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Abstract— In this paper we study `th order (` >= 3)
consensus algorithms, which generalize the existing first-order
and second-order consensus algorithms in the literature. We
will show sufficient conditions under which each information
variable and their higher-order derivatives converge to common
values. We will present the idea of higher-order consensus with
a leader and introduce the concept of an `th order model-
reference consensus problem, where each information variable
and their high-order derivatives not only reach consensus but
also converge to the solution of a prescribed dynamic model.
The effectiveness of these algorithms are demonstrated through
simulations and a multi-vehicle cooperative control application
which mimics flocking behavior in birds.

I. INTRODUCTION

In plain language, when several entities or agents agree on
a common value of a variable of interest they are said to have
come to “consensus.” In a group of networked mobile agents
with a common mission or task, the consensus problem
can play a pivotal role, particularly when the communica-
tion capability for each agent is limited and/or purposely
constrained. For example, when the dynamic environment
changes, the agents in the team must be in agreement
as to what changes have taken place, even when every
agent cannot talk directly to every other agent. To achieve
consensus, there must be a shared variable of interest (called
the coordination data or variable) as well as appropriate
algorithmic methods for negotiating to consensus about the
value of that variable (called a consensus algorithm or
protocol).

Cooperative control for multi-agent systems have primarily
been applied to formation control problems with applications
to mobile robots, unmanned air vehicles (UAVs), autonomous
underwater vehicles (AUVs), satellites, aircrafts, spacecrafts,
and automated highway systems [1], but also include non-
formation cooperative control problems such as task assign-
ment, payload transport, role assignment, air traffic control,
timing, and search [2]. As pointed out in [1], for cooperative
control strategies to be successful, numerous issues must
be addressed, including the definition and management of
shared information among a group of agents to facilitate
the coordination of these agents. Information necessary for
cooperation may be shared in a variety of ways. However,
the question “consensus to what?” has not been explicitly
answered in the literature, although a similar question “for-
mation to what form or shape?” was asked in [3] within the
context of mobile actuator and sensor networks [4].
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In this paper we generalize the first-order and second-
order consensus algorithms in the literature (see [5] and
the references therein). We show sufficient conditions under
which the consensus information variable and its higher-
order derivatives converge to common values. One motiva-
tion for studying higher-order consensus comes from observ-
ing the behavior of flocks of birds. It is often noted that such
flocks fly in somewhat of a formation, maintaining a nominal
separation from each other, but each traveling with the
same velocity vector. In [6] it was shown how second-order
consensus can produce the behavior of a separation and com-
mon velocity under directed information exchange. However,
sometimes a bird flock abruptly changes direction, perhaps
when one of them suddenly perceives a source of danger or
food. Clearly the birds in this setting need to build consensus
on not only their relative position and their velocity, but
also on acceleration. This motivates the idea of higher-order
consensus. Higher order consensus makes obvious sense for
cooperative control of a team of UAVs when confronting
another team of “hostile intelligent gaming (HIG) UAVs”.
With the question “consensus to what” in mind, we are
also motivated to consider an `th order model-reference
consensus problem, where each information variable and
their high-order derivatives not only reach consensus but also
converge to the solution of a prescribed dynamic model.
We introduce this model-reference consensus problem and
establish sufficient conditions for consensus convergence.

The remainder of the paper is organized as follows. Sec-
tion II presents some background materials and some mathe-
matical preliminaries for our later development. Higher-order
consensus algorithms are given in Sec. III, including the
standard, unforced case and the cases of setpoint tracking,
which lead to the idea of consensus with a leader, and model-
reference consensus. The effectiveness of the proposed al-
gorithms is illustrated throughout by simulations, including
an example of flocking behavior in Section IV. Section V
concludes the paper.

