
Dynamic Updating for Sparse Time Varying Signals
M. Salman Asif and Justin Romberg

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia, 30332, USA

Email: {sasif, jrom}@ece.gatech.edu

Abstract—Many signal processing applications revolve around
finding a sparse solution to a (often underdetermined) system of
linear equations. Recent results in compressive sensing (CS) have
shown that when the signal we are trying to acquire is sparse and
the measurements are incoherent, the signal can be reconstructed
reliably from an incomplete set of measurements. However, the
signal recovery is an involved process, usually requiring the
solution of an `1 minimization program.

In this paper we discuss the problem of estimating a time-
varying sparse signal from a series of linear measurements. We
propose an efficient way to dynamically update the solution to
two types of `1 problems when the underlying signal changes.
The proposed dynamic update scheme is based on homotopy
continuation, which systematically breaks down the solution
update into a small number of linear steps. The computational
cost for each step is just a few matrix-vector multiplications.

I. INTRODUCTION

This paper is concerned with solving linear systems of
equations using `1 regularization. In recent years, several
methods have been proposed to perform this task reliably. In
particular, the results in compressive sensing (CS) [1]–[3] have
given some important theoretical limits and conditions under
which the signal recovery is possible from under-determined
system of equations. In the framework of compressive sensing,
we observe a sparse signal indirectly by making a small
number of linear incoherent measurements. The general setup
is as follows: We are given measurements y ∈ Rm of the form

y = Ax + e, (1)

where x ∈ Rn is the unknown signal, A is an m × n
measurement matrix with m� n, and e ∈ Rm represents the
error in the measurements. To reconstruct the original signal,
we solve an optimization program that involves minimizing
the `1 norm of the sparse signal under some data fidelity
constraints.

In this paper we will consider two such optimization meth-
ods. The first one goes by the name of LASSO [4] or basis
pursuit denoising (BPDN) [5], which solves the following
optimization problem

minimize
1
2
‖Ax̃− y‖22 + τ‖x̃‖1 (2)

for some suitable choice of τ > 0. The second one is the
Dantzig selector (DS) [6], which solves (for τ > 0)

minimize ‖x̃‖1 subject to ‖AT (Ax̃− y)‖∞ ≤ τ. (3)

This research was supported in part by an ONR Young Investigator Award
and DARPA’s Analog to Information program.

In this paper we consider the problem of estimating a time-
varying sparse signal from a series of linear measurements.
This type of problem can arise in many situations where
we want to estimate some closely related sparse signals
from linear measurements. For example, in real time MRI
we want to reconstruct a series of closely related frames
[7]. In communication systems, we are continuously trying
to estimate a time-varying (often sparse) channel impulse
response; particular applications include high-definition tele-
vision (HDTV), broadband communication, and underwater
acoustic communication [8]. Other applications might include
video surveillance or object tracking where we want to update
the estimate at regular intervals.

The problem description is as follows. Assume that we have
solved (2) for the system in (1). Now say that the underlying
signal x changes to x̆ and we get a new set of m measurements
given as

y̆ = Ax̆ + ĕ. (4)

This gives rise to the following updated optimization problem

minimize
1
2
‖Ax̃− y̆‖22 + τ‖x̃‖1. (5)

Since we expect that the signal changes only slightly between
measurements, and so the reconstructions will be closely
related. Our goal here is to avoid solving this new optimization
problem from scratch, instead using information from the
solution of (2) to quickly find the solution for (5). Our
approach for doing this is based on the homotopy continuation
principle.

Homotopy methods provide a general framework in which
we can continuously transform one optimization problem
to another by introducing a homotopy parameter. As this
parameter is varied, we trace the homotopy path between
the two problems. In our setting for dynamic updating of a
solution from a new set of measurements, we first build a
homotopy transformation between the already solved problem
in (2) and the desired problem in (5). Then we solve a series
of simple problems along the homotopy path, which lead
us to the solution of (5). It is an iterative procedure, where
every iteration involves a rank-1 update and 2 matrix-vector
multiplications, so the cost for each homotopy step is O(mn).

