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Experimental Implementation and Validation of Consensus Algorithms
on a Mobile Actuator and Sensor Network Platform
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Abstract— In this paper, we experimentally implement and
validate distributed consensus algorithms on a mobile actu-
ator and sensor network platform under directed, possibly
switching interaction topologies to explore issues and challenges
in distributed multi-vehicle cooperative control. Distributed
consensus algorithms are applied to three target applications
namely rendezvous, axial alignment, and formation maneu-
vering. In the rendezvous application, multiple mobile robots
simultaneously arrive at a common a priori unknown target
location determined through team negotiation. In the axial
alignment application, multiple mobile robots collectively align
their final positions along a line. In the formation maneuvering
application, multiple mobile robots form a rigid geometric
shape and maneuver as a group with a given group velocity.
The experimental results show the effectiveness and robustness
of the consensus algorithms even in the presence of platform
physical limitations, packet loss, information delay, etc.

I. INTRODUCTION

As an inherently distributed strategy that only requires lo-
cal neighbor-to-neighbor information exchange among vehi-
cles, information consensus has received significant attention
in the cooperative control community recently [1]. The basic
idea for information consensus is that each vehicle updates
its information state based on the information states of its
local, possibly time-varying neighbors in such a way that
the final information state of each vehicle converges to a
common value. This basic idea can be extended to a variety
of different scenarios that incorporate group behaviors and
dynamics.

Theoretical aspects of consensus algorithms have recently
been studied extensively in the literature (see e.g., [2]—
[4]). Consensus algorithms have applications in rendezvous,
formation control, flocking, attitude alignment, and sensor
networks. However, in the current literature, most of the
research activities in information consensus have focused
on theoretical aspects, and most of the applications are
demonstrated by means of simulations. Recent efforts in
experimental implementation of multi-robot flocking and
cyclic pursuit are reported, respectively, in [5] and [6], where
flocking assumes undirected information exchange and the
interaction topology for cyclic pursuit forms a unidirectional
ring. Experimental implementation and validation of general
consensus algorithms under a general (possibly directed
switching) interaction topologies play an important role for
studying distributed cooperative control schemes.

The main purpose of the current paper is to experimen-
tally implement and validate consensus algorithms under
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directed, possibly switching interaction topologies to explore
issues and challenges in distributed multi-vehicle cooperative
control. In particular, distributed consensus algorithms are
applied to three target applications namely rendezvous, axial
alignment, and formation maneuvering. In the rendezvous
application, multiple robots are required to simultaneously
arrive at a common a priori unknown target location de-
termined through team negotiation. The rendezvous case is
directly relevant to unmanned air vehicle (UAV) cooperative
timing missions, where multiple UAVs are controlled to
converge on the boundary of a radar detection area simulta-
neously to maximize the element of surprise. In the axial
alignment application, multiple robots are required to be
evenly distributed on a line with given separation distance
through team negotiation. The axial alignment case is directly
relevant to sensor deployment and satellite attitude alignment
applications. In the formation maneuvering application, mul-
tiple robots are required to form a geometric shape and move
as a group with a given group velocity. The formation ma-
neuvering case is directly relevant to cooperative surveillance
tasks involving a team of vehicles and spacecraft formation
flying missions. The three target applications are validated on
a low-cost mobile actuator and sensor network platform. The
experimental results show the effectiveness and robustness
of consensus algorithms even in the presence of platform
physical limitations, packet loss, information delay, etc.

II. BACKGROUND AND PRELIMINARIES

It is natural to model the information exchange between
vehicles by directed/undirected graphs. A directed graph
consists of a pair (N,&), where A is a finite nonempty
set of nodes and &€ € N x N is a set of ordered pairs
of nodes, called edges. An edge (7,j) in a directed graph
denotes that vehicle j can obtain information from vehicle ¢,
but not necessarily vice versa. In contrast, the pairs of nodes
in an undirected graph are unordered, where an edge (i, 7)
denotes that vehicles ¢ and j can obtain information from one
another. Note that an undirected graph can be considered a
special case of a directed graph, where an edge (¢, ) in the
undirected graph corresponds to edges (7, j) and (j,%) in the
directed graph. If there is a directed edge from node ¢ to
node 7, then ¢ is defined as the parent node and j is defined
as the child node.

