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MOSFET Scaling
Device scaling: Simplified design goals/guidelines for shrinking device 
dimensions to achieve density and performance gains, and power 
reduction in VLSI.
Issues: Short-channel effect, Power density, Switching delay, Reliability.

The principle of constant-field scaling lies in scaling the 
device voltages and the device dimensions (both horizontal 
and vertical) by the same factor, κ (> 1), such that the electric 
field remains unchanged.
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Rules of Constant Field Scaling
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Scaling of Depletion Width
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Maximum drain depletion width:

For Na → κNa and Vdd → Vdd/κ,
WD → WD/κ if Vdd >> ψbi.

However, the source depletion width,

is indep. of Vdd and only scales as WS → WS/ .

Furthermore, the maximum gate depletion width,
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κ

 W kT N n
q Ndm

si a i

a

0
2

4
=

ε ln( / )

κ



2/19/2003 4

Generalized Scaling
Allows electric field to scale up by α (E → αE) while the 
device dimensions scale down by κ,
i.e., voltage scales by α/κ (V → (α/κ)V).

More flexible than constant-field scaling,
but has reliability and power concerns.

To keep Poisson’s equation invariant under the 
transformation, (x,y) → (x,y)/κ and ψ → ψ/(κ/α) within the 
depletion region:

Na should be scaled to (ακ)Na.
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Constant Voltage Scaling
Special case of α=κ in generalized scaling:

The only mathematically correct scaling as far as 2D Poisson
eq. and boundary conditions are concerned.

Na → κ2Na,
therefore, the maximum depletion width,
scales down by κ.

Both the short-channel Vt roll-off,

and the threshold voltage,

remain unchanged for constant-voltage scaling.

However, it is physically incorrect since
E → κE (reliability) and P/A → κ2-3P/A (power).
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Scaling in Practice
CMOS VLSI technology generations
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5 V
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3.3 V
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2 µm
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0.5 µm

0.35 µm
0.25 µm

Oxide FieldGate OxidePower 
Supply

Feature Size

CMOS technology has gone through mixed steps of constant 
voltage and constant field scaling. As a result, field and power 
density have gone up, but performance gains have been 
maintained and power per circuit has come down.
Fortunately, by physics or by learning, we managed to cope with 
reliability requirements at higher fields.
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Non-Scaling Factors
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Primary nonscaling factors:

Built-in potential ψbi (Si bandgap)

Subthreshold current (thermal energy kT/q)

Secondary nonscaling
factors (due to higher E):

Velocity saturation

Decreased mobility at 
higher fields

Oxide reliability (tox
scales less, Wdm more)
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Other Non-Scaling Factors
Source and drain series resistance

• Doping level limited by solid solubility 
and is not scalable.
• Doping gradient or junction 
abruptness limited by annealing 
process. 

Polysilicon gate depletion

Inversion layer depth/thickness

Various process tolerances
• Gate length. 
• Gate oxide thickness. 
• Dopant number fluctuations. 
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MOSFET Threshold Voltage
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CMOS Circuit Delay
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Choice of Gate Work Function
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Threshold Voltage Adjustment
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In a uniformly doped MOSFET, the maximum gate 
depletion width (long-channel),

and the threshold voltage,

are coupled through the parameter Na, and therefore 
cannot be varied independently (for given Vfb, tox).

To adjust threshold voltage, it is necessary 
to employ nonuniform channel doping.  
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Nonuniform Channel Doping
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For a nonuniform p-type doping profile N(x), the electric field is obtained 
by integrating Poisson’s equation once (neglecting mobile carriers):

1-D Poisson’s eq.:

where Wd is the depletion layer width.
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Integrating again,

Integration by parts,

Note that the maximum depletion layer width Wdm
0 is determined by the 

condition ψs = 2ψB when Wd = Wdm
0. 

The threshold voltage of a nonuniformly doped MOSFET is 
then determined by both the integral (depletion charge 
density) and the first moment of N(x) within (0, Wdm

0).
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High-Low Doping Profile
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The maximum depletion width 
at threshold is:

The body-effect factor takes 
the same form as before:
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The threshold voltage is, again, Vfb+2ψΒ+Vox(=Qd/Cox), i.e.,
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Implanted Gaussian Profile
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Let (Ns − Na)xs = DI and xs/2 = xc,

Then

and

For shallow surface implants, xc = 0, there is no change in the 
depletion width.  The Vt shift is simply given by qDI/Cox like a 
sheet of charge at the silicon-oxide interface.
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Low-High Doping Profile
Channel
Doping
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Take Ns = 0, then

In contrary to high-low doping, low-high (retrograde) doping 
results in a lower Vt than uniform doping for a given Wdm.
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Extreme Retrograde Profile
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For xs >> (4εsiψB/qNa′)1/2,

i.e.,

The depletion depth is the same
as the undoped layer thickness.
All the depletion charge is
located at the far edge of the
depletion region.
Magnitude of the depletion 
charge is one half of the    
uniformly doped value. 
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Channel Profile Evolution
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Channel Profile Trends
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For uniform channel doping,

Vt is increasing slightly toward shorter channel lengths and 
higher Na.  2-D quantum effect further raises Vt as the 
surface field increases and the electrons experience more 
confinement.  

