
Streaming Measurements in Compressive Sensing:
`1 Filtering

M. Salman Asif and Justin Romberg
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
Email: {sasif, jrom}@ece.gatech.edu

Abstract—The central framework for signal recovery in com-
pressive sensing is `1 norm minimization. In recent years,
tremendous progress has been made on algorithms, typically
based on some kind of gradient descent or Newton iterations,
for performing `1 norm minimization. These algorithms, however,
are for the most part “static”: they focus on finding the solution
for a fixed set of measurements. In this paper, we will present
a method for quickly updating the solution to some `1 norm
minimization problems as new measurements are added. The
result is an “`1 filter” and can be implemented using standard
techniques from numerical linear algebra. Our proposed scheme
is homotopy based where we add new measurements in the system
and instead of solving updated problem directly, we solve a series
of simple (easy to solve) intermediate problems which lead to the
desired solution.

Index Terms—Homotopy, Lasso, BPDN, `1 decoding, com-
pressed sensing, dynamic measurement update

I. INTRODUCTION

There are several problems in signal processing where a
sparse solution to the system of linear equations is desired. In
recent years this trend has captured a lot of attention, as it plays
a central role in the theory and practice of compressive sensing
(CS), [1]–[4]. The essential problem in CS is to reconstruct
a signal from a set of linear measurements. We have the
following model: y = Ax, where x ∈ Rn is a signal we wish
to acquire, y ∈ Rm is the observation/measurement vector
and A is an m × n measurement matrix with m � n. The
compressive sensing theory puts conditions of sparsity on the
signal x and incoherence of matrix A under which we can
recover x via `1 minimization.

Given a set of measurements y, we can recover (an approx-
imation of) x by solving the following relaxed unconstrained
optimization program:

minimize τ‖x̃‖1 +
1
2
‖Ax̃− y‖22, (1)

for some τ > 0. This program goes by the name of basis pur-
suit denoising (BPDN) [5] in signal processing, or the Lasso
[6] in statistics. In recent years several methods have been
proposed to solve it efficiently (e.g., see [7], [8] and references
therein). Our focus in this paper will be on homotopy based
methods [9], [10] and [11].

A related problem to compressive sensing, as proposed by
Candès and Tao [3], is the decoding by linear programming. It
can be seen as an error correction or channel coding scheme.
Assume that we want to transmit a message x ∈ Rn over

a noisy communication channel. In order to make the trans-
mission reliable we can encode x into a higher dimensional
codeword Ax, where A is an m × n coding matrix with
m� n. At the receiver end we receive a corrupted codeword
y = Ax + e, where e ∈ Rm is the error vector. The goal is to
recover x from y. As shown in [3], under suitable conditions
on coding matrix A, if e is sparse then we can recover
x exactly by solving the following `1 norm minimization
problem, also known as `1 decoding,

minimize ‖Ax̃− y‖1. (2)

The main focus in compressive sensing so far has been
in solving problems like (1) and (2) for a fixed set of
measurements. In this paper we present an efficient mechanism
for updating the solution to some of these `1 problems as new
measurements are added to the system. These schemes can
quickly update the solution whenever new measurements be-
come available, resulting in what we call an “`1 filter”, which
can be implemented efficiently using standard techniques from
numerical linear algebra. Our proposed method is homotopy
based, which is an iterative technique to solve an optimization
problem (indirectly) by solving a series of relaxed intermediate
problems leading to the solution of original problem.

The organization of this paper is as follows: In section II
we will formulate the homotopy problems for measurement
update in (1) and (2), section III discusses dynamic update of
measurements in Lasso, section IV discusses dynamic update
in `1 decoding and in section V we will briefly discuss
homotopy formulation for some related problems, without
giving details of the algorithms.

II. MOTIVATION AND PROBLEM FORMULATION

In order to motivate this idea of new or “dynamic” measure-
ments, let us first look at the classical least squares problem.
Consider the following system of linear equations: Ax = y,
where A is an m× n matrix with full column rank (m ≥ n).
In order to find the least-squares solution we can solve the
following optimization problem

minimize ‖Ax̃− y‖2. (3)

Fortunately we have analytical form for the solution to this
problem, which can be written as: x̂0 = (AT A)−1AT y,
and the main computational cost here comes from solving a
system of linear equations. Now suppose that we add one new

measurement of x: w = bx to the system, where b is a row
vector. The new system of equations becomes[

A
b

]
x =

[
y
w

]
,

and the least square solution to this updated system can be
written as: x̂1 = (AT A + bT b)−1(AT y + bT w). We can see
that solving this modified system of equations from scratch is
overkill. Instead we can quickly find x̂1 by using previously
computed x̂0 and (AT A)−1 along with a low rank update.
This update can written as

x̂1 = x̂0 +
(AT A)−1bT (w − bx̂0)

1 + b(AT A)−1bT
.

