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Abstract—Sparse signal recovery from linear measurements is
an important problem which arises in several signal processing
applications. Basis pursuit is a standard convex optimization
program which is often used for this purpose. In this paper
we present two algorithms to dynamically update the solution of
basis pursuit as 1) new measurements are sequentially added or 2)
the underlying signal changes slightly. The goal is to avoid solving
the (computationally expensive) optimization routine every time a
small change occurs in the measurements. Our proposed update
algorithms are based on homotopy principles, which iteratively
update the solution by moving from an already solved problem
towards the desired problem. Each homotopy step involves only
a few matrix-vector multiplications. Simulation results show that
the number of homotopy steps taken for the update is comparable
to the sparsity of the underlying signals.

I. INTRODUCTION

In [1], the authors presented a framework for dynamically
updating the solutions of some `1 norm minimization problems
including basis pursuit denoising [2] and Dantzig selector [3].
The solutions can be updated when either new measurements
are added or the underlying signal changes. In this paper, we
apply this general methodology to the basis pursuit [2].

Recovery of sparse signals from small number of linear
measurements has become an important and extremely ben-
eficial construct in signal processing. In past few years this
idea been extensively studied, with applications in a diverse
set of areas ranging from medical imaging to channel coding
and beyond. This trend has been further accelerated with the
advent of compressive sensing (CS) theory [4]. The results in
CS suggest that exact signal recovery is possible under some
suitable sparsity and incoherence conditions [5].

The general problem setup is as follows. We are given a set
of m measurements

y = Ax, (1)

where A is an m × n measurement matrix with m � n and
x ∈ Rn is the unknown sparse signal we want to reconstruct.
For the reconstruction, we typically solve the following `1
optimization problem, known as basis pursuit (BP):

minimize ‖x̃‖1 subject to Ax̃ = y. (2)

This is a convex program which can be recast into a linear
program [6]. The computational cost for solving BP with a
dense unstructured matrix is O(m2n3/2) [7].

In this paper we discuss the dynamic updating of the
BP, whenever there is a small change in the measurements.

Assume that we have solved (2) for the system in (1), and
consider the following two scenarios:

1) Sequential measurement: The original signal is not re-
covered, so we add one new measurement w = bx to the
system. The new system becomes[

y
w

]
=
[
A
b

]
x. (3)

2) Time varying signal: The underlying signal x changes to
x̆ and we receive the new set of m measurements

y̆ = Ax̆. (4)

We now want to solve BP for the systems in (3) or (4). Our
goal is to avoid solving a new optimization program from
scratch after each measurement update. Instead we show that
we can quickly compute the solution using information from
the already solved BP problem (2).

Motivation with `2: As a motivation, consider the se-
quential measurements in the least squares setting. Assume
that the measurement matrix A in (1) has full column rank
(system is overdetermined). The least squares solution to (1)
has the following analytical form

x̂0 = (ATA)−1AT y.

In order to compute x̂0 we have to solve a system of linear
equations. Typically we use Cholesky or QR factorization of
ATA to solve such systems, for which the computational cost
is O(mn2) [8]. Similarly, the least squares solution for an
overdetermined system in (3) is

x̂1 = (ATA+ bT b)−1(AT y + bTw).

A naive way to compute x̂1 would be to solve this new system
of equations from scratch. A more efficient way, however, is
to update the previous solution x̂0 using (ATA)−1 and the
rank-one update as

x̂1 = x̂0 +K1(w − bx̂0),

where K1 = (ATA)−1bT (1 + b(ATA)−1bT )−1. This update
procedure is the well established recursive least squares (RLS)
method, where each update costs O(mn) [9].

Homotopy with `1: In this paper, we show that the solution
for BP can also be updated with the dynamic changes in
the measurements. We use homotopy principles to update the
solution in a series of rank-one updates.



Homotopy is a general framework in which we can continu-
ously transform one problem into an easy but related problem.
Then we traverse a homotopy path from the easy problem to-
wards the original problem, while solving a sequence of simple
intermediate problems. The progression on this homotopy path
is controlled by the homotopy parameter. The homotopy path
is followed by ensuring that certain optimality conditions are
being maintained [1].

In order to build the homotopy for BP update we need some
optimality conditions. We use the strong duality and comple-
mentary slackness between the primal and dual formulations
of BP to derive these conditions. The dual program for (2) is

maximize − λT y subject to ‖ATλ‖∞ ≤ 1, (5)

where λ ∈ Rm is the dual optimization variable. The opti-
mality conditions which must be obeyed by any primal-dual
solution pair (x∗, λ∗) can be written as

ATΓλ
∗ = −z, ‖ATΓcλ‖∞ < 1, Ax∗ = y, (Opt-BP)

where Γ is the support of x∗ and z is its sign sequence on
Γ. These conditions tell that primal-dual vectors (x∗, λ∗) are
feasible and dual constraints are active (hold with equality)
only on the indices corresponding to the set Γ. Throughout
this paper, we use the assumption1 that if the original signal
is not recovered by BP, then the number of nonzero elements
in its solution will be same as the number of measurements.