The outline of this paper is as follows: In Section II
we give a brief review of the homotopy methods to solve
LASSO and DS. In Section III and IV we discuss the solution
update scheme for LASSO and DS. In Section V we present
some simulation results for our solution update algorithm

for LASSO and its comparison with some state-of-the-art
algorithms with a “warm start”.

II. HOMOTOPY METHODS

In this section we will briefly review the homotopy algo-
rithms to solve LASSO and DS for a given value of τ . We
will also discuss some of their properties which we will use
to derive the homotopy algorithms for the dynamic update.

A. LASSO homotopy

The homotopy algorithm for LASSO (sometimes also called
LARS) has been extensively studied in the literature of
statistics and signal processing [9]–[11]. The basic premise
of LASSO homotopy is that the solution for (2) follows
a piecewise linear path with respect to τ . The homotopy
algorithm for LASSO traces the solution path to (2) by starting
from a very large value of τ (where the solution will be zero)
and reducing it towards the desired value. The homotopy path
is followed by ensuring that certain optimality conditions are
being maintained. To be a solution to (2), a vector x∗ must
obey the following conditions (constraints) [12]

‖AT (Ax∗ − y)‖∞ ≤ τ. (L)

In addition, a sufficient condition for the optimality of x∗ is
that the set of locations for which the constraints in (L) are
active (i.e., equal to τ) will be the same as the set of locations
for which x∗ is non-zero [13]. This gives us the following set
of optimality conditions which must be obeyed by the solution
x∗ to (2) for any given value of τ

L1. AT
Γ (Ax∗ − y) = −τz

L2. ‖AT
Γc(Ax∗ − y)‖∞ < τ ,

where Γ is the support (index set for non-zero elements) of
x∗, AΓ is the m × |Γ| matrix formed from the columns of
A indexed by elements in the set Γ, and z is a |Γ|-vector
containing the signs of x∗ on Γ. From this we can see that
the solution x∗ of (2) can be written as

x∗ =

{
(AT

ΓAΓ)−1(AT
Γy − τz) on Γ

0 otherwise
,

which is piecewise linear w.r.t. τ . As we reduce τ , the solution
moves along the direction ∂x, given as

∂x =

{
(AT

ΓAΓ)−1z on Γ
0 otherwise

,

until one of the two things happens: an element of x∗ shrinks
to zero (removing an element from the support of x∗), or
another constraint in (L) becomes active (indicating addition
of an element in the support of x∗). These changes happen at
certain critical points along the homotopy path corresponding
to some critical values of τ , giving the problem its piecewise
linear structure. In the LASSO homotopy we trace the ho-
motopy path for solution of (2) as follows: We start from a
large value of τ , at every critical point we update the solution,
its support and sign sequence, we find an update direction
using the active constraints and move to the next critical point.
Repeat this procedure until τ has reduced to the desired value.

B. Dantzig selector homotopy

The homotopy algorithm for DS is similar in principle to
the homotopy for LASSO. The essential difference between
the two is that for DS homotopy we have to keep track of
both primal and dual solutions for (3) [14], [15]. The dual
problem to the DS in (3) can be written as

maximize − (τ‖λ‖1 + 〈λ, AT y〉) subject to ‖AT Aλ‖∞ ≤ 1,

(6)

where λ ∈ Rn is the dual optimization variable. We can
derive the required optimality conditions by invoking the
complementary slackness property and strong duality between
the problems in (3) and (6) [16]. So any primal-dual solution
pair (x∗, λ∗) to (3) and (6) for any given value of τ must
satisfy the following conditions:
D1. AT

Γλ
(Ax∗ − y) = τzλ

D2. AT
Γx

Aλ∗ = −zx

D3. ‖AT
Γc

λ
(Ax∗ − y)‖∞ < τ

D4. ‖AT
Γc

x
Aλ∗‖∞ < 1,

where Γx and Γλ are the supports of x∗ and λ∗ respectively, zx

and zλ are the sign sequences of x∗ and λ∗ on their respective
supports. We will call (D1,D3) the primal constraints, and
(D2,D4) the dual constraints.

It is convenient to divide every homotopy step for DS into
two phases: 1) primal update and 2) dual update.

Primal update: We can see from D1 that the primal
solution x∗ to DS is also piecewise linear with respect to τ .
As we reduce τ , the solution x∗ moves in the direction ∂x
given as

∂x =

{
−(AT

Γλ
AΓx

)−1zλ on Γx

0 otherwise
.