A directed path is a sequence of ordered edges in a
directed graph of the form (i1,%2), (i2,%3), ..., where i; €
N. A directed tree is a directed graph, where every node
has exactly one parent except for one node, called the root,
which has no parent, and the root has a directed path to every
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other node. A directed spanning tree of a directed graph is
a directed tree formed by graph edges that connect all of
the nodes of the graph. A graph has or contains a directed
spanning tree if there exists a directed spanning tree as a
subset of the graph. The union of a group of graphs is a
graph with nodes given by the union of the node sets and
edges given by the union of the edge sets of the group of
graphs.

Suppose that there are n vehicles in the team. The ad-
jacency matrix A = [a;;] € IR™*™ of a weighted directed
graph is defined as a;; = 0 and a;; > 0 if (j,7) € £, where
i # j. The adjacency matrix of a weighted undirected graph
is defined accordingly except that a;; = aj;, Vi # j, since
(4,1) € € implies (i,7) € .

Let matrix L = [{;] € IR™™ be defined as ¢; =
Z#i aj; and {;; = —a;;, where i # j. The matrix L
satisfies the following conditions:

0 0,074, Y b;=0,i=1,....n (1)

=1

For an undirected graph, L is the Laplacian matrix, which
has the property that it is symmetric positive semi-definite.
However, L for a directed graph does not have this property.
In both the directed and the undirected cases, 0 is an
eigenvalue of L with an associated eigenvector 1, where 1
is a column vector of all ones. In the case of undirected
graphs, all of the nonzero eigenvalues of L are positive. In
the case of directed graphs, all of the nonzero eigenvalues of
L have positive real parts from Gershgorin disc theorem [7].
In the case of undirected graphs, O is a simple eigenvalue
of L if and only if the undirected graph is connected [8]. In
addition, the second smallest eigenvalue of L is known as the
algebraic connectivity of the undirected graph. In the case of
directed graphs, 0 is a simple eigenvalue of L if and only if
the directed graph contains a directed spanning tree [9].

III. CONSENSUS ALGORITHMS

In this section we first review consensus algorithms for
vehicles modeled by single-integrator dynamics, and then ex-
tend these algorithms to account for relative state separations
and desired state tracking.

Consider vehicles with single-integrator dynamics given
by

fi:ui, i:L...,n, (2)
where &; € IR™ is the information state of the i vehicle,
and u; € IR™ is the control input. A consensus algorithm is
proposed in [2]-[4] as

ui=— Y kij(&—§&),

JETi(t)

i=1,...,n, (3

where 7;(t) represents the set of vehicles whose information
is available to vehicle ¢ at time ¢, and k;; is a positive weight-
ing factor. The objective of (3) is to drive the information
state of each vehicle toward the state of its neighbor. In the
following, we assume that i ¢ 7;.

For (3), consensus is said to be reached asymptotically
among the n vehicles if & (t) — & (t), Vi # j, as t — oo
for all &(0).

Let L = [{;;] € IR™*" be defined as

bij = —kij, j € Tiy iy =0, j & T\ (i), =D kij.

J€Ti
“)
Note that L satisfies (1). Also note that with (3), (2) can
be written in matrix form as £ = —(L ® I,,,)§, where £ =

[€F, ..., ¢57T, ® denotes the Kronecker product, and I, is
the m x m identity matrix.

We have the following two lemmas for (3) under time-
invariant and switching interaction topologies respectively.

Lemma 3.1: [9] Under a time-invariant interaction topol-
ogy, (3) achieves consensus exponentially if and only if the
interaction topology contains a directed spanning tree. In
the case that the interaction topology contains a directed
spanning tree, the final consensus equilibrium is equal to the
weighted average of the initial conditions of those vehicles
that have a directed path to all of the other vehicles. That
is, & — Z?zl v;€;(0), Vi, where v = [v1,...,v,]7 is a
nonnegative left eigenvector of L, given by (4), satisfying
the condition that v; > 0 if vehicle ¢ has a directed path to
every other vehicle and v; = 0 otherwise, and Z?zl v; =1.

