For 1-4 below, your explanation of why should include an appropriate mathematical equation substantiating your answer.

- 1. If you want to build a diode that has an ideality factor of 1 at room temperature, would you choose Si, Ge, or GaAs? Why?
- 2. For a diode with n=1 biased under forward bias at a fixed voltage, $V_A > 3kT$, will the current increase or decrease as the temperature is increased? Write down an equation that gives the dominant temperature dependence.
- 3. Under low forward bias the ideality factor of a Si diode is n=2. Explain why.
- 4. Under very high forward bias the ideality factor of a Si diode is also n=2. Explain why.
- 5. For an n⁺-p short base diode shown at right, assume that $\Delta n_p(-t_p) = 0$ (see Sec. 2.2.4 of Taur).
- (a) Derive $\Delta n_p(x)$.

(b) Assume that t_p - $x_p \ll L_n$. Derive a linear expression for $\Delta n_p(x)$.

(c) Define a velocity v(x) by the following expression,

 $J_n(x) = -q v(x) \Delta n_p(x)$. Derive an expression for v(x).

(d) The average time to traverse the base is called the base transit time given by

$$\tau_B = \int_{-t_p}^{-x_p} \frac{dx}{v(x)}$$

p n^+ $-t_p$ $-x_p$ 0

Derive \mathcal{T}_{B} .

(e) Show that the current is given by $J_n = q\Delta N_p / \mathcal{T}_B$ where ΔN_p is given by

$$\Delta N_p = \int_{-t_p}^{-x_p} dx \Delta n_p(x)$$

(f) For $V_A = 0.7V$, $N_D = 10^{18}$ /cm³, $N_A = 10^{16}$ /cm³, t_p - x_p =0.1 µm, T=300K, and $\mu_n = 1500$ cm²/Vs, calculate J_n .

(g) Compare this value to the current for the above diode with t_p - $x_p >> L_n$ and $\tau_n = 1$ ns.

(h) Considering the linear expression for $\Delta n_p(x)$ from part (b), derive, as we did in class, an expression for the ac conductance and diffusion capacitance under forward bias. What is the frequency dependence?