The primal update phase for DS homotopy is very similar to
the homotopy step for the LASSO. We move our solution in
the direction ∂x by reducing τ and at some point either an
element in x∗ will shrink to zero or a primal constraint in
D3 will become active (indicating addition of a new element
in the support of λ∗). This gives us a critical point on the
homotopy path and a new critical value of τ . However, we do
not know the value of the dual solution λ∗ at this new critical
value of τ .

Dual update: In the dual update, we use the information
about the change in the support from primal phase to find an
update direction ∂λ for the dual vector, and consequently the
new value for the dual solution λ∗. Assume that during primal
update, a new element entered the support of λ∗ at index γ.
Then using D2 we can write the update direction ∂λ as

∂λ =

−zγ(AT

Γx
AΓλ

)−1AT
Γx

aγ on Γλ

zγ on γ

0 elsewhere
, (7)

where aγ is the γth column of A, zγ is the sign of γth primal
active constraint, which in fact is the sign of the new element
in the new dual solution. This direction ensures that the dual

constraints remain active on Γx and the new element in λ∗ at
index γ has the proper sign zγ . So as we move our solution
in the direction ∂λ, one of the two things will happen: either
an element in λ∗ will shrink to zero or a dual constraint in D4
will become active (indicating an addition of a new element
in the support of x∗). The point where this happens gives us
the new value of λ∗.

If instead an element of x∗ shrinks to zero during primal
update, then we can pick an “artificial” index γ ∈ Γλ and treat
it as if it were a new element in the support of λ∗. However,
in this case there will be ambiguity about sign of update
direction, since zγ does not mean anything here. But we can
verify the proper direction by looking at the dual constraints
corresponding to the outgoing element of x∗ [15].

So in every homotopy step for DS, we first update the primal
vector and primal constraints, and then using the information
about the change of support from primal update phase, we
update the dual vector and corresponding constraints. In this
way we move from one critical point to the next along the
homotopy path, until τ has been reduced to its final value.

We can also use this piecewise linear structure to derive al-
gorithms to dynamically update the solutions to both problems
when the measurements change from y to y̆.

III. LASSO DYNAMIC UPDATE

Let us now look at the dynamic update of solution for the
LASSO. Assume that we have solved (2) for some given value
of τ . Then we get a new set of measurements y̆ as given in
(4) and we want to solve (5) for the same value of τ .

We will develop the algorithm for updating the solution to
(5) following three steps. First, we construct the homotopy
transformation between (2) and (5). Second, we derive the
optimality conditions that the solution must obey for any
given value of the homotopy parameter. Finally, using these
optimality conditions we trace the homotopy path towards the
new solution.

Our proposed homotopy formulation is as follows:

minimize
x

1
2
‖Ax− (1− ε)y − εỹ‖22 + τ‖x‖1, (8)

where ε is the homotopy parameter. As we increase ε from
0 to 1, the solution to (8) traces a homotopy path from the
solution of (2) to the solution of (5). The optimality conditions
for any solution x∗ to (8) at a given value of ε can be written
as:

‖AT (Ax∗ − (1− ε)y − εy̆)‖∞ ≤ τ, (9)

or more precisely,

AT
Γ (Ax∗ − (1− ε)y − εy̆) = −τz (9a)

‖AT
Γc(Ax∗ − (1− ε)y − εy̆)‖∞ < τ, , (9b)

where Γ is the support of x∗ and z is its sign sequence on Γ.
We can see from (9a) that again the solution to (8) follows
a piecewise linear path as ε varies; the critical points in this
path occur when an element is either added or removed from
the solution x∗.