This above-mentioned scheme is the well known recursive
least squares (RLS) method. As measurements come in, we
easily move from one solution of (3) to the next, with each
step involving a simple low-rank update [12].

In this paper we introduce the similar concept of “dynamic
update of measurements” to the `1 problems given in (1) and
(2). Let us first consider the BPDN or Lasso problem in (1).
Assume that we add one new measurement to the system,
given as w := bx+d, where b is a new row in the measurement
matrix and d is some error in the new measurement. This gives
us the following updated system[

y
w

]
=

[
A
b

]
x +

[
e
d

]
. (4)

Now in order to estimate x from this new system we want to
solve the following updated version of (1)

minimize τ‖x̃‖1 +
1
2
(‖Ax̃− y‖22 + |bx̃− w|2), (5)

for the same τ .
Similarly in case of `1 decoding, assume that we solve (2)

to get the decoded message x̂, and if original message x is not
recovered we transmit one new measurement of x. This gives
rise to the following updated form of `1 decoding problem in
(2)

minimize ‖Ax̃− y‖1 + |bx̃− w|. (6)

The question we ask and try to answer here is whether we
can quickly find the solution of the updated problems (5) and
(6) by using information from the solutions of (1) and (2)
respectively, without solving these new optimization problems
from scratch.

The technique we present here for solving the updated `1
problems is in some sense similar to RLS but has some more
structure to it, as we will discuss soon. The inherent difficulty
in the dynamic update for `1 problems originate from the fact
that we do not have any analytical form for the solutions. In
addition to this `1 problems are not as smooth as least squares;
the solution can change drastically with the addition of a
single new measurement. We will move between the solutions
using homotopy schemes, which will break the transition into
a (hopefully small) series of low-rank updates.

Homotopy methods provide a general framework in which
we can create some continuous transformation that changes a
given difficult problem into a related but easy to solve problem.
Then we attempt to solve the actual problem by starting from
the easy one and solving a series of simple problems along
the homotopy path towards the actual problem [13]. This
progression along the homotopy path is controlled by some
transformation parameter called homotopy parameter; usually
varied between 0 and 1, where 0 and 1 correspond to the two
end points of the homotopy path.

Our proposed homotopy formulation (see also [14]) for (1)
is as follows

minimize τ‖x̃‖1 +
1
2
(‖Ax̃− y‖22 + ε|bx̃− w|2), (7)

where ε ∈ [0, 1] is the homotopy parameter. Similarly, the
homotopy formulation for (6) can be written as

minimize ‖Ax̃− y‖1 + ε|bx̃− w|. (8)

The solutions to (7) and (8) at ε = 0 are the same as that
for (1) and (2) respectively. And as ε increases from 0 to 1,
respective solutions trace some homotopy path towards the
solutions to (5) and (6).

III. DYNAMIC LASSO

Let us first look at the measurement update of Lasso in (7).
And before discussing the algorithm we would like to mention
that while preparing this manuscript we became aware of a
similar algorithm independently developed by Garrigues and
El Ghaoui [14]. Both the algorithms are based on homotopy
principle and derive the desired homotopy path using the
optimality conditions for problem in (7).

Using subgradient arguments it can be shown that any
solution x0 to (1) must obey the following necessary condition

‖AT (Ax0 − y)‖∞ ≤ τ. (K)

In addition to this, a sufficient condition for the optimality
of x0 requires that (K) holds with equality for the indices
where x0 is non zero, and strict inequality elsewhere. So the
necessary and sufficient optimality conditions [15] for any
solution x0 to (1) can be written as
K1. AT

Γ (Ax0 − y) = −τz
K2. ‖AT

Γc(Ax0 − y)‖∞ < τ ,
where index set Γ denotes the support of x0, z is its sign
sequence on Γ and AΓ denotes columns of A indexed by
elements in Γ. This tells us that for any given τ the solution to
(1) is completely described by the support Γ and sign sequence
z corresponding to τ , given as

x0 =

{
(AT

ΓAΓ)−1(AT
Γy − τz) on Γ

0 otherwise
.

Now if we add one new measurement, as described in (4), the
support and sign sequence of solution can change. So in our
proposed homotopy scheme we keep track of the changes in
support and sign sequence of solution as we increase ε from
0 to 1.

