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Abstract— In this paper, control Lyapunov functions are
used to define static and dynamic safe regions for a system.
Based on a control Lyapunov function, a “satisficing input set”
is defined as all satisficing controls for this CLF according to
attractive behaviors and repulsive behaviors. If the system is
within a specified safe region, the human input will be used
as the control input to the system. If the system is outside the
specified safe region, the human input will be snapped to the
closest control element in the satisficing input set. Behavior
based strategies are applied to achieve smooth transition from
human input to snapped control input so as to guarantee
maximum flexibility for humans as well as system stability
and minimum base-line performance.

I. INTRODUCTION

Human-machine interaction as an attractive research area
has been studied extensively in the literature with both
military and civilian applications. Following the taxonomy
in [1], human-machine interaction can be categorized as
teleoperation, shared control, traded control, and supervi-
sory control.

The main purpose of this paper is to propose a safe-
guarded control scheme with a human in the loop which
not only allows maximum flexibility for humans but also
guarantees system stability. This paper falls into the cat-
egory of safeguarded shared control. While most current
approaches to shared control are based on heuristic princi-
ples that are not easily analyzed, our approach is built on
analytically rigorous control theory. This approach rests on
several seemingly loosely related theoretical foundations,
that is, control Lyapunov functions (CLFs) [2], CLF based
satisficing control [3], shared control frameworks [4], [5],
and reactive control techniques [6], [7], [8].

In this paper, we will use control Lyapunov functions to
define static and dynamic safe regions for a system. Based
on a control Lyapunov function, a “satisficing input set” can
be defined accordingly, which corresponds to all satisficing
controls for this CLF. If the system is within a specified
safe region, the human input will be used as the control
input to the system even if it is outside the satisficing input
set. If the system is outside the specified safe region, the
human input will be snapped to the satisficing input set. In
this case, the actual control input to the system will be the
closest control element in the satisficing input set. Behavior
based strategies are applied to guarantee smooth transition
from human input to snapped control input. Therefore, this
approach gives the human maximum flexibility within the
constraints that system stability and minimum base-line
performance are guaranteed. This paper applies the concept
of CLF to find satisficing controls according to attractive
behaviors and repulsive behaviors. In this sense, this paper
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can be thought of as a novel use of potential field like
approaches (e.g. [8]) to compute safe controls for a vehicle
by allowing humans to control the vehicle as long as safety
constraints are not violated. The main contribution of this
paper is to introduce a rigorous analytic approach to ana-
lyzing safeguarded shared control problems using Lyapunov
techniques. Instead of restricting our attention to navigation
or obstacle avoidance scenarios, we focus on the stability
issue of general nonlinear systems with a human in the loop;
for example, vehicles with complicated nonlinear dynamics
or unstable modes. In fact, system stability is a critical
concern for any control loop with humans involved. This
feature also distinguishes our approach from the previous
shared control frameworks and reactive control techniques.

II. CLF BASED SATISFICING INPUT SET

In this section, control Lyapunov functions will be used
to define satisficing input sets for both time-invariant and
time-varying affine nonlinear systems.

Consider a time-varying affine nonlinear system

ẋ = f(x, t) + g(x, t)u, (1)

where x ∈ IRn, u ∈ IRm, and f : IRn × IR+ → IRn and
g : IRn × IR+ → IRn×m are locally Lipschitz in x and
piecewise continuous in t.

Similarly, a time-invariant affine nonlinear system is
given by

ẋ = f(x) + g(x)u. (2)

We consider two competing behaviors including an at-
tractive behavior and a repulsive behavior.1 In the case
of attractive behaviors, satisficing controls correspond to
all stabilizing controls with respect to a particular CLF
which can drive x to a reference trajectory xr(t) for
system (1) or regulate state x to a certain state x∗ for
system (2). In the case of repulsive behaviors, satisficing
controls correspond to all destabilizing controls with respect
to a particular CLF which can drive state x away from a
reference trajectory xr(t) for system (1) or from a certain
state x∗ for system (2). With regard to these two behaviors,
we have the following control Lyapunov function definition
for system (1).