On the other hand, device design calls for lower Vdd and Vt
as the CMOS dimensions are scaled down.

1-D vertically nonuniform doping only addresses Vt of 
long channel devices.  Laterally nonuniform doping helps 
control Vt of short channel devices.
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Laterally Nonuniform Doping (Halo)

Gate

Drain
Lo

Hi Hi

Depletion
boundary

Source

Halo implants are made after gate patterning, therefore 
self-aligned to the gate like source-drain.
Halo doped regions are farther apart for longer gates, and
closer together for shorter gates.
As a result, the “effective doping” becomes higher toward
shorter devices, thus counteracting short channel effects.  
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CMOS Inverter
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Since only one of the transistors is on in the 
steady state, there is no static current or 
static power dissipation in a CMOS inverter.
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CMOS Inverter Transfer Curve
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Qualitatively, the sharpness of the high-to-low 
transition of the Vout-Vin curve is a measure of 
how well the circuit performs digital operations.
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Switching Waveform for a Step Input
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For nMOSFET pull down transition,

The pull down delay is
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Similarly, the pMOSFET pull 
up delay is
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For symmetric transfer curve and best noise margin, 
the width ratio should be Wp/Wn = Insat/Ipsat ≈ 2. 
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Active Power Dissipation
Consider a capacitor C between the output node and the ground.  Initially, 
the output node is at the ground potential and there is no charge on C.

During a pull up transition, current flows from the power supply through the 
turned-on pMOSFET and raises the output node to Vdd.  The capacitor is now 
charged to Q = CVdd.

The energy flow out of the power supply is QVdd = CVdd
2, in which half or 

CVdd
2/2 is energy stored in C; the other half is dissipated irreversibly as Joule 

heat. 

Now the node is pulled down and the capacitor discharged by current 
through the turned-on nMOSFET to ground.  The stored CVdd

2/2 energy is 
now dissipated in the circuit.

⇒ A total energy of CVdd
2 is dissipated irreversibly in an up-down switching 

cycle.  If the clock frequency is f, and on the average a total capacitance C
undergoes an up-down cycle in a clock period T, then the CMOS power 
dissipation is 

 P CV
T

CV fdd
dd= =

2
2

(Note that the cross-over current is neglected.)
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CMOS NAND and NOR Gates
NOR: Output is low unless 
all inputs are low.

Vout

Vdd

Vin1

Vin2

Vdd

Vout

Vin2

in1V

Like the inverter, there is no static power dissipation.

NAND: Output is high 
unless all inputs are high.
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MOSFET Layout
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n p+ +or 

d = a + b + c are layout
groundrules dictated by 
lithography capability.

L is limited by either 
lithography or device 
design.
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CMOS Inverter Layout

Folded (or
interdigitated) layout 
in (b) reduces the 
junction capacitance 
contribution by a 
factor of 2.
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Two-way NAND Layout
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Source-Drain Series Resistance

Rac is the accumulation-layer resistance which is modulated by gate voltage 
and should be a part of the channel length.

Rsp is the spreading resistance associated with current injection from the 
surface channel into the bulk.

Rco is the contact resistance associated with current flowing from Si into metal. 
WSR shsh / ρ=
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Self-Aligned Silicide Technology

Rsh becomes negligible.
Rco between silicide and metal is negligible.
Long contact regime between silicide and Si.

Sheet resistance:
Metal (1 µm) — 0.05 Ω/sq
N+, p+ diffusion (0.1 µm) — 50-500 Ω/sq
Silicide (0.03 µm) – 5-10 Ω/sq
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MOSFET Capacitances
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Intrinsic capacitance:

Parasitic capacitances:
• Depletion capacitance
• Overlap capacitance
• Junction capacitance
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Overlap Capacitance
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For typical values of tgate/tox ≈ 40 and xj/tox ≈ 20,
Cof/W ≈ 2.3εox ≈ 0.08 fF/µm, Cif/W ≈ 1.5εsi ≈ 0.16 fF/µm (off state)

For reliability, lov ≈ (2-3)tox, Cov/W ≈ 10εox ≈ 0.3 fF/µm  
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Gate Resistance

Gate L

x=0 x=W

Cdx

I(x)
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The resistance per unit length is
where ρg is the silicide sheet resistivity (Ω/�).

The capacitance per unit length is approximately

Diffusion eq.:

The effective RC delay is RCW2/4 or 
For ρg = 10 Ω/�, tox = 50 Å; τg < 1 ps if W < 7.6 µm.

Multiple-finger gate layouts with interdigitated 
source and drain regions should be used.
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Interconnect Scaling
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Interconnect Resistance
Interconnect RC delay is described by the same distributed 
RC-ckt & diffusion eq. as gate resistance.

where Rw = ρw/Wwtw and Cw ≈ 2πεins (2 pF/cm).