II. BACKGROUND AND PRELIMINARIES

It is natural to model information exchange between
vehicles by directed/undirected graphs. A digraph (directed
graph) consists of a pair (N , E), where N is a finite
nonempty set of nodes and E ∈ N 2 is a set of ordered
pairs of nodes, called edges. As a comparison, the pairs of
nodes in an undirected graph are unordered. If there is a
directed edge from node vi to node vj , then vi is defined
as the parent node and vj is defined as the child node. A
directed path is a sequence of ordered edges of the form
(vi1 , vi2), (vi2 , vi3), · · · , where vij

∈ N , in a digraph. An
undirected path in an undirected graph is defined accordingly.
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A digraph is called strongly connected if there is a directed
path from every node to every other node. An undirected
graph is called connected if there is a path between any
distinct pair of nodes. A directed tree is a digraph, where
every node, except the root, has exactly one parent. A
(directed) spanning tree of a digraph is a directed tree formed
by graph edges that connect all the nodes of the graph. We
say that a graph has (or contains) a (directed) spanning tree
if there exists a (directed) spanning tree being a subset of the
graph. Note that the condition that a digraph has a (directed)
spanning tree is equivalent to the case that there exists a
node having a directed path to all the other nodes. In the
case of undirected graphs, having an undirected spanning
tree is equivalent to being connected. However, in the case of
directed graphs, having a directed spanning is not equivalent
to being strongly connected. The union of a group of digraphs
is a digraph with nodes given by the union of the node
sets and edges given by the union of the edge sets of those
digraphs.

The adjacency matrix A = [aij ] of a weighted digraph is
defined as aii = 0 and aij > 0 if (j, i) ∈ E where i 6= j. The
Laplacian matrix of the weighted digraph is defined as L =
[`ij ], where `ii =

∑
j 6=i aij and `ij = −aij where i 6= j.

For an undirected graph, the Laplacian matrix is symmetric
positive semi-definite.

Let 1 and 0 denote the n × 1 column vector of all ones
and all zeros respectively. Let In denote the n × n identity
matrix and 0n denote the n × n zero matrix. Let Mn(IR)
represent the set of all n × n real matrices. Given a matrix
A = [aij ] ∈ Mn(IR), the digraph of A, denoted by Γ(A), is
the digraph on n nodes vi, i ∈ I, such that there is a directed
edge in Γ(A) from vj to vi if and only if aij 6= 0 (c.f. [7]).

III. HIGHER-ORDER CONSENSUS ALGORITHMS

We begin by presenting the general `th-order extension to
the standard consensus protocol algorithm, followed by two
extensions: (1) setpoint tracking and consensus with a leader,
and (2) model-reference consensus.

A. `th-order consensus

Consider information variables with `th-order dynamics
given by

ξ̇
(0)
i = ξ

(1)
i

...

ξ̇
(`−2)
i = ξ

(`−1)
i (1)

ξ̇
(`−1)
i = ui

where ξ
(k)
i ∈ IRm, k = 0, 1, · · · , ` − 1, are the states, ui ∈

IRm is the control input, and ξ
(k)
i denotes the kth derivative

of ξi with ξ
(0)
i = ξi.

We propose the following consensus algorithm:

ui = −
n∑

j=1

gijkij [
`−1∑
k=0

γk(ξ(k)
i − ξ

(k)
j )], i ∈ {1, · · · , n}

(2)

where kij > 0, γk > 0, gii
4
= 0, and gij is 1 if information

flows from vehicle j to vehicle i and 0 otherwise. We say
that consensus is reached among the n vehicles if ξ

(k)
i →

ξ
(k)
j , k = 0, 1, · · · , ` − 1, ∀i 6= j. Note that in addition

to the references above the authors’ work, a number of
other researchers have considered consensus problems in the
context of multi-agent systems. See, for example [8], [9],
[10], [11]. However, the linear consensus strategies reported
in the literature are special cases of (2) when l = 1 or l = 2.