Suppose that we are at a solution xk (with support Γ and
signs z) to (8) at some critical value of ε = εk. To find
the direction to move, we will examine how the optimality
conditions behave as ε increases by an infinitesimal amount
from εk to ε+k . The solution x+

k at ε = ε+k must obey

AT
Γ (Ax+

k − (1− ε+k)y − ε+k y̆) = −τz. (11)

Subtracting (9a) from (11), the difference between the solu-
tions ∂̃x = x+

k − xk will be

∂̃x =

{
∆ε · (AT

ΓAΓ)−1AT
Γ (y̆ − y) on Γ

0 otherwise,

where ∆ε = ε+k − εk. So as ε increases from εk, the direction
the solution moves is given by

∂x =

{
(AT

ΓAΓ)−1AT
Γ (y̆ − y) on Γ

0 otherwise.
(12)

With the update direction given by (12), we need to find the
step-size θ that will take us to the next critical value of ε. We
increase ε from εk, moving the solution away from xk in the
direction ∂x, until one of the two things happens: one of the
entries in the solution shrinks to zero or one of the constraints
in (9b) becomes active (equal to τ). The smallest amount we
can move ε so that the former is true is simply

θ− = min
i∈Γ

(
−xk(i)
∂x(i)

)
+

, (13)

where min(·)+ denotes that the minimum is taken over positive
arguments only. For the latter, set

pk = AT (Axk − y + εk(y − y̆)) (14a)

dk = AT (A∂x + y − y̆). (14b)

We are now looking for the smallest stepsize ∆ε so that pk(i)+
∆ε · dk(i) = ±τ for some i ∈ Γc. This is given by

θ+ = min
i∈Γc

(
τ − pk(i)

dk(i)
,
τ + pk(i)
−dk(i)

)
+

. (15)

So the stepsize to the next critical point is

θ = min(θ+, θ−). (16)

With the direction ∂x and stepsize θ chosen, the next critical
value of ε and new solution at that point will be

εk+1 = εk + θ, xk+1 = xk + θ∂x.

The support for new solution xk+1 differs from Γ by one
element. Let i− and i+ be the indices for the minimizers in
(13) and (15) respectively. So either we remove i− from the
support Γ (if θ = θ−) or we add i+ to the support (if θ ==
θ+), and update the sign vector accordingly.

This procedure is repeated until ε = 1. A precise outline of
the algorithm is given in Algorithm 1.

The main computational cost of this algorithm comes from
finding the update direction ∂x and dk for stepsize. For
update direction, since the support changes by a single element

Algorithm 1 Dynamic solution update for the LASSO
Start with ε0 = 0 at solution x0 to (2) with support Γ and
sign sequence z on the Γ for k = 0.
repeat

compute ∂x as in (12)
compute pk, dk as in (14) and θ as in (16)
xk+1 = xk + θ∂x
εk+1 = εk + θ
if εk+1 ≥ 1 then

θ = 1− εk, xk+1 = xk + θ∂x
break; {Quit without any further update}

end if
if θ = θ− then

Γ← Γ \ {i−}
update z

else
Γ← Γ ∪ {i+}
z(i+) = sign [pk(i+) + θdk(i+)]

end if
k ← k + 1

until stopping criterion is satisfied

from step to step, (AT
ΓAΓ)−1 can be computed by a rank-1

update using matrix inversion lemma [17]. Computing step
size involves two matrix-vector multiplications. As such, the
computational cost of each step is O(mn).

IV. DANTZIG SELECTOR DYNAMIC UPDATE

The homotopy algorithm for dynamic update of the Dantzig
selector is very similar to the update of LASSO discussed in
Section III, with the additional requirement of updating both
primal and dual solutions at every step. Assume we have
already solved (3) for some given value of τ and data y.
Then we receive a new set of measurements y̆ as described
in (4). We are interested in solving the following updated
optimization problem

minimize ‖x̃‖1 subject to ‖AT (Ax̃− y̆)‖∞ ≤ τ, (17)

for which we can write the homotopy formulation as

minimize ‖x‖1 subject to ‖AT (Ax−(1−ε)y−εỹ)‖∞ ≤ τ.
(18)

By adapting the optimality conditions D1-D4, we can write
the optimality conditions for any primal-dual solution pair
(x∗, λ∗) to (18) at a given value of ε as

AT
Γλ

(Ax∗ − (1− ε)y − εy̆) = τzλ, (19a)

AT
Γx

Aλ∗ = −zx (19b)

‖AT
Γc

λ
(Ax∗ − (1− ε)y − εy̆)‖∞ < τ, (19c)

‖AT
Γc

x
Aλ∗‖∞ < 1, (19d)

where Γx and Γλ are supports of x∗ and λ∗ respectively, and
zx and zλ are the sign sequences on their respective supports.
We can see from (19a) that again solution x∗ to (18) follows
a piecewise linear path w.r.t. ε, and there will be some critical

points (corresponding to the critical values of ε) where the
support of x∗ and/or λ∗ changes.