Let us now discuss the homotopy scheme for the solution
update. First of all, we need the optimality conditions that
must be satisfied by any solution x(ε) to (7) for any given
value of τ and ε. These conditions can be written as
L1. AT

Γε
(Ax(ε) − y) + εbT

Γε
(bx(ε) − w) = −τzε

L2. ‖AT
Γc

ε
(Ax(ε) − y) + εbT

Γc
ε
(bx(ε) − w)‖∞ < τ ,

where Γε is the support of x(ε) and zε is the corresponding sign
sequence. In our proposed algorithm for the solution update,
we fix τ and iteratively change ε from 0 to 1 in such a way
that at each step either a new element enters the support of
solution or an existing element leaves the support. So we move
in a particular direction (given by optimality conditions) such
that one element change occurs in the support, at which point
we update the support and find the new direction to move
in. This gives us the desired homotopy path traced by the
solution x(ε) to (7), which is parameterized by ε ∈ [0, 1]. We
will refer to the values of ε for which some change occurs
in the support as the critical values, respective points on the
homotopy path as vertices and the intervals between any two
vertices as facets of the homotopy path. It is important to
note that support Γε remains same throughout any given facet
determined by the values of ε at the two end vertices. So what
we do in this algorithm is that we move along these facets of
the homotopy path from one vertex to another by increasing
ε, while updating the support and sign sequence of solution,
until ε becomes equal to 1. And as given in (L1), the solution
x(ε) at any value of ε is completely defined by the support
Γε and sign sequence zε. The update direction (i.e., facets) on
the homotopy path and the step size (i.e., length of each facet)
can be derived using the optimality conditions in (L1-L2), as
described next.

A. Homotopy update

Let us assume that we already have a solution xk to (7) at
some critical value ε = εk, with support Γ and sign sequence
z on Γ. The corresponding optimality conditions in (L1-L2)
can be written as

AT
Γ (Axk − y) + εkbT

Γ (bxk − w) = −τz (9a)

‖AT
Γc(Axk − y) + εkbT

Γc(bxk − w)‖∞ < τ. (9b)

Now we need to find an update direction (i.e., a new facet)
on the homotopy path such that ε increases by most. Here we
use the fact that support of the solution will not change on
this new facet until we hit another vertex, which will give us
the new critical value and update in the support. So with an
update direction ∂̃x, the condition in (L1) at some new εk+1

on this facet can be written as

AT
Γ [A(xk + ∂̃x)− y] + εk+1b

T
Γ [b(xk + ∂̃x)− w] = −τz

(εk+1 − εk)bT
Γ (bxk − w) + (AT

ΓA + εk+1b
T
Γ b)∂̃x = 0,

where the second equation follows from (9a). This gives us
the update direction along with the step size to go from εk to
εk+1 on the facet determined by the support Γ as

f∂x =

(
−(εk+1 − εk)(AT

ΓAΓ + εk+1b
T
Γ bΓ)−1bT

Γ (bxk − w) on Γ

0 otherwise.

We can simplify this equation using Sherman-Woodbury for-
mula [16], to separate the step size from the update direction,
which gives us the following equations for homotopy update
(let U := AT

ΓAΓ + εkbT
Γ bΓ and u := bΓU−1bT

Γ)

∂x =

{
−U−1bT

Γ (bxk − w) on Γ
0 otherwise

(10)

θ =
εk+1 − εk

1 + (εk+1 − εk)u
, (11)

where ∂x is the new update direction and θ is the step size
in this direction such that ε changes from εk to εk+1. As we
increase θ, ε increases and at some point we hit a vertex where
support of the solution changes, i.e., either a new element
enters the support Γ or an existing element in xk shrinks to
zero. So next thing is to find the smallest step size θ such that
one of these two things happen.

Before discussing the algorithm for choosing the step size
θ, let us first describe how to update the optimality conditions
given in (L1-L2) as ε changes. With update direction ∂x and
step size θ, as defined in (10) and (11), we can write the
optimality conditions at ε = εk+1 as the set of following
constraints

‖AT [A(xk + θ∂x)− y] + εk+1b
T [b(xk + θ∂x)− w]‖∞ ≤ τ,

which are active (i.e., hold with equality) only on the indices
in the support set Γ. We can simplify this equation further to
write it as

‖pk + θdk‖∞ ≤ τ, (12)

where pk and dk are defined as

pk = AT (Axk − y) + εkbT (bxk − w) (13a)

dk = (AT A + εkbT b)∂x + bT (bxk − w). (13b)

In (12), pk is the set of old optimality conditions from (9)
at ε = εk, dk is the update, θ is the step size from (11) and
pk + θdk is the set of new optimality conditions at ε = εk+1.