Let ξ = [ξT
1 , · · · , ξT

n ]T . By applying consensus algo-
rithm (2), Eq. (1) can be written in matrix form as

ξ̇(0)

ξ̇(1)

...
ξ̇(`−1)

 = (Γ⊗ Im)


ξ(0)

ξ(1)

...
ξ(`−1)

 , (3)

where

Γ =


0n In 0n · · · 0n

0n 0n In · · · 0n

...
...

...
...

...
0n 0n 0n · · · In

−γ0L −γ1L −γ2L · · · −γ`−1L

 ,

where L = [`ij ] with `ii =
∑

j 6=i gijkij and `ij = −gijkij ,
∀i 6= j.

In the following, we assume m = 1 for simplicity.
However, all the results hereafter remain valid for m > 1.
In addition, we only consider the case when ` = 3. Similar
analyses are applicable to the case when ` > 3.

Before stating our main results, we need the following
lemma.

Lemma 3.1: In the case of ` = 3, Γ has at least three
zero eigenvalues. It has exactly three zero eigenvalues if and
only if −L has a simple zero eigenvalue. Moreover, if −L
has a simple zero eigenvalue, the zero eigenvalue of Γ has
geometricity equal to one.
Proof: Let µ and p be an eigenvalue and eigenvector of −L.
Consider a vector of the form q = [pT , αpT , βpT ]T , where
α, β ∈ C. We see that

Γq =

 0n In 0n

0n 0n In

−γ0L −γ1L −γ2L

 p
αp
βp


=

 αp
βp

(γ0 + αγ1 + βγ2)µp

 ,

where we have used the fact that −Lp = µp. Note that
q is an eigenvector of Γ with eigenvalue λ if and only if
α = λ, β = λα, and (γ0 + αγ1 + βγ2)µ = λβ. After some
computation, we know that

λ3 − γ2µλ2 − γ1µλ− γ0µ = 0, (4)

which implies that three roots exist for each µ. That is, each
eigenvalue of −L corresponds to three eigenvalues of Γ.

Let µi, i = 1, · · · , n, be the ith eigenvalue of −L. Also let
λ3i−2, λ3i−1, and λ3i, i = 1, · · · , n, be the eigenvalues of Γ



corresponding to µi. From Eq. (4), we can see that µj = 0
implies that λ3j−2 = λ3j−1 = λ3j = 0. It is straightforward
to see that −L has at least one zero eigenvalue with an
associated eigenvector 1 since all its row sums are equal
to zero. Therefore, we know that Γ has at least three zero
eigenvalues.

From Eq. (4) we can also see that −L has a simple zero
eigenvalue if and only if Γ has exactly three zero eigenvalues.
In addition, if −L has a simple zero eigenvalue, denoted
as µ1 = 0 without loss of generality, then there is only
one linearly independent eigenvector p for −L associated
with eigenvalue zero. Note that µ1 = 0 implies that λ1 =
λ2 = λ3 = 0, which in turn implies that α = β = 0.
Therefore, there is only one linearly independent eigenvector
q = [pT ,0T ,0T ]T for Γ associated with eigenalue zero. That
is, the zero eigenvalue of Γ has geometricity equal to one.

Using this lemma we can prove the following main result.
Theorem 3.1: In the case of ` = 3, consensus algo-

rithm (2) achieves consensus asymptotically if and only if
matrix Γ has exactly three zero eigenvalues and all the other
eigenvalues have negative real parts.
Proof: (Sufficiency.) Noting that Γ has exactly three zero
eigenvalues, we know that eigenvalue zero has geometric
multiplicity equal to one from Lemma 3.1. As a result, we
know that Γ can be written in Jordan canonical form as

Γ = PJP−1

= [w1, · · · , w2n]·
0 1 0 01×(3n−3)

0 0 1 01×(3n−3)

0 0 0 01×(3n−3)

0(3n−3)×1 0(3n−3)×1 0(3n−3)×1 J ′


νT

1
...