Definition 2.1: A continuously differentiable function
V : IRn × IR+ → IR is a control Lyapunov function (CLF)

1Although terms “attractive behavior” and “repulsive behavior” are used
exclusively in robot navigation and motion planning literature for goal
seeking and obstacle avoidance, here we employ the same terms but refer
to general constraints for the system state. In this paper, attractive behavior
corresponds to the case when some nonnegative function of the state is
constrained to be below a certain upper bound while repulsive behavior
corresponds to the case when some nonnegative function of the state is
constrained to be above a certain lower bound.
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for system (1) if it is positive definite, decrescent, radially
unbounded in x, and satisfies

inf
u

{
ρ
∂V

∂t
+ ρ

∂V

∂x
(f(x, t) + g(x, t)u)

}
≤ −W (x), (3)

∀x �= 0 and ∀t ≥ 0 where ρ = 1 or −1 and W (x) is a con-
tinuous positive definite function. Function V corresponds
to a stabilizing CLF for ρ = 1 and a destabilizing CLF for
ρ = −1.

The satisficing input set for system (1) is defined as

F (x)
�
=

{
u : ρ

∂V

∂t
+ ρ

∂V

∂x
(f(x, t) + g(x, t)u) ≤ 0

}
,

(4)
where ρ = 1 or −1. The set F (x) corresponds to a stabiliz-
ing set for ρ = 1, denoted as S(x), and a destabilizing set
for ρ = −1, denoted as S̄(x). Similarly, the asymptotically
satisficing input set for system (1) is defined as

Fa(x)
�
=

{
u : ρ

∂V

∂t
+ ρ

∂V

∂x
(f(x, t) + g(x, t)u) ≤ −W (x)

}
.

(5)
Note that both F (x) and Fa(x) are guaranteed to be
nonempty by Definition 2.1.

For system (2), CLF and satisficing input set are defined
similarly except that CLF V (x) is not an explicit function
of time.

The value of ρ is specified according to design purposes.
For the particular example of vehicle navigation, we assume
that V = 0 at a certain goal and V qualitatively represents
how far a vehicle is from its goal. If we want the vehicle
to move to this goal, ρ is specified as 1, that is, controls
corresponding to negative V̇ are feasible. If we want the
vehicle to move away from this goal, ρ is then specified as
-1, that is, controls corresponding to positive V̇ are feasible.

Remark 2.2: Note that Definition 2.1 can be extended
to a weak control Lyapunov function (wCLF) definition
by allowing V to be positive semi-definite, which may be
appropriate for certain applications where only part of the
states are of interest.

In the case of u ∈ IR2, at each time t, the line defined by
V̇ = 0 separates the control space (a plane in this case) into
two halves, where one half plane represents the satisficing
input set and the other half represents the unfeasible input
set. Of course, if ∂V

∂x g = [0, 0] at a certain time t1, the
satisficing input set will be the whole plane given the
existence of the CLF.

We have the following lemma regarding the connection
between the stabilizing set S(x) and the destabilizing set
S̄(x).

Lemma 2.1: Given a certain CLF without input con-
straints, if ∂V

∂x g(x) �= 0 for all x �= 0, then a function
V is a stabilizing CLF (destabilizing CLF) if and only if it
is also a destabilizing CLF (stabilizing CLF). That is, both
S(x) and S̄(x) are nonempty for all x �= 0. Otherwise, if
a function V is a stabilizing CLF (destabilizing CLF), it
cannot be a destabilizing CLF (stabilizing CLF).
Proof: If ∂V

∂x g(x) �= 0 for all x �= 0, there always exists
a control u ∈ IRm to make V̇ negative or positive for all

x �= 0, that is, both S(x) and S̄(x) are nonempty for all
x �= 0.