B. Algorithm

We are ready to discuss the main algorithm for the homo-
topy update. Assume that we have a solution xk to (7) at
ε = εk, with support Γ and sign sequence z on Γ. Compute
∂x, pk and dk. Select the smallest θ > 0 such that either one of
the constraints in pk+1 := pk + θdk (originally inactive in pk)
becomes active, or one of the elements in xk+1 := xk + θ∂x
(originally non-zero in xk) shrinks to zero. The appropriate
step size θ can be chosen as described below:

|pk(j) + θdk(j))| = τ for all j ∈ Γ
|pk(j) + θdk(j))| ≤ τ for all j ∈ Γc

θ+ = min
j∈Γc

(
τ − pk(j)

dk(j)
,
τ + pk(j)
−dk(j)

)
+

θ− = min
j∈Γ

(
−xk(j)
∂x(j)

)
+

θ = min(θ+, θ−), (14)

Algorithm 1 Dynamic Lasso Homotopy
Start with ε0 = 0 at solution x0 to (1) with support Γ and
sign sequence z on the Γ for k = 0.
repeat

compute ∂x as in (10)
compute pk, dk as in (13) and θ as in (14)
xk+1 = xk + θ∂x

εk+1 = εk +
θ

1− θu
if εk+1 ≥ 1 or εk+1 < 0 then

θ =
1− εk

1 + (1− εk)u
xk+1 = xk + θ∂x
εk+1 = 1
break; {Quit without any further update}

end if
if θ = θ− then

Γ← Γ \ {j−}
update z

else
Γ← Γ ∪ {j+}
z(j+) = sign [pk(j+) + θdk(j+)]

end if
k ← k + 1

until stopping criterion is satisfied

where min(·)+ denotes that minimum is taken over positive
arguments only. Let us call indices corresponding to θ+ and
θ− as j+ and j− respectively. So either j+ enters the support
Γ (if θ+ < θ−) or j− leaves the support Γ (if θ− < θ+),
sign sequence z is updated accordingly. The new value of ε
becomes

εk+1 = εk +
θ

1− θu
(15)

and the solution at this new vertex becomes xk+1 = xk +θ∂x.
Repeat this procedure until ε becomes equal to 1.

A word of caution: since we are tracking ε indirectly using
step size θ, so at the last step εk+1 can be greater than 1 and we
will need to adjust θ such that final value of ε becomes equal
to 1. Also it can happen that 1− θu in (15) reduces towards
zero and becomes negative to make εk+1 very large and then
negative (it cannot become positive again because negative
values of θ

1−θu lie in the interval (−∞,−εk)). As soon as
this happens, it gives us the indication that the value of εk+1

changed from εk to a very large value and then negative. So
we need to choose a smaller value of θ such that final value
of ε is 1 and quit. A pseudocode for this procedure is given
in Algorithm 1.

C. Numerical implementation

The main computational cost for the Algorithm 1 comes
from computing update direction ∂x and step size θ at
each homotopy step. Step size calculation involves 2 matrix
vector multiplications of an m × n system and a few vector
multiplications. In order to compute update direction at each
step we need to find (AT

ΓAΓ + εbT
Γ bΓ)−1. Since at each step

10 20 30 40 50 60 70
0

10

20

30

40

50

60
Average number of iterations per new measurement

Sparsity of signal

N
um

be
r

of
 it

er
at

io
ns

τ = 0.01

Fig. 1. Average number of homotopy steps with one new measurement at
different sparsity levels. (n = 256, m = 150, τ = 0.01)

our support set Γ changes by one element at most, we do
not need to compute (AT

Γk
AΓk

+ εkbT
Γk

bΓk
)−1 from scratch,

and instead we can easily update the previously computed
(AT

Γk−1
AΓk−1 + εk−1b

T
Γk−1

bΓk−1)
−1 using matrix inversion

lemma [16], where Γk and Γk−1 denote support set at kth and
(k−1)th homotopy step. So essentially the computational cost
at each step is equivalent to a few (say 3 to 5) matrix vector
multiplications 1.

D. Simulation results

In this section we discuss some simulation results for
Algorithm 1. We took m = 150 noiseless measurements of an
n = 256 dimensional sparse signal x, given as y = Ax, using
a random matrix A whose entries were independently chosen
from N (0, 1). After solving (1) for a fixed parameter τ , we
added one new random measurement w = bx to the system
and solved (5) as described in Algorithm 1. We performed
this experiment 500 times for each different sparsity level
of x (as specified along x-axis). To generate sparse signal,
each time we chose a random support and selected the entries
independently from N (0, 1). Fig. 1 plots the average number
of homotopy steps taken by Algorithm 1 to update the solution
after adding one new measurement. As we can see here that
for a reasonable sparsity level (e.g., m/4 or m/5) we need
about 3 or 4 homotopy steps for solution update.