νT
2n

 ,

(5)

where wj ∈ IR3n, j = 1, · · · , 3n, can be chosen to
be the right eigenvectors or generalized eigenvectors of Γ,
νj ∈ IR3n, j = 1, · · · , 3n, can be chosen to be the left
eigenvectors or generalized eigenvectors of Γ, and J ′ is the
Jordan upper diagonal block matrix corresponding to 3n− 3
non-zero eigenvalues of Γ.

Without loss of generality, we choose w1 = [1T ,0T ,0T ]T ,
w2 = [0T ,1T ,0T ]T , and w3 = [0T ,0T ,1T ]T , where it can
be verified that w1, w2, and w3 are an eigenvector and two
generalized eigenvectors of Γ associated with eigenvalue 0
respectively. Noting that Γ has exactly three zero eigenvalues,
denoted as λ1 = λ2 = λ3 = 0 without loss of generality, we
know that −L has a simple zero eigenvalue, which in turn
implies that there exists a nonnegative vector p such that
pT L = 0 and pT 1 = 1 as shown in [12]. It can be verified
that ν1 = [pT ,0T ,0T ]T , ν2 = [0T , pT ,0T ]T , and ν3 =
[0T ,0T , pT ]T are two generalized left eigenvectors and a left
eigenvector of Γ associated with eigenvalue 0 respectively,
where νT

j wj = 1, j = 1, 2, 3. Noting that eigenvalues λ3i−2,
λ3i−1 and λ3i, i = 2, · · · , n, have negative real parts, we see

that

lim
t→∞

eΓt

= lim
t→∞

PeJtP−1

= P lim
t→∞


1 t 1

2 t2 01×(3n−3)

0 1 t 01×(3n−3)

0 0 1 01×(3n−3)

0(3n−3)×1 0(3n−3)×1 0(3n−3)×1 eJ′t

P−1

=

1pT t1pT 1
2 t2pT

0n 1pT t1pT

0n 0n 1pT

 ,

where we have used the fact that limt→∞ eJ′t → 03n−3.
Noting that ξ(t) → Γξ(0), we know that ξ

(k)
i → ξ

(k)
j , ∀i 6= j,

k = 0, 1, 2.
(Necessity.) Suppose that the sufficient condition that Γ

has exactly three zero eigenvalues and all the other eigen-
values have negative real parts does not hold. Noting that Γ
has at least three zero eigenvalues, the fact that the sufficient
condition does not hold implies that Γ has either more than
three zero eigenvalues or it has three zero eigenvalues but has
at least another eigenvalue having positive real part. In either
case, it can be verified that limt→∞ eJt has a rank larger than
three, which implies that limt→∞ eΓt has a rank larger than
three. Note that consensus is reached asymptotically if and

only if limt→∞ eΓt →

1qT

1sT

1tT

, where q, s, and t are n× 1

vectors. As a result, the rank of limt→∞ eΓt cannot exceed
three. This results in a contradiction.

Note that in the case of ` = 1, having a (directed) spanning
tree is a necessary and sufficient condition for consensus
seeking. However, in the case of ` = 3, having a (directed)
spanning tree is only a necessary condition for consensus
seeking, which is similar to the case of l = 2. Both the
information exchange topology and values of γ∗ will effect
the convergence of the `th order consensus algorithm. In fact,
in the case of ` = 3, if consensus algorithm (2) achieves
consensus asymptotically, we know that Γ has exactly three
zero eigenvalues following Theorem 3.1. Therefore, we see
that matrix −L has a simple zero eigenvalue, which in
turn implies that the information exchange topology has a
(directed) spanning tree following Corollary 1 in [12].

From Eq. (4) we can see that γk, k = 0, 1, 2, plays an
important role in the eigenvalues of Γ. Although in the case
of ` = 2, we know that if −L has a simple zero eigenvalue
and all the other eigenvalues are real and therefore negative
(e.g., undirected connected information exchange topology),
then consensus protocol (2) achieves consensus for arbitrary
γk > 0, k = 0, 1 [5], this argument is no longer valid for the
case of ` = 3. However, for each given −L whose graph has
a (directed) spanning tree, by appropriately choosing γk, k =
0, 1, 2, we can guarantee that the conditions of Theorem 3.1
are satisfied.