If ∂V
∂x g(x) = 0 for some x �= 0, a stabilizing CLF implies

∂V
∂x g = 0 =⇒ ∂V

∂t + ∂V
∂x f < 0. Thus this CLF cannot be a

destabilizing CLF. Similarly, a repulsive CLF cannot be a
stabilizing CLF in this case.

To illustrate Lemma 2.1, consider the following system

ẋ1 = −x1 + u, ẋ2 = −x2 − u. (6)

It is straightforward to show that V = 1
2 (x2

1 + x2
2) is an

stabilizing CLF for system (6). The derivative of V is given
by V̇ = −x2

1−x2
2+(x1−x2)u. In the case of x1 = x2 �= 0,

the stabilizing set S(x) = IR while the destabilizing set
S̄(x) = ∅. That is, in general nonempty S(x) does not
imply that S̄(x) is nonempty, and vice versa.

Note that both the satisficing input set and asymptotically
satisficing input set can be extended easily to the case when
there are input constraints for the system if a corresponding
constrained CLF is known.

III. SATISFICING APPROACH TO SAFEGUARDED

SHARED CONTROL

In this section, we propose a satisficing approach to
safeguarded shared control. The basic idea behind this
approach is that both system stability and minimum levels
of performance are guaranteed in the presence of human
inputs.

A. Safeguarded Control for Static Safe Region

Motivated by the properties of CLF, we use it to define
safe regions for the shared control problem.

Definition 3.1: A static safe region corresponds to a
region of the state space where the system has guaranteed
minimum base-line performance.

A simple example of a static safe region for an airplane
may correspond to a region of its states (e.g. range of roll
angles, velocity, and so forth) where the airplane can fly
safely.

Safe regions for system (2) are defined for two different
behaviors. In the case of attractive behaviors, a safe region
is defined as R = {x : V (x) ≤ c}, where c is a positive
constant and can be specified based on the design require-
ment, and V (x) is a stabilizing CLF (wCLF) for system (2).
In the case of repulsive behaviors, a safe region is defined as
R̄ = {x : V (x) ≥ c}, where c is defined similarly and V (x)
is a destabilizing CLF (wCLF) for system (2). In both cases,
we assume that the CLF (wCLF) V (x) = 0 at x = x∗,
where x∗ is the reference state as mentioned in Section II.
For example, in a vehicle navigation scenario, x∗ can be
designed as the goal for the goal seeking behavior or as the
center of the hazardous region for the obstacle avoidance
behavior. For general cases, x∗ can be designed as the state
reference to which a system needs to be stabilized or as
the state reference of a certain unstable mode for systems
with unstable modes to guarantee system stability. If we
associate different CLFs (wCLFs) to a system for different
design purposes, the overall safe region for the system can
be designed correspondingly as an intersection of a group
of the two kinds of subregions defined above. We have the
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following definition for the construction of the overall safe
region.

Definition 3.2: Given known CLFs Vi and positive
scalars ci, i = 1, · · · , K, the overall static safe
region for system (2) can be constructed as
Rs(c) =

(⋂J
i=1 Ri(ci)

)⋂ (⋂K
i=J+1 R̄i(ci)

)
, where

c = [c1, · · · , cK ]T , Ri, i = 1, · · · , J , represents
the attractive subregion {x : Vi(x) ≤ ci}, and R̄i,
i = J + 1, · · · ,K, represents the repulsive subregion
{x : Vi(x) ≥ ci}.

Let I = {1, · · · , J} and Ī = {J + 1, · · · ,K}. Accord-
ingly, define the ith satisficing input set corresponding to
the ith safe subregion as

Ui(x) =

{
{u : u ∈ IRm}, x ∈ Ri(ci − εi)
{u : V̇i(x) ≤ 0}, x /∈ Ri(ci − εi)

i ∈ I

Ūi(x) =

{
{u : u ∈ IRm}, x ∈ R̄i(ci + εi)
{u : V̇i(x) ≥ 0}, x /∈ Ri(ci + εi)

i ∈ Ī,

(7)

where εi represents the tolerance for safeguarding with 0 <
εi < ci, i ∈ I, and εi > 0, i ∈ Ī.