IV. `1 DECODING

In the same spirit we can form a homotopy algorithm to
solve (8) for increasing value of ε : 0 → 1, while obeying
some optimality conditions. For the sake of simplicity, here
we will discuss the algorithm with one new measurement
but this method can easily be extended to add multiple new
measurements with homotopy. The homotopy scheme for `1
decoding can be seen as a type of primal-dual homotopy,
where we update primal and dual vectors at every homotopy
step, and use strong duality [17] between the objectives of

1Matlab files implementing these algorithms will be available from this
webpage: http://users.ece.gatech.edu/∼sasif/

primal and dual problems to derive the required optimality
conditions. Let us first write the dual problem to (8) as

maximize − λT y − ενw (16)

subject to AT λ + εbT ν = 0
‖λ‖∞ ≤ 1, |ν| ≤ 1,

where λ ∈ Rm and ν ∈ R are the dual variables. Assume that
(xk, λk, νk) is the solution set to primal and dual problems
in (8) and (16) for ε = εk. Let ek := Axk − y be the error
estimate corresponding to old measurements with support Γe

and dk := bxk−w be the error estimate for new measurement
at index γd. Using strong duality between the primal and dual
objectives in (8) and (16) respectively, we get the following
set of conditions which must be obeyed by any primal and
dual solution pair (xk, λk, νk) at any given value of εk

λk = sign(Axk − y) on Γe, ‖λk‖∞ < 1 on Γc
e (D1)

νk = sign(bxk − w) if dk 6= 0, |νk| < 1 otherwise (D2)

AT λk + εkbT νk = 0. (D3)

These conditions tell us that the dual vectors lie in the left
null space of the coding matrix (ignoring the presence of εk

here), and whenever an entry in the error estimate is non-zero
the corresponding dual element is equal to the sign of error
at that location, and the absolute value of dual element at all
other indices is strictly less than 1. So the homotopy scheme
for `1 decoding will be all about the update of the active set
for the error estimate (or dual vectors), let us denote that as
Γ := {Γe∪γd}, and keeping dual vector in the left null space
of coding matrix as we increase ε from 0 to 1.

In order to build the homotopy scheme for `1 decoding we
need following assumptions for the coding matrix and any
solution of `1 decoding problem in (8).

Assumption 1: Any n× n sub-matrix of the coding matrix
is non singular.

Assumption 2: The error estimate of `1 decoding problem
will have exactly n zero entries whenever exact message x is
not recovered.
These assumptions hold for Gaussian matrix with probability
1, and with very high probability for Bernoulli matrix. In
addition to this, the condition number of any sub matrix from
such ensembles is also fairly controlled [18]. In our proposed
algorithm (as we discuss in detail later) we need Assumption 1
because for every homotopy step we will be computing inverse
of an n × n matrix to find the update direction for primal
and dual vectors. Assumption 2 ensures that such update
direction exists and is unique. In addition to this, it gives
us a stopping rule, because whenever number of zero entries
in error estimate exceeds n, it means we have decoded the
message correctly.

A. Homotopy update

The homotopy algorithm for `1 decoding can be divided
into two main parts: primal and dual update. We first update
the dual vector pair (λ, ν) to find one new element in the error
estimates (e, d) and then update primal vector (x) to remove

one of the existing elements from the error estimates (e, d).
Our proposed scheme relies heavily on Assumption 2, i.e., at
any homotopy step exactly n entries in the dual vector pair
(λ, ν) have their absolute values strictly less than 1, which
correspond to the zero entries in the respective error estimates
(due to optimality conditions in (D1) and (D2)). This gives us
n degrees of freedom for update of dual vector at the indices
in Γc, and we update dual vectors with increasing value of
ε (in a particular direction) until one element of dual vector
in Γc becomes equal to +1 or -1, which indicates that a new
element has entered the support of error estimates (e, d) and
the corresponding value of dual vector gives its sign. Since
by Assumption 2 we will have exactly n zero entries in the
error estimate at any point, so during primal update phase we
update x in such a way that atleast one old entry from the
error estimate shrinks to zero. Repeat this procedure until ε
becomes equal to 1. If at any point along the homotopy path, d
shrinks to zero (lucky breakdown!), we set the corresponding
dual variable ν to the value of ε at that point and quit.

Initialization: Assume that we solve `1 decoding problem
in (2) to get the solution x0, with error estimate e0 := Ax0−y
supported on the set Γe. Without loss of generality assume that
d0 := bx0 − w is non-zero. So as described in (D2) the dual
vector ν0 = zd, where zd = sign(bx0 − w). The new support
of error estimates becomes Γ := {Γe ∪ γd}.