To illustrate these points, consider the following simulation
example. In Case 1, we let γ0 = 2, γ1 = 1, and γ2 = 2.



Suppose that µj = −1, where µj is an eigenvalue of −L.
Then from Eq. (4) we see that λ3j−2 = −2, λ3j−1 = i, and
λ3j = −i, where λ∗ is the eigenvalue of Γ corresponds to
µj . As a result, consensus cannot be achieved. However, if
for Case 2 we choose γ0 = 1, γ1 = 2, and γ2 = 3, then
consensus can be reached. Figure 1 shows the plots of ξ

(2)
i ,

i = 1, · · · , 4, for Cases 1 and 2 with different γk, k = 0, 1, 2,
values, where matrix L is given by

L0 =


0 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

Note that the graph of L has a (directed) spanning tree. 1

But, clearly in Case 1 the consensus system is not stable,
whereas in Case 2 it is stable. Thus, the gains γk must be
chosen properly to ensure consensus is achieved.

Fig. 1. Plots of ξ
(k)
i , k = 2, for Cases 1 and 2 with different γ∗ values.

B. Setpoint tracking and consensus with a leader

In [13] the idea of a leader-node is introduced, whereby
a single node is chosen that ignores all the other nodes,
but continues to broadcast, and the controllability properties
of the resulting graph are explored. In [14] it was shown
how to modify the first-order consensus protocol to introduce
setpoint tracking, but with a less stringent requirement than
full state controllability (and not requiring that the leader
ignore all the other nodes, though this is effectively what
happens). The algorithm in [14] caused all the nodes to
converge to the leader’s setpoint. This is called consensus
with a leader.

Though [14] considered only first-order consensus, in the
same way for higher-order consensus we can modify Eq. (2)
as follows:

ui = −
n∑

j=1

gijkij [
`−1∑
k=0

γk(ξ(k)
i −ξ

(k)
j )]−αi(ξ

(`−1)
i −ξ

(`−1)∗

i ),

(6)
for i ∈ {1, · · · , n}, where ξ

(`−1)∗

i is the local setpoint on
node i. Using Eq. (6) we claim that if αi = 0 for all but

1In fact, the graph of L is itself a (directed) spanning tree in this case.

node k, with αk = 1, (i.e., consensus with a leader) then
all the nodes will converge to ξ

(l−1)
i → ξ

(`−1)∗

k . Note that
this assertion requires ξ

(`−1)∗

k to be piecewise constant. If
ξ
(`−1)∗

k is time-varying it would be necessary to modify
the term αi(ξ

(`−1)∗

k − ξ
(l−1)
i ) in Eq. (6) using an internal

model controller. The topics in this subsection are subjects
of on-going research. However, in the next subsection we
generalize these ideas further by extending them to include
setpoints for all the derivatives, where the setpoints come
from a reference model.

C. Model-reference consensus

Consider a prescribed reference dynamic model given by

ξ̇(0)
r = ξ(1)

r

...

ξ̇(`−2)
r = ξ(`−1)

r

ξ̇(`−1)
r = ur

where ξ
(k)
r ∈ IRm, k = 0, 1, · · · , ` − 1, are the reference

states, and ur ∈ IRm is the reference control input.
We say that a model reference consensus problem is solved

if ξ
(k)
i → ξ

(k)
r , k = 0, · · · , `− 1, asymptotically and ξ

(k)
i →

ξ
(k)
j , ∀i 6= j, during the transition.