We have the following definition for the construction of
the overall satisficing input set.

Definition 3.3: Given the overall safe region de-
fined in Definition 3.2, the overall satisficing input
set for system (2) can be constructed as U =
(
⋂J

i=1 Ui(x))
⋂

(
⋂K

i=J+1 Ūi(x)), where Ui(x) and Ūi(x)
are given by (7).

Note that in the above lemma for the overall satisficing
input set, we did not consider the possible input constraints
for the system, which can be incorporated conveniently in
Eq. (7) by constraining u ∈ U , where U is the constraint set
for the input. Also, the above overall satisficing input set can
be easily extended to the overall asymptotically satisficing
input set, denoted as Ua, following Eq. (5).

To illustrate the above safe region and satisficing input set
concepts, we consider a navigation scenario when a human
drives a vehicle in a room. We want to give the human
authority and flexibility to drive the vehicle but modify
or override his or her control under hazardous situations
(e.g. collision). For illustrative purpose, three CLF level
curves are plotted in Figure 1. We use a wedge to represent
the vehicle. Let Vi([x, y]), i = 1, 2, 3, where (x, y) is the
Cartesian position of the vehicle, be the CLF corresponding
to goal (x∗

i , y
∗
i ) respectively. We assume that Vi = 0 at

each goal point. We also assume that the vehicle should
be constrained inside the level curve V1 = c1 (e.g. wall
avoidance) as well as outside level curves V2 = c2 and
V3 = c3 (e.g. obstacle avoidance). In this case, the safe
region is defined as R = R1

⋂
R̄2

⋂
R̄3, where R1 =

{x : V1(x) ≤ c1}, R̄2 = {x : V2(x) ≥ c2}, and
R̄3 = {x : V3(x) ≥ c3}. Accordingly, the overall satisficing

input set is defined as U = U1(x)
⋂

Ū2(x)
⋂

Ū3(x), where

U1(x) =

{
{u : u ∈ IR2}, x ∈ R1

{u : V̇1(x) ≤ 0}, x /∈ R1
,

Ū2(x) =

{
{u : u ∈ IR2}, x ∈ R̄2

{u : V̇2(x) ≥ 0}, x /∈ R̄2
,

Ū3(x) =

{
{u : u ∈ IR2}, x ∈ R̄3

{u : V̇3(x) ≥ 0}, x /∈ R̄3
.

1

V1=c1 

V2=c2 

V3=c3 

3

2

Fig. 1. CLF level curves.
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Fig. 2. A UAV equipped with
an onboard satisficing controller.

Consider another scenario where a pilot controls an
unmanned air vehicle via a ground station as shown in
Figure 2. The ground station sends control commands to and
receive navigation data from the aircraft. In general, there
exists two-way communication delay, which may cause
instability to the aircraft. To guarantee aircraft safety, it is
also desirable to constrain the roll angle and the pitch angle
of the aircraft to be within certain ranges. In this case,
the aircraft can be equipped with an onboard satisficing
controller, which defines the proper satisficing set within
which the aircraft maintains its base-line performance. Both
the human input and the aircraft states obtained from the
onboard sensor are sent to the satisficing controller. If the
aircraft is safe, that is, its states are within the satisficing
set, the human input will be used to control the aircraft.
Otherwise, the human input will be overridden by a control
element, detailed in the sequel, in the satisficing set.

Define the continuous scalar function k : IRn → [0, 1] as
follows:

k(x) =

⎧⎪⎨
⎪⎩

1, x ∈ Rs(c − ε)
l(x), x ∈ Rs(c) \ Rs(c − ε) and x /∈ B(Rs(c))
0, x /∈ Rs(c) or x ∈ B(Rs(c))

(8)
where Rs(·) and c are defined in Definition 3.2,
B(·) represents the boundary of a set, ε =
[ε1, · · · , εJ ,−εJ+1, · · · ,−εK ]T with 0 < εi < ci,
i ∈ I and εi > 0, i ∈ Ī, and l(x) ∈ [0, 1] can be any
continuous function in x. The introduction of function l(x)
defines a smooth transition from human input to snapped
control input when the system starts moving out of the
safe region.

