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Digital Integrated Circuit (IC) Layout and Digital Integrated Circuit (IC) Layout and 
DesignDesign

! EE 134 – Winter 05

" Lecture Tu & Thurs. 9:40 – 11am ENGR2 142

" 2 Lab sections
– M 2:10pm – 5pm ENGR2 128

– F 11:10am – 2pm ENGR2 128

" NO LAB THIS WEEK

" FIRST LAB Friday Jan. 20
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PeoplePeople

! Lecturer - Roger Lake
" Office – ENGR2 Rm. 437
" Office hours - MW 4-5pm
" rlake@ee.ucr.edu

! TA – Faruk Yilmaz
" Office – ENGR2 Rm. 222
" Office Hours – TBD
" faruk@ee.ucr.edu
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EE134 WebEE134 Web--sitesite

! http://www.ee.ucr.edu/~rlake/EE134.html
" Class lecture notes

" Assignments and solutions

" Lab and project information

" Exams and solutions

" Other useful links

EE134

Digital Integrated Digital Integrated 
Circuits:Circuits:
A Design Perspective,A Design Perspective,
22ndnd Ed.Ed.
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

Text BookText Book
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Homework Week 1Homework Week 1

! Read Chapter 1 of text.
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Last LectureLast Lecture

! Last lecture
" Moore’s Law

" Challenges in digital IC design for next decade

! Today
" Review of Moore’s Law

" Design metrics
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Summarizes progress in complexity of ICsSummarizes progress in complexity of ICs

1971 P4 2000

2,300 transistors
108 KHz operation

42 M transistors
1.5 GHz operation

~ 15,000 x

Hand Crafted Standard Cell
Automated Design
VLSI
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MooreMoore��s Laws Law

# In 1965, Gordon Moore noted that the 
number of transistors on a chip doubled 
every 18 to 24 months. 

# He made a prediction that  
semiconductor technology will double its 
effectiveness every 18 months
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MooreMoore��s Laws Law
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Electronics, April 19, 1965.
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Evolution in ComplexityEvolution in Complexity
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Transistor CountsTransistor Counts
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MooreMoore��s law in Microprocessorss law in Microprocessors
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2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

Courtesy, Intel
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Die Size GrowthDie Size Growth
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~7% growth per year
~2X growth in 10 years

Die size grows by 14% / 2 yrs. to satisfy Moore’s LawDie size grows by 14% / 2 yrs. to satisfy Moore’s Law

Courtesy, Intel
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FrequencyFrequency
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Lead Microprocessors frequency doubles every 2 years
Transistors on Lead Microprocessors double every 2 years
Die size grows by 14% / 2 yrs. 

Lead Microprocessors frequency doubles every 2 years
Transistors on Lead Microprocessors double every 2 years
Die size grows by 14% / 2 yrs. 
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2 years P4
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Power will be a major problemPower will be a major problem

5KW 
18KW 

1.5KW 
500W 

4004
8008

8080
8085

8086
286

386
486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008
Year

P
o

w
er

 (
W

at
ts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

Courtesy, Intel
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Productivity TrendsProductivity Trends
ITRS Roadmap
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58%/Yr. compounded
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• Electronic design automation (EDA) tools to deal with 
complexity.

• Cadence 
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Why Scaling?Why Scaling?
! Technology shrinks by 0.7/generation

" # of transistors / die doubles every 2 years.
" Can integrate 2x more functions per chip.
" Cost per function decreases by 2x.

! Main problem: power delivery and dissipation.

! How to design more and more complex chips?
" Designer productivity does not double every two years.
" Understand and exploit different levels of abstraction.
" Automated tools (EDA).
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Design Abstraction LevelsDesign Abstraction Levels
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CIRCUIT

GATE

MODULE

SYSTEM

Started with large scale – microprosesors.

Go down to gate level, transistor level, then back up.
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2010 Outlook2010 Outlook

! Performance 2x / 2 years
" 1 T (Tera) instructions / s

" 20 – 30 GHz clock

! Complexity
" # transistors: 1 Billion

" Die area: 40mm x 40mm

! Power
" 10 kW !

" Leakage: 1/3 of total power
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Design MetricsDesign Metrics

! How to evaluate performance of a 
digital circuit (gate, block, …)?

! Outline
" Cost

" Reliability

" Speed

" Power
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Cost of Integrated CircuitsCost of Integrated Circuits

! NRE (Non-Recurrent Engineering) costs -
fixed
" Design time and effort, mask generation

– Independent of sales volume / number of products
– One-time cost factor

" Indirect costs (company overhead)
– R&D, manufacturing equipment (Fab), etc.

! Recurrent costs - variable
" silicon processing, packaging, test

– proportional to volume
– proportional to chip area
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NRE Cost is IncreasingNRE Cost is Increasing
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Total CostTotal Cost

! Cost per IC

! Variable cost

Cost per IC = variable cost per IC  +
fixed cost

volume

Variable cost = 
cost of die + cost of die test + cost of packaging

final test yield
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Die CostDie Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)
8 – 12 ”

cost of die =
cost of wafer

Dies per wafer * die yield
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YieldYield

%100
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DefectsDefects

α−
⎟
⎠
⎞

⎜
⎝
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α
×

+=
area dieareaunit per  defects

1yield die

α ≈ 3, complexity of mfg. process

Defects per unit area = 0.5 – 1 / cm2

die cost = f (die area)4
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die cost = f (die area)4

yield Dieper wafer dies
costWafer 
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Some Examples (1994)Some Examples (1994)

$4179%402961.5$15000.803Pentium

$27213%482561.6$17000.703Super Sparc

$14919%532341.2$15000.703DEC Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804Power PC 
601