For aluminum and oxide technology,

Local wire RC delay < 1 ps as long as Lw
2/Wwtw < 3×105 and 

can be scaled down without problem. 

For global wires, however, Lw does not scale down, e.g., 
Lw

2/Wwtw ∼ 108-109, and τw ∼ 1 ns. Therefore, Wwtw cannot 
scale down   ⇒ Use large wires for global wiring.

 τ w w w wR C L=
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2

2

 τ πε ρw ins w
w

w w

L
W t
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2

 sτ w
w

w w

L
W t

≈ × −( )3 10 18
2
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Global Interconnects
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up insulator 
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RC Delay ~ l  /A        Time of Flight ~ l /c2

Ultimately, signal propagation is limited by 
the speed of electromagnetic wave, 
c/(εins/ε0)1/2, (70 ps/cm for oxide), instead 
of by RC delay.
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Propagation Delay
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For a chain of CMOS inverters or NAND/NOR gates,

CMOS propagation 
delay equals 
τ = (τn + τp)/2, 
where τn is the pull-
down delay and τp
is the pull-up delay.
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Bias Point Trajectories
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Delay Equation
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The delay equation not only allows the delay to be calculated 
for any fan-out and loading conditions, but also decouples 
the two important factors that govern CMOS performance: 
current and capacitance.

Delay equation:

Rsw: Switching Resistance 
(≡dτ/dCL)
Cin: Input Capacitance (to next 
stage)
Cout: Output Capacitance
FO: Number of Fan-Out’s

FOτ = × + × +R C C Csw out in L( )
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Input and Output Capacitance
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Cin: For switching n/p gates of the receiving stage.
Cout: For switching n/p drains of the sending stage.
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Switching Resistance

Switching resistance Rsw is a direct indicator of 
the current drive capability of the logic gate.

If we define Rswn ≡ dτn/dCL and Rswp ≡ dτp/dCL, 
then Rsw = (Rswn + Rswp)/2 and we can write

where In, Ip are maximum on currents at Vds = Vg
= Vdd, and kn, kp are numerical fitting parameters.
For step inputs with zero rise time, kn = kp = 0.5.
For propagation delays, kn, kp ~ 0.75.

 R k V
W Iswn n

dd

n n

=  R k V
W Iswp p

dd

p p

=
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Delay Sensitivity to n/p Width Ratio
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Table 5.2
   value

Note that for equal pull-up 
and pull-down delays (τn =
τp) and therefore symmetric 
transfer curve and best 
noise margin, Wp/Wn = 2.5.

Minimum CMOS delay, (τn
+ τp)/2, however, occurs at
Wp/Wn = 1.5. 
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Buffer Stage for Heavy Loads
For a given Wp/Wn ratio, if both widths are increased by a factor 
of k, then Rsw→Rsw/k, Cin→kCin, Cout→kCout.  No change in 
intrinsic delay, 

But driving capability is improved. 

Consider a CMOS inverter driving a large capacitive load:

If CL >> Cin, Cout, the delay can be improved by inserting a buffer 
stage k (> 1) times wider than the original inverter.  The two-
stage delay is

which has a minimum

when k = (CL/Cin)1/2.

Multiple-stage buffers can be used for very heavy loads 
(Problem 5.8-10).

τ int ( )= × +R C Csw in out

τ = +R C Csw out L( )

 τ b sw out in
sw

out L sw out in
LR C kC R

k
kC C R C kC C

k
= + + + = + +( ) ( ) ( )2

 τ b sw out in LR C C Cmin ( )= +2 2



2/19/2003 44

Delay Sensitivity to Channel Length
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Delay Sensitivity to Oxide Thickness
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Delay Sensitivity to Vdd and Vt
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Desirable to keep Vt/Vdd < 0.3.

Delay sensitivity to Vdd
and Vt is mainly in the 
Rsw factor.

Note that the 
dependence is stronger 
than
Ion ∝ 1 − Vt /Vdd, due to 
the finite input rise time.
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CMOS Performance and Power
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CMOS Power vs. Delay Trade-off

Significant power savings by trading off performance and 
operating at low Vdd (same Vt).
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Overlap Capacitance and Miller Effect
Consider driving 3 capacitors with respect to different voltages:

i

Vdd

V

V1

V2

V3

C1

C2

C3

 i C d V V
dt

C d V V
dt

C d V V
dt

=
−

+
−

+
−

1
1

2
2

3
3( ) ( ) ( )

 i C dV
dt

C dV
dt

C dV
dt

C dV
dt

= + − +1 2 2
2

3

If dV2/dt = −dV/dt, then 

⇒ C2 appears doubled to the driving source.

 i C C C dV
dt

= + +( )1 2 32
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Components of Cin and Cout
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Two Input (Two-way) NAND
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Top (N1) switching: Effective 
gate drive is Vin1 − Vx,
threshold is Vt + (m − 1)Vx due to 
body effect.

Bottom (N2) switching: Has 
more capacitance (of N1) to pull 
down.
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Two Input (Two-way) NAND
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⇒ Delay is about 30% worse than inverter.
(Fan-in > 3 rarely used.)
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