Note that l(x) in Eq. (8) may be defined in various ways.
One option of defining l(x) is based on the following two
sets of functions.
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Define two sets of continuous scalar functions Fa and
Fr as follows:

Fa(εa, ca) = {f : IR+ → [0, 1]|f(r)

=

⎧⎪⎨
⎪⎩

1, 0 ≤ r ≤ ca − εa

p(r), ca − εa < r < ca

0, r ≥ ca

} (9)

Fr(εr, cr) = {f : IR+ → [0, 1]|f(r)

=

⎧⎪⎨
⎪⎩

0, 0 ≤ r ≤ cr

q(r), cr < r < cr + εr

1, r ≥ cr + εr

}, (10)

where ca and cr are positive constants, 0 < εa < ca, εr > 0,
and p(r), q(r) ∈ [0, 1] are monotonically continuous with
p(ca − εa) = 1, p(ca) = 0, q(cr) = 0, and q(cr + εr) = 1.

Accordingly, l(x) can be defined as l(x) =∏K
i=1 khi(Vi(x)), where Vi(x) is the ith CLF given

in Definition 3.2, khi ∈ Fa(εi, ci) for i ∈ I, and
khi ∈ Fr(εi, ci) for i ∈ Ī. Obviously p(r) and q(r)
are easy to define in this case, for example, a linear
strictly decreasing function for p(r) and a linear increasing
function for q(r).

Define the control input to system (2) as

u = (1 − k(x))d(x) + k(x)h(t), (11)

where k(x) is given by Eq. (8), h(t) is the human input,
and d(x) is the satisficing control snapped from the human
input to the satisficing input set U given by

d(x) = arg minu∈U ‖h − u‖ . (12)

With the asymptotically satisficing input set Ua, d(x) can
also be the asymptotically satisficing control given by

d(x) = arg minu∈Ua
‖h − u‖ . (13)

From Eq. (11), we can see that the control input to the
system is the human input when the system state stays in the
safe region and is switched to the satisficing control when
the system state leaves the safe region. When the human
input is overridden in unsafe regions, the control input u
to the system approximates the human input as closely as
possible from the satisficing input set. The function k(x) in
Eq. (8) can be constructed based on design requirements.
The tolerance vector ε in Eq. (8) guarantees transition from
human input to the satisficing control starts when the system
state is close to the boundary of the safe region.

Definition 3.4: We say that the safeguarded shared con-
trol problem is solved if the following two conditions are
satisfied.

• If the system state is initially within the safe region,
then the state will stay within the region for all the
time and for any human input.

• If the system state is initially outside the safe region,
the state will be driven into the safe region within finite
time for any human input.

We have the following theorem for safeguarded shared
control for static safe regions.

Theorem 3.5: If the human input h(t) is continuous
(piecewise continuous), the control input to system (2) is
given by Eq. (11), and d(x) is given by Eq. (13), the shared
control problem is solved. Also, if d(x) is given by Eq. (12),
the first condition in Definition 3.4 is satisfied.
Proof: If h(t) is continuous (piecewise continuous), we
know that d(x) is also continuous (piecewise continuous)
following a similar argument for the continuity of the min-
norm control laws in [9]. Therefore, u is also continuous
(piecewise continuous) since k(x) is always continuous.
Condition 1.
Assume that the system state x is initially within Rs and
reaches the boundary of Rs at time t = t1.

From Eq. (8), we know that k(x(t1)) = 0 for x(t1) ∈
B(Rs). Thus u = d(x(t1)) at t = t1 from Eq. (11).