Assume that we already have primal-dual solutions
(xk, λk, νk) to the problems in (8) and (16) for ε = εk, with
support set Γ which corresponds to the non zero entries in the
error estimates ek := Axk − y and dk := bxk − w, where
dk 6= 0.
Dual update: The dual feasibility condition in (D3) gives us
the following equation

AT λk + εkbT νk = 0,

Since νk = zd, by Assumption 2 we have n degrees of freedom
to change λ at indices corresponding to Γc. So with an update
direction ∂̃λ (supported on the set Γc only), the feasibility
condition in (D3) at some new εk+1 can be written as

AT (λk + ∂̃λ) + εk+1b
T zd = 0,

or equivalently (only on index set Γc)

(AT)Γc ∂̃λΓc + (εk+1 − εk)bT zd = 0. (17)

So we can write the update direction ∂λ (whenever the inverse
of (AT)Γc exists under Assumption 1) and the step size θ+,
required to increase ε from εk to εk+1 on the homotopy facet
determined by Γ as

∂λ =

{
−[(AT)Γc]−1bT zd on Γc

0 otherwise,
(18)

θ+ = εk+1 − εk.

As we increase θ+, ε increases and at some point we hit a
new vertex where an element of λ, say at index γ+ ∈ Γc, gets
active (i.e., becomes equal to +1 or -1). This tells us that we

have a new element in the error estimate e at index γ+ with
sign zγ , same as that of the new element in λ.
Primal update: Since we need to have exactly n zero entries
in the error estimate, so during primal update phase we use
the information from dual update phase and change x in such
a way that one of the existing element in the error estimate
shrinks to zero. Consider the following set of equations
(corresponding to the error estimates) at εk[

A
b

]
︸︷︷︸

G

xk −
[
y
w

]
︸︷︷︸

q

=
[
ek

dk

]
︸︷︷︸

ck

, (19)

where we know that ck is supported only on the set Γ. In the
dual update phase we added one new element in the support
of c at index γ+ ∈ Γc with sign zγ , so we need to update x
in such a way that sign[ck+1(γ+)] = zγ and ck+1 is zero at
all other indices in Γc. Using the update direction ∂̃x we can
write (19), corresponding to the rows indexed by elements in
Γc, as

(G(xk + ∂̃x)− q)[Γc,:] = (ck)[Γc,:] + θ−∂̃c, (20)

where the notation U[Γc,:] represents entries of U at rows
indexed by elements in Γc, ∂̃c is defined as

∂̃c =

{
zγ on γ+

0 on Γc\{γ+}
, (21)

and θ− is the unknown value for the new element in c. Using
(20) and (21) we can write the following system of equations
to compute the update direction ∂x

A[Γc,:]∂x =

{
zγ on γ+

0 on Γc\{γ+}
. (22)

The associated step size with ∂x is θ−. As we increase θ−,
at some point one of the elements in c at some index γ− ∈ Γ
will shrink to zero. We can update the primal-dual vectors and
supports accordingly.

B. Algorithm
Assume that we have a solution (xk, λk, νk) for εk with

support Γ as described before.
Primal update: Compute ∂λ as described in (18). Find the
step size θ+ as follows

|λk(j) + θ+∂λ(j)| ≤ 1 for all j ∈ Γc

θ+ = min
j∈Γc

{
1− λk(j)

∂λ(j)
,
1 + λk(j)
−∂λ(j)

}
+

. (23)

Let us denote γ+ as the index corresponding to θ+ and zγ as
sign of λk(γ+) + θ+∂λ(γ+). The new values for ε and dual
vector λ are given as

εk+1 = εk + θ+, λk+1 = λk + θ+∂λ.

Dual update: Compute ∂x from (22), and define ∂c := G∂x.
Find the step size θ− as

θ− = min
j∈Γ

(
−ck(j)
∂c(j)

)
+

. (24)

Algorithm 2 `1 Decoding Homotopy
Start at ε0 = 0 with primal-dual solution x0, λ0, error
estimate e0 := Ax0−y with support Γe. set d0 := bx0−w,

and ν0 := zd. Set Γ = [Γe∪γd], c0 :=
[
e0

d0

]
and G :=

[
A
b

]
repeat

Dual update:
compute ∂λ as in (18)
find θ+, γ+ and zγ as described in (23)
λk+1 = λk + θ+∂λ
εk+1 = εk + θ+

if εk+1 ≥ 1 then
θ+ = 1− εk

λk+1 = λk + θ+∂λ
νk+1 = zd

εk+1 = 1
break; {Quit without any further update}

end if
Primal update:
compute ∂x as in (22), set ∂c := G∂x
find θ− and γ− as described in (24)
xk+1 = xk + θ−∂x
ck+1 = ck + θ−∂c
Γ← [Γ ∪ γ+]\{γ−}
if γ− = γd then

νk+1 = εk+1zd

break; {Lucky breakdown}
end if
k ← k + 1

until stopping criterion is satisfied

Let us denote γ− as the index corresponding to θ−. The new
value of x is given as: xk+1 = xk + θ−∂x.