We propose a model-reference consensus algorithm:

ui = −
n∑

j=1

gijkij [
`−1∑
k=0

γk(ξ(k)
i − ξ

(k)
j )]

− η

`−1∑
k=0

γk(ξ(k)
i − ξ(k)

r ) + ur i ∈ {1, · · · , n} (7)

where η > 0.
Let ξ̃(k) = ξ(k) − ξ

(k)
r , k = 0, · · · , `. By applying

consensus algorithm (7), Eq. (1) can be written in matrix
form as 

˙̃
ξ(0)

˙̃
ξ(1)

...
˙̃
ξ(`−1)

 = (Σ⊗ Im)


ξ̃(0)

ξ̃(1)

...
ξ̃(`−1)

 , (8)

where

Σ =


0n In 0n · · · 0n

0n 0n In · · · 0n

...
...

...
...

...
0n 0n 0n · · · In

−γ0M −γ1M −γ2M · · · −γ`−1M

 ,

with M = L + ηIn.
Letting µi and ρi be the ith eigenvalue of −L and −M

respectively, then we see that ρi = µi − η. Following the
argument of Theorem 3.1, we know that each eigenvalue of
−M corresponds to three eigenvalues of Σ. Letting ς3i−j ,



j = 1, 2, 3, be the eigenvalue of Σ corresponding to ρi, then
they are related by the following equation:

ς3 − γ2ρς2 − γ1ρς − γ0ρ = 0. (9)

Note that if Re(ςi) < 0, i = 1, · · · , 3n, that is, Σ is a
stable matrix, then ξ̃

(k)
i → 0 asymptotically, k = 0, · · · , `−1,

which in turn implies that ξ
(k)
i → ξ

(k)
r asymptotically.

It is straightforward to see that Re(ρi) < 0, i = 1, · · · , 3n,
due to the fact that Re(µi) ≤ 0 and η > 0. Similar to Eq. (4),
γk, k = 0, 1, 2, plays an important role in the eigenvalues
of Σ in Eq. (9). Note that even if the information exchange
topology does not have a (directed) spanning tree (e.g., the
worse case of no information exchange between vehicles, that
is, L = 0n), it is still possible to choose γk, k = 0, 1, 2, such
that all eigenvalues of Σ have negative real parts. However,
having a (directed) spanning tree guarantees that ξ

(k)
i → ξ

(k)
j ,

k = 0, · · · , `− 1, ∀i 6= j during the transition when ξ
(k)
i →

ξ
(k)
r .

To give a simulation example of model-reference consen-
sus, let ur = sin(t) and ξ

(k)
r (0) = 0, k = 0, 1, 2. Also let

η = 0.3. Figure 2 shows the plots of ξ
(2)
i , i = 1, · · · , 4, for

Case 1, where L = L0, and Case 2, where L = 0n. Note that
although ξ

(2)
i approaches ξ

(2)
r asymptotically in both Cases

1 and 2, we can see that ξ
(2)
i stays close to ξ

(2)
j , ∀i 6= j,

during the transition in Case 1 but not in Case 2.

Fig. 2. Plots of ξ
(k)
i , k = 2, for Cases 1 and 2 with different information

exchange topologies.

Also note that the value of η also has an effect on
convergence. Let ur and ξ

(k)
r (0) = 0 be defined the same

as above. Also let L = L0. Figure 3 shows the plots of ξ
(2)
i ,

i = 1, · · · , 4, for Case 1, where η = 0.3, and Case 2, where
η = 2. Note that ξ

(2)
i does not approach ξ

(2)
r in Case 1 due

to small η. However, when we increase η to 2, convergence
to ξ

(r)
r is guaranteed in Case 2.

In the case of ` = 2, if L = 0n, then Re(ςi) < 0 for
any γk > 0, k = 0, 1, due to the fact that ρi = −η is real.
That is, the model reference consensus problem is solved for
arbitrary γk > 0, k = 0, 1. However, in the case of ` = 3,
this argument is no longer valid and the gains γk must be
chosen properly to ensure consensus is achieved.