The homotopy steps for dynamic update of DS also consist
of two parts: 1) primal update and 2) dual update.

Primal update: Suppose we are at some critical value
of ε = εk, with primal-dual solution (xk, λk). As we change
ε from εk to ε+k , the solution changes to x+

k = xk + ∆ε∂x,
where ∂x is given as

∂x =

{
(AT

Γλ
AΓx

)−1AT
Γλ

(y̆ − y) on Γx

0 otherwise
, (20)

and ∆ε = ε+k −εk. Now if we start to move the solution in the
direction ∂x by increasing ε from εk, at some point either a
primal constraint will be activated in (19c) (indicating a new
element in Γλ) or an element in xk will shrink to zero. We
select the smallest step size such that one of these two things
happens. The smallest step size we can take such that an entry
in xk shrinks to zero is

θ− = min
i∈Γx

(
−xk(i)
∂x(i)

)
+

. (21)

The smallest step size such that a constraint in (19c) becomes
active is given by

θ+ = min
i∈Γc

λ

(
τ − pk(i)

dk(i)
,
τ + pk(i)
−dk(i)

)
+

, (22)

where pk and dk are defined in the same way as in (14). So
the stepsize to the next critical point is

θ = min(θ+, θ−). (23)

The next critical value of ε and solution at that point will be

εk+1 = εk + θ, xk+1 = xk + θ∂x.

Let us denote i− and i+ as the indices for the minimizers in
(21) and (22) respectively. So either we remove i− from the
primal support Γx (if θ = θ−) or we add i+ to the dual support
Γλ (if θ = θ+), and update the sign sequences accordingly. As
we mentioned earlier in the case of the standard DS homotopy
in Section II-B, we will not have the dual solution at this new
critical point.

Dual update: In the dual update we use information about
the change of support in the primal update phase to find an
update direction ∂λ for the dual vector and consequently the
dual solution λk+1 at ε = εk+1. Assume that during the primal
update, a new element entered1 the support of λ at index γ.
Then using (19b) we get the update direction ∂λ, which is
the same as the one defined in (7). This direction ensures
that the dual constraints remain active on Γx and the sign
of new non-zero element in λ+

k = λk + δk∂λ at index γ is
zγ . So as we move our solution λk in this direction ∂λ by
increasing the step size δk from 0, one of two things will
happen, either a nonzero element from λk will shrink to zero
or a dual constraint in (19d) will become active (indicating

1If instead an element was removed from xk , we can use the same trick
of considering an artificial new element, as discussed in Section II-B.

addition of a new element in Γx). The smallest step size such
that an entry in λk shrinks to zero is simply

δ− = min
j∈Γλ

(
−λk(j)
∂λ(j)

)
+

. (24)

The smallest step size such that a constraint in (19d) becomes
active is given by

δ+ = min
j∈Γc

x

(
1− ak(j)

bk(j)
,
1 + ak(j)
−bk(j)

)
+

, (25)

where

ak = AT Aλk, bk = AT A∂λ. (26)

The stepsize for the update of dual solution is

δ = min(δ+, δ−). (27)

The new dual solution will be λk+1 = λk +δ∂λ. Let us define
j− and j+ as the indices corresponding to minimizers of (24)
and (25) respectively. So either j+ is added to Γx (if δ = δ+)
or j− is removed from Γλ (if δ = δ−).

This procedure of primal and dual update is repeated
until ε = 1. A precise outline of the algorithm is given in
Algorithm 2.

V. NUMERICAL EXPERIMENTS

In our first simulation, we start with a sparse signal x which
contains ±1 spikes at randomly chosen K locations. The mea-
surement vector y is generated as in (1), with e as a Gaussian
noise whose entries are distributed Normal(0, 0.012). We used
m×n Gaussian matrix as our measurement matrix A with all
entries independently distributed Normal(0, 1/m). We solve
(2) for a given value of τ . Then we modify the sparse signal
x to get x̆ as follows. First, we perturb the non-zero entries
of x by adding random numbers distributed Normal(0, 0.12).
Then Kn new entries are added to x, with the locations chosen
uniformly at random, and the values distributed Normal(0, 1).
New measurements y̆ := Ax̆ + ĕ are generated, with another
realization of the noise vector ĕ, and (5) is solved using the
DynamicX algorithm (Algorithm 1).