In section II we present the homotopy algorithm for the
sequential measurements and in section III we discuss the
update algorithm for the time varying signals. Section IV
presents experimental performance results.

II. SEQUENTIAL MEASUREMENTS

In this section we discuss the homotopy algorithm to update
the solution of BP as the new measurements are sequentially
added to the system. Assume that we have solved BP (2) for
the system in (1) but did not recover the original signal. We
add one new measurement bx = w to the system as described
in (3), for which the BP problem can be written as

minimize ‖x̃‖1 subject to Ax̃ = y, bx̃ = w. (6)

Homotopy formulation: Our proposed homotopy formula-
tion for (6) is

minimize ‖x̃‖1 s.t. Ax̃ = y, bx̃ = (1− ε)bx0 + εw, (7)

where ε is the homotopy parameter and x0 is the solution to
(2). The dual formulation for (7) can be written as:

maximize − λT y − νT [(1− ε)bx0 + εw] (8)

subject to ‖ATλ+ bT ν‖∞ ≤ 1,

where λ ∈ Rm and ν ∈ R are the dual optimization variables.
The optimality conditions for any primal-dual solution pair

1This condition is true for the Gaussian matrix with probability 1 and holds
with high probability for other random matrices commonly used in CS [10].

(xk, λk, νk) at any value of ε = εk are

ATΓλk + bTΓνk = −z, ‖ATΓcλ+ bTΓcνk‖∞ < 1,
Axk = y, bxk = (1− εk)bx0 + εkw, (Opt-S)

where Γ is the support of xk and z is its sign sequence on Γ.
As we increase ε from 0 to 1 in (7), we move its solution

from the old BP solution for (1) to the new BP solution for
(3). Along this homotopy path parameterized by ε, there will
be some critical values of ε where the support set Γ changes.
We refer to these points as critical points. At every critical
point along the homotopy path, one non-zero element of x at
some index γ− shrinks to zero (removing an element from Γ)
and an inactive dual constraint becomes active at some index
γ+ (adding a new element to Γ). In the homotopy algorithm
we traverse the homotopy path by increasing ε from 0 to 1
while jumping from one critical point to the next one.

Initialization: Assume that we already have the solution
x0 to (2), supported on the set Γ of size m with sign sequence
z. The corresponding dual solution is λ0 with m active dual
constraints. When we add new measurement (at ε = 0), a new
dual constraint becomes active. This is because our assumption
dictates that exactly m+ 1 dual constraints should be active,
unless we have recovered the original signal x. We find an
initial value of ν and the new value of λ at ε = 0 in (8).
From the optimality conditions in (Opt-S) we know that dual
constraints are active on the set Γ and now one new constraint
has to become active. Using these conditions, we first find an
update direction ∂λ as follows:

ATΓ (λ0 + ∂λ) + νbTΓ = −z
∂λ = −ν(ATΓ )−1bTΓ .

Then we find the smallest value of ν such that a new dual
constraint becomes active at an index γ (note that the value
of ν is unconstrained in sign). Let us denote the new value of
λ as λ0 = λ0 + ∂λ, ν as ν0 and new support Γ = Γ ∪ {γ}.

Homotopy algorithm: We can divide each step of the
homotopy algorithm into two parts: primal update and dual
update. During primal update we use primal feasibility condi-
tions to compute the primal update direction ∂x. Then we find
the new critical value of ε such that an existing element in x at
index γ− shrinks to zero. During dual update we use the primal
update information to compute the dual update direction ∂λ.
Then we update the dual vectors such that one new constraint
becomes active at index γ+.

Primal update: Let us assume that we already have the
primal-dual solutions (xk, λk, νk) for (7) and (8) at ε = εk

with primal support Γ. Denote G =
[
A
b

]
. The primal update

direction ∂x that increases ε from εk to a slightly larger value
ε+k , can be computed as follows

G(xk + θ∂x) =
[

0m
(1− ε+k )bx0 + ε+k w

]



∂x =

(GΓ)−1

[
0m

−bx0 + w

]
on Γ

0 on Γc
,

θ = ε+k − εk,

where 0m denotes a zero vector at m indices corresponding
to the old measurements. Find the smallest positive value of
θ such that an element of xk at some index γ− ∈ Γ shrinks
to zero. This gives us new value of primal solution xk+1 =
xk + θ∂x at εk+1 = εk + θ.