Lemma 3.2: [4] Under switching interaction topolo-
gies, (3) reaches consensus asymptotically if there exist
infinitely many consecutive uniformly bounded time intervals
such that the union of the interaction topologies across each
time interval has a directed spanning tree.

Note that (3) represents the fundamental form of consensus
algorithms. The algorithm can be extended to achieve differ-
ent convergence results. For example, (3) can be extended
to guarantee that the differences of the information states
converge to desired values, ie., §& — & — Ay;(t), where
A (t) denotes the desired (time-varying) separation between
& and &;. We apply the following algorithm for relative
separations:

wi=0i— Y kil(&—&)—(6=6;)],

JETi(t)

i=1,...,n, (5

where 0; —4;, Vi # j, denotes the desired separation between
the information states. Note that by appropriately choosing
bp, £ = 1,...,n, we can guarantee that the differences
of the information states converge to desired values. The
algorithm (5) has applications in formation control, where the
team forms a certain formation shape by maintaining relative
positions between vehicles. Also note that (3) corresponds to
the case that A;; =0, Vi # j.

We have the following corollary for relative separations:

Corollary 3.1: Suppose that the interaction topology is
time invariant. With (5), §& — §; — d; — ; exponentially if
and only if the interaction topology has a directed spanning
tree.
Proof: With (5), (2) can be written as

éi:— Zkij(gi_éj)7 i=1,...,n,

JETi
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where fl = & — §;. From Lemma 3.1, we know that §Z — éj
exponentially if and only if the interaction topology has a
directed spanning tree. The rest of the proof then follows
the fact that &; — éj is equivalent to § — &§; — 0; — ;. W
The consensus algorithm (3) can also be extended to guar-
antee that & — &7, Vi. We apply the following algorithm:

up = €—ai(&—€ =Y kij(6—§)),

J€T:

i=1,...,n, (6)

where a; > 0.

We have the following corollary for desired state tracking:

Corollary 3.2: Under an arbitrary time-invariant interac-
tion topology, algorithm (6) guarantees that & (t) — £%(t),
Vi, exponentially as ¢ — oo. )
Proof: With (6), (2) can be written in matrix form as §~ =
—[(L+T)®1,,)¢, where T is a 1 diagonal matrix with a; being
the diagonal entries and £ = [51 S ,gT] with & = & — &,
From Gershgorin disc theorem [7], it is straightforward to see
that all eigenvalues of —(L + I') have negative real parts.
Therefore, it follows that £ — 0 exponentially, that is, & —
&4, Vi [ |

In (6) the first two terms are used to guarantee that £; —
€9, Vi. Note that the argument of Corollary 3.2 does not rely
on the interaction topology between the vehicles. Even if
there is no information exchange between the vehicles (i.e.,
J; is empty, Vi), the conclusion of the theorem is still valid.
However, the last term in (6) with the interaction topology
having a directed spanning tree is important to guarantee
good transient performance (i.e., §; — &;, Vi # j, during the
transition when & — £%).

Note that although we only deal with time-invariant inter-
action topologies above, similar results can be extended to
the case of switching topologies.

IV. EXPERIMENTAL VALIDATION

In this section, we experimentally validate the consensus
algorithms via three cooperative control applications namely
rendezvous, axial alignment, and formation maneuvering. We
will describe, in detail, the experimental platform, implemen-
tation of the three applications, and experimental results.

A. Experimental Platform

The Mobile Actuator and Sensor Network (MASnet)
platform in the Center for Self-Organizing and Intelligent
Systems (CSOIS) at Utah State University combines wireless
sensor networks with mobility [10]. That is, a large number
of robots can serve both as actuators and sensors. Although
each robot has limited sensing, computation, and commu-
nication ability, they can coordinate with each other as a
team to achieve challenging cooperative control tasks such
as formation keeping and environment monitoring.

The MASnet platform is comprised of MASmotes, an
overhead camera, and a base station PC as shown in Fig. 1.
MASmotes are actually two-wheel differentially steered ro-
bots that can carry sensors and actuators wireless networked
via Micaz from Crossbow. The functionality of MASmotes

! j
g - Base station ‘L%

Fig. 1.