The results of 500 simulations with n = 1024, m =
512, K = m/5 are summarized Table I. In each simulation,
Kn was selected uniformly from [0,K/20]. Several values of τ
were tested, τ = λ‖AT y‖∞ with λ ∈ {0.5, 0.1, 0.05, 0.01}.
The experiments were run on a standard desktop PC, and
two numbers were recorded: the average number of times we
needed to apply2AT and A (nProdAtA), and the average CPU
time needed to complete the experiment (CPU).

Table I also compares DynamicX to three other methods.
The first is “Standard LASSO homotopy”, which resolves (5)
from scratch using our own implementation of the homotopy
algorithm (starting with large τ and gradually reducing it to its
desired value). The second is the GPSR-BB algorithm [18],
which is “warm started” by using the previously recovered

2Each iteration of the DynamicX algorithm requires an application of AT A
along with several much smaller matrix-vector multiplies to perform the rank
one update.

Algorithm 2 Dynamic solution update for the Dantzig selector
Start at ε0 = 0 with primal-dual solution (x0, λ0), their
support sets and sign sequences (Γx,Γλ, zx, zλ).
repeat

Primal update:
compute ∂x as in (20) and θ as in (23)
xk+1 = xk + θ∂x
εk+1 = εk + θ
if εk+1 ≥ 1 then

θ = 1− εk, xk+1 = xk + θ∂x.
break; {Quit without any further update}

end if
if θ = θ− then

Γx ← Γx\{i−}
Γ̃λ = Γλ

Γλ ← Γλ\{γ} {an artificial new element γ}
update zx, zλ, zγ

else
Γ̃λ = Γλ ∪ {i+}, set γ = i+

update zλ, zγ

end if
Dual update:
compute ∂λ as in (7), ak and bk as in (26)
if θ = θ− & sign[ak(i−)] = sign[bk(i−)] then

∂λ← −∂λ, bk ← −bk

end if
compute δ as in (27)
λk+1 = λk + δ∂λ
if δ = δ− then

Γλ ← Γ̃λ \ j−

update zλ

else
Γx ← Γx ∪ {j+}
Γλ ← Γ̃λ

zx = sign[AT
Γx

Aλk+1] {update zx}
end if
k ← k + 1

until stopping criterion is satisfied

signal as the starting point. The third algorithm is FPC AS 3

[19], which is also warm started. The accuracy in GPSR and
FPC was chosen so that the relative error between the exact
solution and their solution was 10−6. We see that DynamicX
compares favorably across a large range of τ .

Table I also contains results for the two experiments below.
Blocks: In this experiment, we recover a series of 200
piecewise constant signals of length n = 2048, similar to
the Blocks signal from WaveLab [20]. We use the Haar
wavelet transform to represent the signal, and take m = 1024
measurements. Each signal is a slight variation of the last:
the discontinuities stay fixed, while the levels of the constant
regions are perturbed by multiplying by a random number

3The FPC actually uses a different number of applications of A and AT ;
these were averaged for the numbers in Table I.

TABLE I
COMPARISON OF THE DYNAMIC UPDATE OF TIME-VARYING SPARSE SIGNALS USING THE STANDARD LASSO HOMOTOPY, GPSR AND FPC. RESULTS

ARE GIVEN IN TERMS OF THE NUMBER OF PRODUCTS WITH AT AND A, AND CPU TIME.