Given Eq. (12), it is easy to see that u ∈ U at t = t1.
Given Eq. (13), it is easy to see that u ∈ Ua at t = t1. From
the property of the satisficing input set and asymptotically
satisficing input set, we know that V̇i(x) ≤ 0 for all x ∈
Bi(Ri(ci)), i ∈ I, and V̇i(x) ≥ 0 for all x ∈ Bi(Ri(ci)),
i ∈ Ī, where Bi(·) represents the boundary of the ith safe
subregion, at t = t1.

Therefore, the state x cannot leave the safe region Rs for
t ≥ t1.
Condition 2.
Assume that the system state x is outside the safe region Rs

at t = t0. Similar to condition 1, we know that u = d(x)
from Eqs. (8) and (11).

Given Eq. (13), it is easy to see that u ∈ Ua,∀x /∈ Rs,
which implies that V̇i(x) < 0 for all x /∈ Ri(ci), i ∈ I, and
V̇i(x) > 0 for all x /∈ Ri(ci), i ∈ Ī.

Therefore, from the standard Lyapunov theory, the state
x will be driven to Rs within finite time.

B. Safeguarded Control for Dynamic Safe Region

Definition 3.6: A dynamic safe region corresponds to a
time-varying region of state space where the system has
guaranteed minimum base-line performance.

Similar to a static safe region, a dynamic safe region
for attractive behaviors is defined as R = {x : V (x, t) ≤
c}, where V (x, t) = 0 at x = xr(t) and xr(t) is the
reference state trajectory to follow. A dynamic safe region
for repulsive behaviors is defined accordingly as R = {x :
V (x, t) ≥ c}, where V (x, t) = 0 at x = xr(t) and xr(t) is
the reference state trajectory to avoid.

Two illustrative examples are shown in Figure 3 and 4
respectively. In Figure 3, a human controls a vehicle to
follow a given trajectory xr(t). As long as the tracking
error is below a certain upper bound, the human has the full
authority and flexibility to maneuver the vehicle. Once the
tracking error is above the upper bound, controls from the
satisficing input set take over the human input and guarantee
minimum tracking performance. We can see that the vehicle
(denoted by a wedge) is required to stay within the rectangle
area centered at the current trajectory xr(t∗) at each time
t∗. In Figure 4, a human maneuvers an airplane but needs
to avoid a moving threat with trajectory xr(t). Here we
assume that the vehicle can measure the current position and
velocity of the moving threat. We can see that the airplane
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xr(t)

t1

t0

t2

Fig. 3. Trajectory following.

t=t1

t=t2

V(x,t1)=c1

moving threat

Fig. 4. Dynamic threat avoid-
ance.

is required to stay outside the circle area centered at the
current trajectory xr(t∗) at each time t∗.

For the case of dynamic safe regions, safeguarded control
u is defined the same as equation (11) except that Vi(x)
is replaced with Vi(x, t). We will not repeat the similar
procedures as in Section III-A but consider safeguarded
control for the special case of the trajectory following
problems.

Given a time-invariant system, a common way to tackle
a tracking problem is to perform a state substitution, i.e. de-
fine x̃(t) = x(t)− xr(t), where xr(t) is the reference state
trajectory to follow. As a result, we have a time-varying
system for x̃. Then we need to find a CLF V (x̃, t) for
this time-varying system in order to apply the safeguarded
control, which may be hard to find. Also, even if such a
CLF can be found, a safeguarded control may not be im-
plemented effectively due to the possible input constraints
of the vehicle. That is, the trajectory may evolve too fast
for the vehicle to track even with the maximum control
effort the vehicle can have. Therefore, we introduce the
following pointwise CLF and parameterized trajectory ideas
motivated by [10], [11] to add feedback from the vehicle
to the reference trajectory.