The support set can be updated as Γ = [Γ ∪ γ+]\{γ−}.
Repeat this procedure until ε becomes equal to 1, or dk shrinks
to zero or the number of zero entries in c increases from n.

C. Numerical implementation

The main computational cost in this algorithm also comes
from solving a system of equations to find update direction.
Similarly, at every homotopy step we have one element change
in the support set Γc, and consequently in A[Γc,:] a row at
index γ+ is replaced with aγ− (row of A at index γ−) . So
instead of computing inverse of A[Γc,:] at each step, we can
simply update the old one using Sherman-Woodbury formula
[16]. This is because we can write A[Γc,:] at (k + 1)th step as
rank one update of A[Γc,:] at kth step, given as

A
(k+1)
[Γc,:] = A

(k)
[Γc,:] + 1γ(aγ− − aγ+),

where 1γ ∈ Rn represents a vector with all zeros except at
index γ (where γ corresponds to the location of γ+ in Γc).

D. Simulation results

In this section we discuss some simulation results for
Algorithm 2, as given in Table I and Fig. 2. In this experiment,

TABLE I
AVERAGE LENGTH OF CODEWORD REQUIRED FOR PERFECT RECOVERY IN

THE PRESENCE OF S SPARSE ERRORS USING `1 DECODING (n = 64).

No. of errors (S) Average redundancy Average codeword length
10 31 95
20 54 118
30 73 137
40 91 155
50 108 172

10 15 20 25 30 35 40 45 50
6

6.5

7

7.5

8

8.5

9

9.5

10
Average number of iterations per new measurement

Number of errors

N
um

be
r

of
 it

er
at

io
ns

Fig. 2. Average number of homotopy iterations required per one measurement
update (n = 64)

we start with an arbitrary n = 64 dimensional message signal
x, encode it using an n × n random matrix A and introduce
some random errors at S randomly chosen locations. The first
estimated codeword can be found as x0 = A−1y. Afterwards
we start adding new measurements (one at a time) and solve
(6) using Algorithm 2 until the exact message is recovered.
Table I gives the average number of measurements (length of
codeword) required for perfect reconstruction when S sparse
errors are present in the starting codeword. As it can be seen
that the redundancy (m− n) required for perfect recovery is
about 2S-3S. Fig. 2 gives a rough estimate for number of
homotopy steps required, per new measurement, to update the
solution. It is observed that the algorithm takes lesser number
of iterations when sparsity level of error estimate is less (i.e.,
when m ≈ n), and as we add new entries to the codeword
(i.e., m − n increases) the number of homotopy steps taken
increases as well.

V. SOME MORE HOMOTOPY SCHEMES

In this section we will mention some related problems for
which we can develop similar dynamic measurement update
algorithms using the homotopy ideas. We will discuss these
algorithms in detail in a longer version of the paper we are
currently working on.

In section III we discussed the homotopy scheme for
measurement update in Lasso. In a very similar way we
can develop the homotopy algorithm for measurement update
in the Dantzig selector (DS) [19]. Consider same system
model as for Lasso, the Dantzig selector solves following
optimization problem to estimate x

minimize ‖x̃‖1 subject to ‖AT (Ax̃− y)‖∞ ≤ τ,

for some τ > 0. Similarly if we add a new measurement w :=
bx + d to the system, we can write the homotopy formulation
for updated problem as:

minimize ‖x̃‖1 subject to ‖AT (Ax̃−y)+εbT (bx̃−w)‖∞ ≤ τ,

for the same τ . And using the optimality conditions for DS
(derived from strong duality between primal and dual forms
[20]) we can develop a homotopy algorithm for dynamic
measurement update which is very similar to Algorithm 1.

The `1 decoding scheme we discussed in section IV assumes
that e is sparse error vector. However, in practice we cannot
expect that received codeword y is corrupted only on a small
number of locations and rest of the codeword is perfectly
received, i.e., without any noise or error. In [21] Candès and
Randall proposed a robust error correction scheme, in which
they assumed that received codeword is corrupted at some
locations by gross errors (sparse vector) and in addition to
that all entries of the codeword are contaminated with a small
amount of noise (e.g., quantization). The system model can be
written as

y = Ax + e + qy, (25)

where A is an m × n coding matrix (with m � n), e is
assumed to be sparse error vector and qy is a vector consisting
of small errors (noise) spread over all entries of the codeword
Ax. We propose a similar scheme for decoding, which closely
resembles the model for second order cone program in [21]
and can be converted into an unconstrained program similar
to Lasso in (1). Our proposed optimization problem to recover
x from corrupted received codeword y in (25) is as follows

minimizeex,ee,eqy

τ‖ẽ‖1 +
1
2
‖q̃y‖22 (26)

subject to Ax̃ + ẽ + q̃y = y,

which is equivalent to the following unconstrained problem

minimizeee τ‖ẽ‖1 +
1
2
‖Q(ẽ− y)‖22, (27)

where Q := I −A(AT A)−1AT is the projection matrix. This
problem can be efficiently solved to estimate e for any value
of τ > 0. The decoded message x̂ in turn can be found using
the solution ê of (27) as: x̂ = (AT A)−1AT (y − ê).

