EE 203. HW3 Due 5/12

1.InS

a. (5 pts) How many equivalent conduction band valleys are there? 6

b. (5 pts)Where are they? At 0.85 21ain the equivalent <100> directions. These are referred to
asthe X valleys, because they are near the X point, and also the A valleys since they lie dong the
A line which is any of the equivalent <100> lines.

2.1n Ge,

a. (5 pts)How many equivalent conduction band valleys are there? 4

b. (5 pts)Where are they? Centered at the L point which is at the Brillouin zone edge along the
equivalent <111> directions. They are referred to asthe L valleys. These valeys are
approximately 100 meV below thel” valley of Ge, so Ge is “almost” direct.

3. In GaAs,
a. (5 pts)How many equivalent conduction band valleys are there? 1

b. (5 pts)Where are they? At

4. Describe the valence band structure of semiconductors.
a. (5 pts)Where does the maximum occur? At

b. (5 pts)Sketch the bands.
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5. (10 pts) Describe the process(es) by which an electron at the valence band maximum in Si
could absorb a photon equal to the bandgap. lllustrate the process(es) on a sketch of the E-k
diagrams.

Note that neither of these processes correspond to the absorption of a photon of exhatly E
close.
1. Absorb a photon and then absorb or emit a <100> phonon to pick up the momentum to
get out to one of tha valleys at 0.85 f/a <100>.
2. Absorb a photon to end up in a localized state close in energy to the conduction band
edge. Then get thermally excited or relaxed to the band edge.
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6. (10 pts)Derive the following expressions for degener ate statistics. Y ou will need to use the

J, =u,pUF,
Jn = /'Innlan
properties of the [(r7) function described in class.

First, derive the Einstein relation for degenerate statistics starting with the current equation for
electronsin equilibrium

J, =qu,nE+qgD,0n=0 (1)
and the equation for n

n= NchIZ(r])' )

togive
UnENcDuz(r]) = _DnDNcDuz(ﬂ) ©)

where

_Ee -E;

n= T (4)

The N¢'s in (3) cancel giving

()= -0, D S o - O ®)
B

UEg = 0 sinceEr is a constant in equilibrium ardE, = gE whereE is the electric field. This
cancels the electric field on the left hand side of (5) giving

)= D, R ©
B
which gives the Einstein relation for degenerate statistics
Dn - gBT @‘n |:|1/2(n) (7)
q D—l/z(rl)
Now we go back to the current equation (1) using (2) and (7) to get

1
Jn = qunENcmllz(r])"' anNcD—llz(n)%%DFn - DEC)
B

T 0,,,(n) 1
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As before, thelJE, term on the right cancels the electric field term on the left leaving
‘Jn :unnDFn' (9)
The equation for holes is proved similarly.

(8)

7. (10 pts) A Si bar has the following propertieg: N T
10"/em®, py = 1350 cri'Vis, W, = 500 cri/Vs, Th = Tp = Light —
10°s. The left end of the bar is illuminated so as to create >
10'%cm® excess electron hole pairs at x=0. Assuming |
none of the light penetrates into the interior of the bar |

(x>0), x=0 L>>1

Determine the excess minority carrier profile.

Si bar




Thisisthe case of steady-state with no light (since no light penetrates beyond x=0). Thisis case
(2) of the notes:

0=D 0°An, An, @
" ox? T,
The genera solution is
Ang(x) = Ae7/t + Be/b )

where

L, =+/D,T, ?3)
At x =00, An,=0=> B=0. At x=0, An, = 10'® > A = 10", Therefore,
Ang(x) =100 (cm™®) (%)

where L, =,/D unlo' =59.2um.

8. (10 pts) Assume that now, L < L, and, that at the right surface, the surface recombination rate
IS so large that An = Ap = 0. Determine the excess minority carrier profile.