MASnet experimental platform.

includes inter-mote and mote to base station communica-
tion, data collecting, PWM signal generation, and encoder
counting. An overhead CCD camera is used to identify each
robot and determine its position and orientation (i.e., pseudo-
GPS information). Images from the camera are processed
by the base station. The functionality of the base station
includes image processing, serial to programming board
communication, pseudo-GPS information broadcasting, and
decision making. The base station communicates with a
gateway mote mounted on a programming board through a
serial port. The gateway mote then communicates with all of
the MASmotes over a 2.4 GHz wireless mesh network. Note
that the gateway mote serves as a gateway between wireless
communication and serial port communication, and its only
purpose is to forward all messages between the serial port
and the RF port. Through communication the base station
can send commands and pseudo-GPS information to each
MASmote. All the MASmotes can also communicate with
each other over the 2.4 GHz wireless mesh network.

B. Implementation of Three Target Applications on MASnet
Platform

Because both inter-mote and mote to base station com-
munication are available, the MASnet platform can be used
to experimentally test both centralized and decentralized
cooperative control schemes. For a centralized cooperative
control scheme, each MASmote is only responsible for its
low-level motor control while the base station, served as
a centralized station, broadcasts pseudo-GPS information
to each MASmote robot, implements cooperative control
algorithms, and sends control commands based on the infor-
mation gathered from the whole team. For a decentralized
cooperative control scheme, each MASmote implements its
own cooperative control algorithm based on the pseudo-GPS
information provided by the base station.

In our experiments, all of the control algorithms are
implemented on the MASmotes, and each MASmote only
uses the pseudo-GPS information of its own and its local
neighbors even if the pseudo-GPS information of all of the
MASmotes is provided by the base station. By doing so, we
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can test distributed cooperative control algorithms involv-
ing only local neighbor-to-neighbor information exchange
via communication or sensing for multi-vehicle systems.
The feature of local information exchange is important in
applications, where communication or sensing topologies
are usually not fully connected, vehicles only have limited
communication range and bandwidth, power consumption of
the team may be constrained, and the stealth of the team may
need to be increased.

We focus on three target applications in our experiments
including rendezvous, axial alignment, and formation ma-
neuvering. In all of these three applications, we only allow
local neighbor-to-neighbor information exchange.

Let 7; = [z, y:]7 and ré = [2¢,yd]T denote the actual
and desired position of MASmote robot ¢ respectively. For
rendezvous, the following consensus algorithm is applied

T;i = — Z(’r‘z —Tj).

jeT;
For axial alignment, the following extended consensus algo-
rithm is applied:

== [(ri = ry) — (6 — 5)],

JET:

where §; = [d;z, 5iy}T has been chosen to guarantee that the
robots align on a horizontal line with a separation distance
of 24 cm along the x axis between two adjacent neighboring
robots. For formation maneuvering, the following extended
consensus algorithm is applied

= —ai(ry =g = 6) = Y [(ri —r5) = (6 = )],
i€,
i=1/,
1
7

YAl D Ad = [(ri —r5) = (6 = 5,1,

JETi

i 40

where a; > 0, rg denotes the desired trajectory of the
formation, |7;| denotes the cardinality of 7;, ¢ denotes the
index of the vehicle that has the knowledge of rg (i.e,
team leader), and &; = [d;s,8;y]7 has been chosen to
ensure a separation distance of 24 cm between two adjacent
neighboring robots along both x axis and y axis.

In our experiments, discrete-time versions of the above
algorithms are used. The control input to each MASmote
is the desired position rf. Each MASmote robot updates its
desired position at each time instant when the robot receives
the position and orientation information of its own and its
local neighbors. The update period depends on the pseudo-
GPS information update period, which is between 0.1 and
0.2 seconds on average. Low-level PID control algorithms
have been developed to achieve accurate position control so
that r; tracks r¢.

C. Experimental Results

In this subsection, we show experimental results for ren-
dezvous, axial alignment, and formation maneuvering on our
MASnet platform.