Dual update: For the dual update, let us denote Γd =
Γ\{γ−}. Since ATΓλk + bTΓνk = −z and γ− is removed from
Γ, the dual constraints will be active on the set Γd at this new
critical point. Therefore, the dual update directions ∂λ and ∂ν
can be computed as

ATΓd
(λk + δ∂λ) + bTΓd

(νk + ∂ν) = −z
ATΓd

λk + bTΓd
νk︸ ︷︷ ︸

ak

+ δ (ATΓd
∂λ+ bTΓd

)︸ ︷︷ ︸
bk

= −z

∂ν = δ, ∂λ = −(ATΓd
)−1bTΓd

.

Find the smallest value of δ such that one dual constraint at
some index γ+ ∈ Γcd becomes active. The sign of δ is selected
so that the dual constraint for the outgoing element γ− is not
violated, i.e., |ak(γ−) + δbk(γ−)| < 1. This gives us the new
values for dual solutions at ε = εk+1 as λk+1 = λk + δ∂λ,
νk+1 = νk + δ, and the primal support as Γ = Γd ∪ {γ+}.

Repeat this procedure until ε becomes equal to 1.
The main computational cost at each homotopy step in-

volves computing the step sizes and update directions. Since
at every homotopy step there is one element change in the sup-
port. We can quickly compute the update directions using rank-
one updates. Therefore, the total cost of each homotopy step
is same as a few matrix-vector multiplications i.e., O(mn).

III. TIME VARYING SIGNALS

In this section we discuss the homotopy algorithm to update
the solution of BP as the underlying sparse signal changes
slightly. For example some new elements appear in the signal
on the previously zero locations or some existing elements
shrink to zero. Assume that we have solved BP for system in
(1) and we receive a new set of measurements as described in
(4). The new optimization problem for BP becomes

minimize ‖x̃‖1 subject to Ax̃ = y̆. (9)

Homotopy formulation: Our proposed homotopy formu-
lation is

minimize ‖x̃‖1 subject to Ax̃ = (1− ε)y + εy̆, (10)

where ε is the homotopy parameter. Changing ε from 0 to 1
takes us from the already solved problem (2) to the desired
problem (9). The dual formulation for (10) is

maximize − λT ((1− ε)y + ε y̆) subject to ‖ATλ‖∞ ≤ 1.

The optimality conditions for any primal dual solution pair
(xk, λk) at any value of ε = εk are

ATΓλk = −z, ‖ATΓcλ‖∞ < 1, Axk = (1− εk)y + εky̆,

where Γ is the support of xk and z is its sign sequence on Γ.
Initialization: Assume that we have the solution x0 for

(2) supported on the set Γ of size p (usually less than m).
The corresponding dual solution is λ0 with p active dual
constraints. In the case of sequential measurements, the size of
Γ for the initial step was equal to m. Otherwise (according to
our assumption) we have already recovered the original signal.
In the case of time varying signals, the solution x0 can actually
be the original signal x. This means that the size of Γ will
usually be less than m. Whereas the homotopy update for (10)
requires m active dual constraints. Thus in the initialization
phase we update the dual vector λ0 in such a way that m− p
inactive dual constraints become active.

From the optimality conditions we know that the dual
constraints are active on the set Γ. Therefore any feasible dual
update direction ∂λ must lie in the null space of ATΓ , i.e.,
ATΓ∂λ = 0. We use the projection of the new measurements y̆
onto the null space of ATΓ to update the dual vector. The dual
update direction ∂λ can be computed as

∂λ = −PN(AT
Γ )y̆,

where PN(AT
Γ ) denotes projection matrix for the null space of

ATΓ . As we move in this direction, at some point (with proper
step size θ) a new dual constraint becomes active at some
index γ ∈ Γc. This gives the new value of λ0 = λ0 + θ∂λ
and support Γ = Γ ∪ {γ}. We repeat this iterative projection
procedure for updating dual vector until m dual constraints
are activated.

If at any point the dual update direction is the zero vector,
it indicates that the support of new solution x̆ is a subset of
the current support Γ. We can then compute x̆ by solving the
least squares problem on Γ for the measurements y̆.

Homotopy algorithm: Similar to the homotopy for sequen-
tial measurement update, every step of the main homotopy
algorithm can be divided into primal and dual updates.