Fig. 3. Plots of ξ
(k)
i , k = 2, for Cases 1 and 2 with different η values.

IV. MULTI-VEHICLE COORDINATION EXAMPLE

Here we illustrate via simulation how the higher-order
consensus ideas presented above can be used in a formation
control scenario for multiple vehicles, whereby a desired
separation is maintained between each vehicle, each vehicle
travels at a common velocity, and a leader vehicle responds to
setpoint commands in acceleration, which are communicated
to the other vehicles through the consensus protocol. We
assume there are five vehicles, communicating through a
topology defined by the matrix

−L =


−2 1 0 1 0
0 −1 0 1 0
1 0 −2 0 1
0 0 0 −1 1
0 0 1 0 −1

 .

The equation running on each vehicle i is given by:

ẋi = vi

v̇i = ai

ȧi = −
n∑

j=1

gijkij{γ0[(xi − δi)− (xj − δj)]

+ γ1(vi − vj) + γ2(ai − aj)} − αi(ai − a∗i )

where xi denotes the position of vehicle i in two dimensions
(xi ∈ R2), vi denotes the velocity of vehicle i in two
dimensions, and ai denotes acceleration of vehicle i in
two dimensions. The terms δi denote the desired formation
separations (so that (δi−δj) is the desired separation between
vehicle i and vehicle j [6]), again in two dimensions (we used
the same separation distances in both the x-axis and the y-
axis). We used γ0 = 1, γ1 = γ2 = 3, which, together with the
fact that L defines a communication topology that contains
a (directed) spanning tree, result in a convergent consensus
process (actually, in this example every node is a (directed)
spanning node, but it was not fully connected). Further, we
let vehicle 1 be the “leader.” That is, α1 = 1 and αi = 0 for
i 6= 1. In the simulation initially all vehicles have a different
starting position, starting velocity, and starting acceleration,
in both x and y. The starting acceleration setpoint is a∗1 = 0.



Fig. 4. The acceleration profiles used in the example.

Fig. 5. Resulting x− y motion.

Figure 4 shows the acceleration profile presented to vehicle
1 as a function of time for each axis. We see that the system
is presented with a sinusoidal-varying acceleration in the x-
axis with a negative “bumps” at 40 and 120 seconds. Along
the y-axis the system is “bumped” at 60 and 120 seconds.
Figure 5 shows the resulting motion in the x − y plane.
This makes it clear how the system maintains the desired
separation between the vehicles (notice, however, that the
scales are different on the two axes, which hides the fact
that we specified the same vehicle-to-vehicle separations in
each axis). We see that the higher-order consensus algorithms
allow all the vehicles to respond to the acceleration setpoints
received by vehicle 1, while maintaining their formation.
This behavior can be seen to be similar to that of a flock of
birds moving as a group in formation, but periodically having
large changes in direction. It should be noted, however, that
for the sinusoidal acceleration setpoint for the x-axis, the
tracking is not error-free. Though all the vehicles track follow
the same sinusoid, they can experience amplitude and phase
delays. This can be corrected by incorporating an internal
model in the tracking of the acceleration reference signal.
As noted above, this is a topic for further research.

V. CONCLUSION

In this paper we have defined a class of `th order (` >= 3)
consensus algorithms and have shown sufficient conditions
under which each information variable and their higher-order
derivatives converge to common values. We also introduced
the idea of higher-order consensus with a leader and the
concept of an `th order model-reference consensus prob-
lem, where each information variable and their high-order
derivatives not only reach consensus but also converge to the
solution of a prescribed dynamic model. Future research will
focus on experimental application of these ideas, including
demonstration of formation control via consensus on the
MASNET testbed [3]. It also remains to study the imple-
mentation of consensus algorithms. Though convergence is
a function of the eigenvalues of Γ ⊗ Im and will not be
impacted as the number of agents increases, the effects of
delays in the communication between agents as well as the
effect of time-varying communication topologies must be
addressed.
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