smaller (equivalent to checking smaller of δx and δλ), this gives us the
actual next critical value of ε on the homotopy path, let us denote it as εk+1 := min(εx, ελ). In addition to
this, let us denote γ as the index of element which is either added or removed from primal or dual support in
this phase. It is like finding the largest step size and corresponding critical point on homotopy path for support
update while obeying all the optimality conditions. So we update primal-dual vectors and constraints using the
smaller step size δ := min(δx, δλ) as

x̃k = xk + δ∂x1, λ̃k = λk + δ∂λ1, p̃k = pk + δdk, ãk = ak + δbk, (26)

which takes both vectors to the critical point where ε = εk+1. Then depending on whether εx or ελ is smaller,
the corresponding vector and respective constraints are fixed at the critical point and using information from
this phase the other vector and its constraints are updated in phase 2.

3.2.2 Phase 2

In this phase we start with primal-dual vectors (x̃k, λ̃k) at critical point and update only the vector (from critical
point onwards) which did not cause support change in phase 1; it is analogous to dual update in PD pursuit.

Assume that δ = δx, i.e., support change in phase 1 was caused by primal vector. So here we keep the primal
vector (x̃k) and constraints (p̃k) fixed and change dual vector and constraints. Also assume that a new element
entered† the support of dual vector during phase 1 at index γ with sign zγ . Then using this information we can
write the following equations for dual update direction and constraints

∂λ2 =


−(ATΓxAΓλ + εk+1b

T
Γx
bΓλ)−1(ATΓxaγ + εk+1b

T
Γx
bγ)zγ on Γλ

zγ on γ

0 elsewhere
, (27)

‖ATAλ̃k + εk+1b
T bλ̃k︸ ︷︷ ︸

ãk

+θλ (ATA+ εk+1b
T b)∂λ2︸ ︷︷ ︸

b̃k

‖∞ ≤ 1. (28)

Then we find the smallest value of θλ such that either a new element enters the support Γx (i.e., an inactive
constraint in (28) becomes active) or an existing element in λ̃k shrinks to zero, as

θ+
λ = min

i∈Γcx

(
1− ãk(i)
b̃k(i)

,
1 + ãk(i)
−b̃k(i)

)
+

, θ−λ = min
i∈Γλ

(
−λ̃k(i)
∂λ2(i)

)
+

, θλ = min(θ+
λ , θ

−
λ ).

Set pk+1 = p̃k, ak+1 = ãk + θλb̃k, xk+1 = x̃k and λk+1 = λ̃k + θλ∂λ2. Update the support and sign sequence
accordingly.
†If instead an element was removed from Γx, we can use the same trick as explained in sec. 2.2.3.



Similarly, if δ = δλ in phase 1 and assuming that a new element entered the support of primal vector at
index γ with sign zγ . We will keep dual vector (λ̃k) and dual constraints (ãk) fixed and change primal vector
and constraints using the following set of equations

∂x2 =


−(ATΓλAΓx + εk+1b

T
Γλ
bΓx)−1(ATΓλaγ + εk+1b

T
Γλ
bγ)zγ on Γx

zγ on γ

0 elsewhere
, (29)

‖AT (Ax̃k − y) + εk+1b
T (bx̃k − w)︸ ︷︷ ︸

p̃k

+θx (ATA+ εk+1b
T b)∂x2︸ ︷︷ ︸

d̃k

‖∞ ≤ τ. (30)

Find the smallest value of θx such that either one new element enters the support Γλ (i.e., an inactive constraint
in (30) becomes active) or an existing element in x̃k+1 shrinks to zero, as

θ+
x = min

i∈Γcλ

(
τ − p̃k(i)
d̃k(i)

,
τ + p̃k(i)
−d̃k(i)

)
+

, θ−x = min
i∈Γx

(
−x̃k(i)
∂x2(i)

)
+

, θx = min(θ+
x , θ

−
x ).

Set pk+1 = p̃k + θxd̃k, ak+1 = ãk, xk+1 = x̃k + θx∂x2 and λk+1 = λ̃k. Update the support and sign sequence
accordingly.

Repeat this procedure in phase 1 and phase 2 until ε becomes equal to 1. If at any step, on the homotopy
path (during phase 1), the value ε increases from 1, just stop at ε = 1 and quit without any support update.

4. CONCLUSION

In this paper we have presented homotopy algorithm called PD pursuit to solve the Dantzig selector (DS).
We used primal and dual forms of DS along with strong duality between the primal-dual objectives to derive
the optimality conditions which describe the homotopy continuation path. The computational cost at each
homotopy step is very small; involving a rank one update to compute update directions and few matrix-vector
multiplications to compute step sizes. So each homotopy step costs about O(mn) flops, which is essentially the
cost for few matrix-vector multiplications and cannot be reduced if we use explicit matrices. DASSO12 uses
sequential simplex-like algorithm for updating two supports (primal and dual) and finding update direction for
primal vector only. Whereas, we have used dual variable explicitly in PD pursuit, which makes this relation
between supports more obvious and requires updating both primal and dual vectors, their supports and sign
sequences at each homotopy step. In addition to this, using PD pursuit along with the optimality conditions, we
can extend the homotopy procedure to add new measurements or remove‡ existing measurements dynamically.
This way we can avoid solving a new optimization problem from scratch whenever some measurements are
updated in the system.
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