Now we want to introduce the same concept of dynamic
measurements to this decoding scheme. Assume that we
receive one new element2 of codeword for the system in (25);
given as w := bx + d + qw, where b is the new row in the
coding matrix, d is the new element in the sparse error vector
and qw is the new element in small noise vector. The homotopy
formulation for the updated decoding problem can be written
as

minimize τ(‖ẽ‖1 + ε|d̃|) +
1
2
(‖q̃y‖22 + |q̃w|2) (28)

subject to Ax̃ + ẽ + q̃y = y

bx̃ + d̃ + q̃w = w,

2This scheme can also be generalized to multiple new measurements.

where again ε ∈ [0, 1] is the homotopy parameter. It can easily
be seen that at ε = 0 the problem in (28) is equivalent to (26),
and as ε is increased towards 1, the solution of (28) traces a
homotopy path towards the solution of updated system. Similar
to (27) we can form a Lasso type equivalent problem to (28),
which can be written as

minimizeee, ed τ(‖ẽ‖1 + ε|d̃|) +
1
2

∥∥∥∥P

([
ẽ

d̃

]
−

[
y
w

])∥∥∥∥2

2

, (29)

where P := I − G(GT G)−1GT and G :=
[
A
b

]
. Using opti-

mality conditions for (29) (similar to Lasso) we can develop
a homotopy algorithm, which is similar to Algorithm 1.

VI. CONCLUSION

In this paper we have discussed the homotopy algorithms
for dynamic update of measurements in `1 norm minimiza-
tion problems. The main advantage of these methods is low
computational cost, where each homotopy step costs a few
matrix vector multiplications. In addition, the empirical results
suggest that number of homotopy steps required for solution
update is also small.

REFERENCES

[1] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[2] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-
tions on, vol. 52, no. 4, pp. 1289–1306, April 2006.

[3] E. Candes and T. Tao, “Decoding by linear programming,” Information
Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, Dec.
2005.

[4] E. Candes, “Compressive sampling,” Proceedings of the International
Congress of Mathematicians, Madrid, Spain, vol. 3, pp. 1433–1452,
2006.

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, 1999.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288,
1996.

[7] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-
point method for large-scale `1-regularized least squares,” Selected
Topics in Signal Processing, IEEE Journal of, vol. 1, no. 4, pp. 606–617,
2007.

[8] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse
problems,” Selected Topics in Signal Processing, IEEE Journal of, vol. 1,
no. 4, pp. 586–597, 2007.

[9] M. Osborne, B. Presnell, and B. Turlach, “A new approach to variable
selection in least squares problems,” IMA Journal of Numerical Analysis,
vol. 20, no. 3, pp. 389–403, 2000.

[10] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[11] D. Malioutov, M. Cetin, and A. Willsky, “Homotopy continuation
for sparse signal representation,” IEEE International Conference on
Acoustics, Speech, and Signal Processing,, vol. 5, pp. v/733–v/736,
March 2005.

[12] M. Hayes, Statistical Digital Signal Processing and Modeling. John
Wiley & Sons, Inc. New York, NY, USA, 1996.

[13] R. Vanderbei, Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, 2001.

[14] P. J. Garrigues and L. E. Ghaoui, “An homotopy algorithm for the Lasso
with online observations,” To Appear in Neural Information Processing
Systems (NIPS) 21, 2008.

[15] J. Fuchs, “On sparse representations in arbitrary redundant bases,”
Information Theory, IEEE Transactions on, vol. 50, no. 6, pp. 1341–
1344, 2004.

[16] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins
University Press, 1996.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, March 2004.

[18] M. Rudelson and R. Vershynin, “The Littlewood–Offord problem and
invertibility of random matrices,” Advances in Mathematics, 2008.

[19] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–
2351, 2007.

[20] M. S. Asif, “Primal Dual Pursuit: A homotopy based algorithm for
the Dantzig selector,” Master’s thesis, Georgia Institute of Technology,
August 2008.

[21] E. J. Candes and P. A. Randall, “Highly robust error correction by convex
programming,” Information Theory, IEEE Transactions on, vol. 54,
no. 7, pp. 2829–2840, 2008.