Definition 3.7: A continuously differentiable function
V : IRn×IR → IR is a pointwise control Lyapunov function
(pCLF) for system (2) if it is positive definite, radially
unbounded, and satisfies

inf
u

{
∂V (x, s)

∂x
(f(x, s) + g(x, s)u)

}
< 0, (14)

∀x �= 0 and each constant s ∈ [s1, s2].
Hereafter we assume that a pointwise CLF can be found

for a smooth parameterized reference trajectory xr(s), that
is, V (x, s) = 0 at x = xr(s) for each s ∈ [s1, s2]. We
also define the safe region for a parameterized trajectory
following as

Rs(c, s) = {x : V (x, s) ≤ c}, s ∈ [s1, s2]. (15)

Unlike the static safe region in Section III-A, this safe
region is time-varying with respect to the parameter s.

Define b(x, s) as

b(x, s)
�
=

{
−σ(V (x, s))/

(
∂V (x,s)

∂x f
)

, ∂V (x,s)
∂x g = 0

µ, ∂V (x,s)
∂x g �= 0

,

where σ(·) is a class K function and µ can be any given
positive number.

The pointwise stabilizing set in this case is defined as

Sb(x, s) =

{
u :

∂V (x, s)

∂x
(f + gu) ≤ −1

b
σ(V (x, s)), b ≥ b

}
, (16)

where s ∈ [s1, s2].
Lemma 3.1: For each s ∈ [s1, s2], b(x) is positive and

Sb(x, s) is nonempty for each x �= xr(s).
Proof: We follow a similar argument used in [3].

If ∂V (x,s)
∂x g = 0, we know that ∂V (x,s)

∂x f < 0 for each
x �= xr(s) since V (x, s) is a pointwise CLF. Thus b(x) =
−σ(V (x, s))/

(
∂V (x,s)

∂x f
)

> 0 for each x �= xr(s).
Also, we know that

b ≥ b(x) > 0

=⇒− 1
b
σ(V (x, s)) ≥ − 1

b(x)
σ(V (x, s)) =

∂V (x, s)
∂x

f,

which means that Sb(x, s) is nonempty when ∂V (x,s)
∂x g = 0.

If ∂V (x,s)
∂x g �= 0, we know that b(x) = µ > 0 and

a control u can always be found to satisfy the inequality
represented in Sb(x, s).

Following [10], let ṡ be given by

ṡ =

⎧⎪⎪⎨
⎪⎪⎩

min

{
v0

δ+‖ ∂xr(s)
∂s ‖ ,

−( ∂V
∂x )T ẋ

δ+| ∂V
∂s |

(
σ(c)

σ(V (x,s))

)}
,

s1 ≤ s < s2

0, s = s2

,

(17)
where c is the upper bound for the pointwise CLF, δ > 0
is a small positive constant, and v0 is the nominal velocity
for the reference trajectory.

We need the following lemma to show our main theorem.
Lemma 3.2: If ṡ is given by (17), then V (x(t0), s(t0)) ≤

c implies that V (x(t), s(t)) ≤ c, ∀t ≥ t0. Furthermore, if
s ∈ [s1, s2] and there is a control u(x, s) and a constant

L > 0 such that − ∂V
∂x

T
ẋ

σ(V (x,s)) ≥ L, s will reach s2 within finite

time and
∥∥dxr

dt

∥∥ ≈ v0 for V (x, s) � c and δv0 �
∥∥∥∂xr(s)

∂s

∥∥∥.
Proof: see [10].

Lemma 3.3: Given Eq. (17), for each s ∈ [s1, s2] and
x �= xr(s), controls chosen from Sb(x, s) guarantee that

there exists bounded b ≥ b such that − ∂V
∂x ẋ

σ(V (x,s)) has a positive
lower bound. Furthermore, controls chosen from Sb(x, s)
for bounded b guarantee that V (x(t), s(t)) ≤ c for arbitrary
V (x(t0), s(t0) > c within finite time.
Proof: If ∂V (x,s)

∂x g = 0, we know that b(x, s) =
−σ(V (x, s))/(∂V (x,s)

∂x f) is continuous for each x �= xr(s)
from the property of the pCLF. From the first argument
in Lemma 3.2, ‖x‖ is bounded given Eq. (17) for each
x �= xr(s). When x → xr(s), function σ(·) can be chosen
so that σ(V (x, s)) has a higher order than ∂V (x,s)

∂x f , that is
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limx→xr(s) − σ(V (x, s))/(∂V (x,s)
∂x f) = 0. Thus b(x, s) is

bounded for each x �= xr(s).
If ∂V (x,s)

∂x g �= 0, b(x, s) = µ, which is obviously
bounded.