The general form of the solution is the same as above

Ang(x) = A7/t + BeX/b 1)
But now, the boundary conditions give at x=0
A+ B=10" 2)
and at x=L
Ae 't +Bet'tn =0, (3)
Using (2) in (3) gives
B 1010 eL/ L,
and putting (4) back into (2) gives
- 100/
B= e/l _g L/l ©)
Thus, the solution (1) is
sinh LL XE
An,(x)=10° ——=—"— . (6)
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9. Consider ap-type (Na = 10" cm™®) Si / 10 nm SiO, / n-type Si (Np = 10™ cm™) structure at 0
bias and T=300K, i.e. a pn junction with a 10 nm oxide between the n and p regions. Using the
depletion approximation as we did for the pn diode.

a. (10 pts) Sketch the charge distribution.
Label maximum and minimum points.

b. (10 pts) Sketch the electric field.
(s =119 & €50, =3.9)
Label max and min points.

C. (10 pts) Sketch the electrostatic potential.
Label max and min points.

d. (10 pts) Sketch the band diagram.
(Ec SiO2=9¢eV. Ec(Si0,) — Ec(Si) = 3eV)
(you will not be able to draw it to scale)
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e. (10 pts) Calculate the built in voltage, Vii.(A number in volts).
Vi isgiven by the usual expression

Vi = KeT |n@'\ID Na Hz 938 mvV (1

q n?

f. (50 pts) Calculate the total depletion width, W = Xp + tox + Xn. (2 number in nm). You first have
to derive the appropriate expression for W. No credit will be given for simply taking the W
derived for apn or pin junction. Pay attention to the 2 different dielectric constants.

(9) (30 pts) Calculate the capacitance in (F/cm?).

Questions (f) and (g) are answered below.

Evaluating V(to) by integrating the electric field from —x, to tox we get

fox qNAXS + qNAXptox

V(ty) =— [dXE(X) = 1
(tor) J’ R (1)
EvaluatingV(t.x) by integrating fromy to x,, we get
Xn 2
gNp X
= [OE() = Vi =Va) ~Vlto) = =2 @
tox ES
or
qNp X2
Vto) = (Vi =Va) =27 (3)
gS
Charge neutrality also gives the usual relation
N,Xx, = NpX, 4)
Setting the two expressions (1) and (3)\W@kx) equal and using (4) gives
N N N At
qZAE»“L AE‘E"'q A0y, = (Vi =Va) =0 )
‘gs ND on
or upon rearranging
Xg + 2€stox X 2‘C"S(Vbi _VA) -0 (6)
£ +& gN +&
ox ND A ND
Solving the quadratic equation gives
[ 2 (/. — [
Xp — EstoxND B—1+\/1+ 2"':ox(vblz VA)(NA+ND)D (7)
gox(NA+ND)E qtoxgsNAND E
To obtainx,, we switch everywhersp andNa. The sumx, + X, is
Xn + Xp — _‘Sstox +\/H£stox g + 2“:s;(vbi _VA)(NA + ND) (8)
on ‘Sox qNAND

The term under the radical on the right is the expression for the depletion width squared for a
regular abrupt pn junction, ¥If we move the first term on the right of (8) to the left and divide
through byes, we get



Xn+Xp +t&: toxg*_%g (9)
&s Eox oX s

We would expect thisto be one over the capacitance of the junction since we would guess the

capacitance to be
-1
= % s 1 E (10)
S (0):¢

where C = &, /(xn + xp) and C,, =&, /t,,. Wewill now prove that thisis true.

We start from the definition of the capacitance that we used in the lectures.

0Xp,
e e N el 1)
Multiplying (7) by gNa and taking the derivative, we get
= qgstoxNAND l 1 2"':(?x(l\lA-'-’\lD)
' en(NA+Np) 2 \/1_'_ 2¢5 (Vi ~Va)(Na+Np) OtoxesNaANo
tex€sNAND
which after canceling most of the terms outside the radical becomes
1 _ 1 (12)

C, = =
\/Htox g (Vbl VA)(NA + ND) \/Htox g + %g
E"gox qgsNAND E‘on S
asclaimed in (9) and (10).
Finally, we are asked to evaluate X, + X, + tox. From Eq. (8), | get X, + Xp + tox = 37.8 nm. For the

capacitance, from (9), (10), and the value that | just calculated for x, + Xp, | get Cj = 0.181
HF/cm?,