Primal update: Let us assume we have the primal-dual
solution pair (xk, λk) for (10) at ε = εk with primal support
Γ of size m and sign sequence z. The primal update direction
∂x, which increases ε from εk by an infinitesimal amount to
ε+k , can be computed as

A(xk + θ∂x) = (1− ε+k )y + ε+k y̆

∂x =

{
−(AΓ)−1(y − y̆) on Γ
0 on Γc

θ = ε+k − εk.

Find the smallest positive value of θ such that an element in
xk at some index γ− ∈ Γ shrinks to zero. This gives us the
new primal solution xk+1 = xk + θ∂x at εk+1 = εk + θ.

Dual update: Let us denote Γd = Γ\{γ−}. The dual
constraints corresponding to indices in Γ at ε = εk+1 can



TABLE I
DYNAMIC UPDATE WITH SEQUENTIAL MEASUREMENTS IN BP.

n S H-steps Avg-M

256

[n/20] = 13 18.17 52.83
[n/15] = 17 20.07 63.83
[n/10] = 26 24.55 83.91
[n/5] = 51 28.83 129.73

512

[n/20] = 26 35.09 106.18
[n/15] = 34 38.52 127.35
[n/10] = 51 49.37 169.96
[n/5] = 102 56.76 262.22

be written as

ATΓ (λk + δ∂λ) =
[

−zΓd

−zγ−(1− δ)

]
,

where the last element corresponds to the the outgoing index
γ− and zγ− = sign(xk(γ−)). Thus the dual update direction
∂λ is

∂λ = (ATΓ )−1

[
0
zγ−

]
.

Find the smallest positive value of δ such that one dual
constraint at some index γ+ ∈ Γcd becomes active. This
gives us the new value of dual solution at ε = εk+1 as
λk+1 = λk + δ∂λ and new support as Γ = Γd ∪ {γ+}.

Repeat this procedure until ε becomes equal to 1.

IV. SIMULATION RESULTS

A. Sequential measurements

We first present experiments for the homotopy algorithm
discussed in section II for the sequential measurement update.
We start with a sparse signal x ∈ Rn which contains ±1 spikes
at randomly chosen S locations. The measurement vector y is
generated as in (1) using an m × n matrix A whose entries
are i.i.d. N(0, 1) and we solve (2). Then we add one new
measurement w = bx to the system, where entries of b are
also N(0, 1). We update the solution using the sequential
homotopy algorithm discussed in section II. We sequentially
add new measurements to the system until the original signal
is recovered exactly. The results for 100 simulations with
different values of n and S are summarized in Table I.
Two numbers are recorded: average number of homotopy
steps (H-steps) per new measurement and average number
of measurements (Avg-M) required to recover x exactly. The
initial matrix A was started with 32 and 64 rows for n = 256
and n = 512 respectively. These results demonstrate that the
average number of homotopy steps per new measurement is
very close to the sparsity of the underlying signal.

B. Time varying signal

In this experiment we start with a sparse signal x which
contains ±1 spikes at randomly chosen S locations. We take
m measurements using a Gaussian matrix A and solve (2).
Then we construct x̆ as follows. First we perturb all nonzero
entries of x with a random variable N(0, 0.52). Then we
add K new entries in x which are distributed according to

TABLE II
DYNAMIC UPDATE WITH TIME VARYING SIGNALS IN BP.

n, m S I-steps H-steps

n = 256, m = 128
[m/5] = 26 8.82 0
[m/4] = 32 21.07 0
[m/3] = 43 63.23 90.81

n = 512, m = 256

[m/5] = 51 16.87 0
[m/4] = 64 39 4.38
[m/3] = 85 153.07 314.75

N(0, 1), at randomly chosen locations. Finally we remove
K randomly chosen entries from x. The new measurements
are computed as y̆ = Ax̆. We use the homotopy algorithm
discussed in section III to update the solution. The results for
100 simulations are presented in Table II for different values
of S, where K = [S/5]. Two numbers are presented in the
table: number of iterations in the initialization phase (I-steps)
of the update and number of iterations in the main homotopy
algorithm (H-steps). As we can see from these results, if the
signal is reasonably sparse (e.g., S = m/5) the initialization
phase will detect all the elements in the updated signal. In
the cases where signal is comparably dense (e.g., S = m/3),
large number of homotopy steps are required for the update.

V. CONCLUSIONS

We presented two homotopy based algorithms to dynam-
ically update the solution of basis pursuit problem. These
algorithms enable us to quickly update BP solution when
either new measurements are added to the system or the signal
under observation changes slightly. The homotopy methods
discussed are computationally inexpensive as each step in-
volves a simple rank-one update. The total cost is significantly
lower than solving an entirely new optimization problem. The
simulation results demonstrate that for sparse signals, solution
update requires a small number of homotopy steps.
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