1) Rendezvous: For the rendezvous application, we study
rendezvous of four MASmote robots under time-invariant
and dynamic interaction topologies respectively. The motiva-
tion for studying dynamic interaction topologies comes from
the following observations. In real-world applications, the
interaction topology between vehicles will likely be dynamic.
For instance, communication links between vehicles may be
unreliable due to disturbances, or they may be subject to
communication range limitations. Alternatively, if informa-
tion is exchanged via direct sensing, the visible neighbors of
a vehicle will likely change over time.

Fig. 2 shows six different time-invariant interaction topolo-
gies associated with Cases I-VI. In particular, Cases I cor-
responds to an undirected connected graph, Case II corre-
sponds to a directed tree (i.e., leader-follower graph), Case
III corresponds to an undirected graph having separated
subgroups, Case IV corresponds to a directed graph having
multiple leaders (i.e., vehicles 1 and 3), Case V corresponds
to a cyclic pursuit graph, and Case VI corresponds to a
general directed graph containing a directed spanning tree.

Fig. 3 shows the experimental results of the rendezvous
captured by the overhead camera for Cases I-VI, where the
circles denote the initial positions of the robots, and the dots
denote the trajectories of the robots updated at each sample
period of the vision system. The trajectories of the robots
are captured between ¢t = 0 and ¢ = ¢ seconds.

We can see from Fig. 3 that the four robots rendezvous
in all cases except Cases III and IV where only a subgroup
rendezvous. This experimental result is consistent with the
first argument of Lemma 3.1 since only the interaction graphs
of Cases IIl and IV do not contain a directed spanning
tree. In addition, we can see from Fig. 3 that the final
rendezvous in Cases I and V are weighted averages of all
four robots’ initial positions. As a comparison, the final
rendezvous in Cases II and VI are, respectively, robot 1’s
initial position and a weighted average of the initial positions
of robots 1, 2, and 3. This experimental result is consistent
with the second argument of Lemma 3.1 since in Cases |
and V each robot has a directed path to every other robot,
in Case II only robot 1 has a directed path to all of the
other robots, and in Case VI every robot except robot 4
has a directed path to all the other robots. Furthermore, by
comparing Cases I, I, V, and VI, we can see that in Case I
the four robots rendezvous the fastest while in Case V the
four robots rendezvous the slowest. This experimental result
is also consistent with the theoretical result. The fact that
consensus under a cyclic pursuit topology converges slower
than under an undirected connected topology can be seen by
comparing the eigenvalues of L given by (4) in two cases.
Let A2 be the eigenvalue of L whose real part is the second
smallest, which characterizes the convergence speed of the
consensus algorithms in some sense. It is straightforward to
show that Ay = 2 in Case I while Ay = 1 4+ ¢ in Case V
assuming k;; = 1 in (4).

To test rendezvous in the case of switching topologies,
we assume that the interaction topologies for the four robots
switch randomly from the set G, = {Gi,Gs,G3,G4,Gs} as
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Fig. 2. Interaction topologies between four robots for the rendezvous
application.

shown in Fig. 4. Note that each directed graph in G5 does
not have a directed spanning tree but that the union of these
graphs denoted by G, does have a directed spanning tree
as shown in Fig. 4. As the switching between graphs in
G, is random, the condition for consensus in Lemma 3.2
is generically satisfied.

Fig. 5 (a) shows the experimental result of rendezvous
when the interaction topologies switch randomly from set
G, with switching periods randomly chosen between 1 and 3
seconds while Fig. 5 (b) shows the experimental result under
a time-invariant interaction topology G,. Note that the four
robots rendezvous even in the case that the topologies switch
randomly with time, which is consistent with the argument
of Lemma 3.2. By comparing Figs. 5 (a) and (b), we can see
that convergence in the case of switching topologies is slower
than in the time-invariant case. In addition, the switching
topologies result in sudden drastic changes in robot directions
as shown in Fig. 5 (a).

2) Axial Alignment: For the axial alignment application,
we study the case that four robots are evenly distributed along
a straight line under a time-invariant interaction topology.