$1254%181811.0$12000.803486 DX2

$471%360431.0$9000.902386DX

Die 
cost

YieldDies/
wafer

Area 
mm2

Def./ 
cm2

Wafer 
cost

Line 
width

Metal 
layers

Chip
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Cost per TransistorCost per Transistor
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cost: cost: 
¢¢--perper--transistortransistor

Fabrication capital cost per transistor (Moore�s law)

Today:
~10,000 transistors / penny
~100 n$ / transistor
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OutlineOutline

! Design Metrics
" Cost

" Reliability - Noise

" Speed

" Power
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ReliabilityReliability―― Noise in Digital Integrated CircuitsNoise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and ground
noise

v(t) VDD

• Noise sources

• Internal (proportional to signal swing)

• External (not related to signal levels)

signal lines
signal lines Power and ground 

buses
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DC OperationDC Operation
Voltage Transfer CharacteristicVoltage Transfer Characteristic

V(in)

V(out)

V
OH

VOL

VM

V
OH

VOL

f
Vout = Vin

Switching Threshold

Nominal Voltage Levels

VOH = f (VOL)
VOL = f (VOH)
VM = f (VM)

How much can input signal 
deviate from VOH and VOL and 
circuit still work?

VOH = VOut High
VOL = VOut Low
VM = Switching threshold
Vsw = Signal swing = VOH - VOL
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Mapping between analog and digital signalsMapping between analog and digital signals

V
IL

V
IH

V
in

Slope = -1

Slope = -1

V
OL

V
OH

V
out

“ 0 ” V
OL

V
IL

V
IH

V
OH

Undefined
Region

“ 1 ”

VIL is maximum voltage at input that is a “0”.
VIH is minimum voltage at input that is a “1”.
In between is undefined.

VIL = Vinput low

VIH = Vinput high
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Definition of Noise MarginsDefinition of Noise Margins

Noise margin high

Noise margin low

VIH

VIL

Undefined
Region

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

NMH = VOH - VIH

NML = VIL - VOL

(Stage M) (Stage M+1)
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Noise BudgetNoise Budget

! Allocates gross noise margin to expected 
sources of noise

! Sources: 
" power supply (noise on power supply / ground)
" offset 
" cross talk (inductive and capacitance)
" Interference (consequtive signals)
" Timing (jitter and skew)

! Differentiate between fixed and proportional 
noise sources
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Key Reliability PropertiesKey Reliability Properties

! Absolute noise margin values are deceptive

" a floating node is more easily disturbed than a node driven 
by a low impedance (in terms of voltage)

! Noise immunity is the more important metric – the 
capability to suppress noise sources

! Key metrics: 
" Noise transfer functions

" Output impedance of the driver

" Input impedance of the receiver
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Regenerative PropertyRegenerative Property

v0

v1

v3

finv(v)

f (v)

v3

out

v2 in

Regenerative Non-Regenerative

v2

v1

f (v)

finv(v)

v3

out

v0 in
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Regenerative PropertyRegenerative Property
A chain of inverters
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FanFan--in and Fanin and Fan--outout

N

Fan-out N Fan-in M

M
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The Ideal GateThe Ideal Gate

Ri = ∞
Ro = 0
Fanout = ∞
NMH = NML = VDD/2g = ∞

V in

V out
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An OldAn Old--time Invertertime Inverter
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OutlineOutline

! Design Metrics
" Cost

" Reliability - Noise

" Speed

" Power
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Delay DefinitionsDelay Definitions

Vout

tf

tpHL tpLH

tr

t

Vin

t

90%

10%

50%

50%

Defined
w.r.t. output

Lot of output loading CL increast tf and tr

INVERTER

2
pHLpLH

p
tt

t
+

=

Propagation delays
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2
pHLpLH

p
tt

t
+

=

Delay DefinitionsDelay Definitions

tpHL – output high to low delay time

tpLH –output low to high delay time 

tp – propagation delay

tr – rise time

tf – fall time

tp is an mostly used to compare different technologies. Artificial metric.
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Ring Oscillator Ring Oscillator �� measuring measuring ttpp

v0 v1 v5

v1 v2v0 v3 v4 v5

T = 2 × tp × N
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A FirstA First--Order RC NetworkOrder RC Network

vout

vin C

R

tp = ln (2) τ = 0.69 RC

Important model – matches delay of inverter

in

Delay: 0.69 RC
90% poing: 2.2 RC
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Power DissipationPower Dissipation

Instantaneous power: 
p(t) = v(t)i(t) = Vsupply i(t)

Peak power: 
Ppeak = Vsupply ipeak

Average power: 

( )∫ ∫
+ +

==
Tt

t

Tt

t supply
supply

ave dtti
T

V
dttp

T
P )(

1
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Energy and EnergyEnergy and Energy--DelayDelay

Power-Delay Product (PDP) =

E =  Energy per operation = Pav × tp

Energy-Delay Product (EDP) =

quality metric of gate  = E × tp



EE134 49

A FirstA First--Order RC NetworkOrder RC Network

E0 1→ P t( )dt

0

T

∫ Vdd isupply t( )dt

0

T

∫ Vdd CLdVout
0

Vdd

∫ CL Vdd• 2= = = =

Ecap Pcap t( )dt

0

T

∫ Vouticap t( )dt

0

T

∫ CLVoutdVout
0

Vdd

∫
1
2
---C

L
Vdd•

2
= = = =

vout

vin CL

R
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SummarySummary
! Digital integrated circuits have come a 

long way and still have quite some 
potential left for the coming decades

! Some interesting challenges ahead
" Get a clear perspective on the challenges and 

potential solutions

! Understand the design metrics that 
govern digital design
" Cost, reliability, speed, power and energy 

dissipation