Signal type λ DynamicX Standard Homotopy GPSR-BB FPC AS
(τ = λ‖AT y‖∞) (nProdAtA, CPU) (nProdAtA, CPU) (nProdAtA, CPU) (nProdAtA, CPU)

n = 1024, 0.5 (11.84, 0.031) (42.05, 0.10) (15.34, 0.03) (31.29, 0.055)
m = 512, 0.1 (12.9, 0.055) (154.5, 0.491) (54.45, 0.095) (103.38, 0.13)
K = m/5, 0.05 (14.56, 0.062) (162, 0.517) (58.17, 0.10) (102.37, 0.14)
values: ±1 spikes 0.01 (23.72, 0.132) (235, 0.924) (104.5, 0.18) (148.65, 0.177)
Blocks 0.01 (2.7,0.028) (76.8,0.490) (17,0.133) (53.5,0.196)
Pcw. Poly. 0.01 (13.83,0.151) (150.2,1.096) (26.05, 0.212) (66.89, 0.250)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

4

Blocks signal, n = 2048

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−5

0

5

10
Haar wavelet transform for Blocks signal (zoom in)

Fig. 1. An example of Piecewise constant signal, sparse in wavelet domain

uniformly distributed between 0.8 and 1.2. A typical signal
and its wavelet transform are shown in Figure 1.
Piecewise polynomial: This experiment is similar to the
Blocks experiment, except that we use a piecewise polynomial
(cubic) signal and represent it using the Daubechies 8 wavelet
transform. The polynomial functions are perturbed from signal
to signal by adding small Gaussian random variables to the
polynomial coefficients.

VI. CONCLUSIONS

We have presented a homotopy based scheme to dynam-
ically update the solution for the LASSO and the Dantzig
selector when the signal we are observing changes slightly.
There are several applications where we may need to estimate
a series of closely related sparse signal. In such situations
solving a new optimization problem every time becomes
computationally expensive. So whenever signal is changing
slowly over time our homotopy algorithm can update its
estimate at little computational cost. The algorithm is most
effective when the support of the solution does not change too
much from instance to instance. The simulation results further
show that for the dynamic update in small to medium size
problems, these homotopy methods outperform warm started
GPSR and FPC methods.

REFERENCES

[1] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”

Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[2] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-
tions on, vol. 52, no. 4, pp. 1289–1306, April 2006.

[3] E. Candes, “Compressive sampling,” Proceedings of the International
Congress of Mathematicians, Madrid, Spain, vol. 3, pp. 1433–1452,
2006.

[4] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288,
1996.

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, 1999.

[6] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–
2351, 2007.

[7] M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed Sensing
MRI [A look at how CS can improve on current imaging techniques],”
Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 72–82, March
2008.

[8] S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching
pursuit with application to equalization,” Communications, IEEE Trans-
actions on, vol. 50, no. 3, pp. 374–377, 2002.

[9] M. Osborne, B. Presnell, and B. Turlach, “A new approach to variable
selection in least squares problems,” IMA Journal of Numerical Analysis,
vol. 20, no. 3, pp. 389–403, 2000.

[10] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[11] D. Malioutov, M. Cetin, and A. Willsky, “Homotopy continuation
for sparse signal representation,” IEEE International Conference on
Acoustics, Speech, and Signal Processing,, vol. 5, pp. v/733–v/736,
March 2005.

[12] D. Bertsekas, Nonlinear programming. Athena Scientific Belmont,
Mass, 1999.

[13] J. Fuchs, “On sparse representations in arbitrary redundant bases,”
Information Theory, IEEE Transactions on, vol. 50, no. 6, pp. 1341–
1344, 2004.

[14] G. James, P. Radchenko, and J. Lv, “The DASSO algorithm for fitting
the Dantzig selector and the Lasso,” Journal of the Royal Statistical
Society, Series B, vol. 71, pp. 127–142, 2009.

[15] M. S. Asif, “Primal Dual Pursuit: A homotopy based algorithm for
the Dantzig selector,” Master’s thesis, Georgia Institute of Technology,
August 2008.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, March 2004.

[17] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins
University Press, 1996.

[18] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse
problems,” Selected Topics in Signal Processing, IEEE Journal of, vol. 1,
no. 4, pp. 586–597, 2007.

[19] Z. Wen and W. Yin, “FPC AS: A MATLAB
Solver for `1-Regularized Least Squares Problems.”
http://www.caam.rice.edu/∼optimization/L1/FPC AS/.

[20] J. Buckheit, S. Chen, D. Donoho, and I. Johnstone, “Wavelab 850,
Software toolbox.” http://www-stat.stanford.edu/∼wavelab/.