Controls chosen from Sb(x, s) satisfies ∂V
∂x ẋ ≤

− 1
b σ(V (x, s)) ⇐⇒ − ∂V

∂x
T

ẋ

σ(V (x,s)) ≥ 1
b , which has a positive

lower bound since an upper bounded b can be chosen to be
above bounded b(x, s).

The last part of the lemma follows a similar argument
for Theorem 4.4 in [12].

To choose stabilizing controls from (16), it is desirable
to have an explicit expression for a locally Lipschitz con-
tinuous b.

Define b as

b(x, s)
�
=

⎧⎨
⎩
−σ(V )/∂V

∂x f, ∂V
∂x g = 0

2 ∂V
∂x f+2

√
( ∂V

∂x f)2+σ(V )| ∂V
∂x g|

| ∂V
∂x g| , ∂V

∂x g �= 0
,

(18)
which is locally Lipschitz for each x �= xr(s) following a
similar argument in [13] and [3].

For safeguarded shared control for parameterized trajec-
tory following, we define the control input as

u(x, s) = (1 − k(x, s))d(x, s) + k(x, s)h(t), (19)

where h(t) is the human input, k(x, s) is defined similar
to Eq. (8) with Rs(·) given by Eq. (15), and d(x, s) is
the satisficing control snapping the human input to the
satisficing input set Sb(x, s) with bounded b given by
d(x, s) = arg minu∈Sb(x,s) ‖h − u‖.

We have the following theorem for safeguarded shared
control for parameterized trajectory following.

Theorem 3.8: If s ∈ [s1, s2], ṡ is given by Eq. (17),
u(x, s) is given by Eq. (19), the safeguarded shared control
problem for parameterized trajectory following is solved.
Furthermore, the last two arguments in Lemma 3.2 are also
satisfied, that is, finite completion time and given reference
trajectory velocity are guaranteed.
Proof: Condition 1 for shared control problem is guaranteed
by the definition of ṡ following Lemma 3.2. Condition 2
for shared control problem is guaranteed by the last part
of Lemma 3.3. The proof for the last part of this theorem
follows a combination of Lemma 3.3 and 3.2.

C. Discussion

One limitation of our approach is that CLFs may not
be easy to find for general affine nonlinear systems al-
though CLFs can be constructed for systems with certain
structures [14], for example, feedback linearizable systems
and systems with a cascade structure. This limitation can
be somewhat mitigated by using weak CLFs if proper for
some applications since weak CLFs are relatively easy to
find. A concern with any approach for shared control is
the computation cost. Although the safe region defined in
our approach is an intersection of a group of subregions,
we only need to consider the relevant subregions where
the system state is close to its boundaries, which can
significantly drop the computation cost.

The main theme of our approach is to preserve human
intention as much as possible while guaranteeing system
stability. Even with the system state outside the safe region,
if the human input is within the satisficing set, it will be
the input to the system. If the human input is outside the
satisficing input set, the closest element in the set will
be chosen as the input to the system. Therefore, in the
case of human neglect, minimum performance (e.g. system
stability) is still guaranteed.

IV. CONCLUSION

This paper has presented a preliminary result for safe-
guarded shared control using rigorous Lyapunov stability
perspective. We applied control Lyapunov functions to
define static and dynamic safe regions and also satisficing
input sets. The control input was defined as a combination
of the human input and the satisficing control element that
is closest to the human input in the satisficing set. We
showed that this approach not only gives humans maximum
flexibility but guarantees system stability and minimum
base-line performance. The readers can refer to [15] for a
simulation study where a mobile robot effectively achieved
wall avoidance and obstacle avoidance.
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