Fig. 6 shows the undirected interaction topology between
the four robots. Fig. 7 shows the experimental result of the
axial alignment. As shown in Fig. 7, although each robot
starts at arbitrary initial positions, their final positions are
evenly distributed along a horizontal line with a separation
distance of approximately 24 centimeters. The experimental
result is consistent with the argument of Corollary 3.1.

3) Formation Maneuvering: For the formation maneu-
vering application, we study the case that the five robots
maintain a desired V-shape formation geometry under a time-
invariant information exchange topology.

Fig. 8 shows the interaction topology between five robots.
Note that the interaction topology has a directed spanning
tree in the sense that robot 1 has a directed path to all of
the other robots. Compared to the traditional leader-follower

(a) Case I (ty = 11.58 sec) (b) Case II (ty = 17.95 sec)

(c) Case Il (ty = 6.93 sec) (d) Case IV (ty = 11.583 sec)

(e) Case V (ty = 19.80 sec)

(f) Case VI (ty = 18.89 sec)

Fig. 3. Experimental results of rendezvous for Cases I-VI.

approach, where information only flows from leaders to
followers, information flows from followers to leaders as
a form of feedback are naturally taken into account in
the consensus algorithms. As shown in Fig. 8, information
also flows from robot 5 to robot 3 and from robot 4 to
robot 2. Fig. 9 shows the experimental result of formation
maneuvering. As shown in Fig. 9, the five robots maintain
the desired V-shape formation with desired x-axis and y-axis
separation distances of 24 centimeters and move as a whole.

4) Lessons Learned: In our attempt to use the MASnet
platform to validate cooperative control applications based
on consensus algorithms, several practical challenges are
encountered.

In terms of hardware, the dynamic characteristics of
our MASmote robots impose performance limitation not
accounted for in highly idealized simulations. One chal-
lenge comes from the low-level PID controllers for position
control. Another challenge comes from the nonholonomic
constraints of the robots, which cause the loss of orientation
information for the robots with the use of low-level position
controllers.

In terms of software, the computationally complex task
of processing the image, finding MASmote markers, and
extracting position and orientation information introduce a
delay of 0.1 to 0.2 seconds between image capture and
position and orientation information broadcast. When the
MASmotes are moving slowly, the delay has little effect
but at full speed the difference between the actual and the
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Fig. 4. Switching information topologies G1-Gs and their union G, for
rendezvous.

(a) Rendezvous with topologies (b) Rendezvous with a time-
randomly switching from Gs = invariant topology G., (t; = 24
{G1,...,G5} (ty =45 sec)  sec)

Fig. 5. Experimental results of rendezvous with topologies randomly
switching from G vs a time-invariant topology G,.

broadcast position can be quite large. This is most noticeable
when a MASmote is rotating.

Despite those practical limitations existing in the MASnet
platform, the three cooperative control tasks based on con-
sensus algorithms function well even under frequent pseudo-
GPS packet loss (roughly 2% — 5%) and average posi-
tion measurement error of 13.2 mm. These results demon-
strate the robustness of the consensus algorithms and their
effectiveness in designing distributed cooperative control
schemes. Consensus algorithms provide a promising method
for distributed multi-vehicle cooperative control even in pres-
ence of robot physical limitations, packet loss, information
delay, etc.

V. CONCLUSION AND FUTURE WORK

We have applied consensus algorithms to three cooperative
control problems including rendezvous, axial alignment, and
formation maneuvering. The experimental results of the three
applications on our MASnet platform have demonstrated the
effectiveness and robustness of the consensus algorithms to
cooperative control. The lessons learned from implementing
the consensus algorithms on the MASnet platform have

O—O

@O—0B

Fig. 6. Interaction topology for
axial alignment.

Fig. 7. Experimental result of
axial alignment.

VZ

Fig. 8. Interaction topology for
formation maneuvering.

Fig. 9.
formation maneuvering.

Experimental result of

been summarized. Future work will introduce a collision
avoidance mechanism for formation maneuvering of the
robots in the experiment. The videos of the experiments can
be found at http://mechatronics.ece.usu.edu/
mas-net/movies/0605/.
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