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Abstract

Built on the combined strength of decentralized con-
trol and the recently introduced virtual structure ap-
proach, a decentralized formation scheme for spacecraft
formation flying is presented in this paper. Following
a decentralized coordination architecture via the vir-
tual structure approach, decentralized formation control
strategies are introduced, which are appropriate when
a large number of spacecraft are involved or stringent
communication bandwidth limitations are exerted. The
effectiveness of the proposed control strategies is demon-
strated through simulation results.

1 Introduction

With regard to the benefits of using multiple vehicles,
the concept of formation control has been studied exten-
sively in the literature with application to the coordina-
tion of multiple robots, unmanned air vehicles (UAVs),
autonomous underwater vehicles (AUVs), satellites, air-
craft, and spacecraft (see e.g. [1, 2, 3, 4, 5, 6]). There
are several advantages to using formations of multiple
vehicles. These include increased feasibility, accuracy,
robustness, flexibility, cost and energy efficiency, and
probability of success.

Various strategies and approaches have been pro-
posed for formation control. These approaches can be
roughly categorized as leader-following (see e.g. [1, 4]),
behavioral (see e.g. [2, 7, 8]), and virtual structure (see
e.g. [3, 9]) approaches. Each approach has its advan-
tages and disadvantages. The leader-following approach
is easy to understand and implement. However, it is a
centralized implementation, which makes the leader a
single point of failure for the formation. Another weak-
ness is that there is no explicit feedback from the follow-
ers to the leader. As an alternative to leader-following,
the virtual structure approach is easy to prescribe the
behavior for the group. Also it is precise and can main-
tain the formation very well during the maneuvers. The
main disadvantage of the current virtual structure imple-
mentation is that it is centralized, which results in a sin-
gle point of failure for the whole system. The behavioral
approach is a decentralized implementation and only re-
quires low bandwidth communication. Also explicit for-
mation feedback is included via the communication be-
tween neighbors. However, the behavioral approach is
hard to analyze mathematically and has limited ability
for precise formation keeping, that is, the group cannot
maintain formation very well during the maneuvers.

Motivated by the advantages and disadvantages of
each approach discussed above, a framework which is
precise, reliable, and easy to implement needs to be con-

structed to achieve the following characteristics. First,
the framework should be decentralized when a large
number of agents are involved in the formation or there
are stringent limitations on the communication band-
width. Second, formation feedback should be included
in the framework to improve group robustness. Third,
the group maneuvers should be easy to prescribe and
direct in the framework. Finally, the framework should
guarantee high precision for maintaining the formation
during the maneuvers. The purpose of this paper is to
propose a solution that can achieve the benefits of each
approach discussed above while overcoming their limita-
tions. The main contribution of this paper is to apply the
virtual structure approach in a decentralized scheme so
that both the benefits of the virtual structure approach
and the decentralized scheme can be achieved simulta-
neously. In this paper, each spacecraft in the formation
instantiates a local copy of the formation control, i.e.
the coordination vector, and the local instantiation of
the coordination vector in each spacecraft, which repre-
sents the states of the virtual structure, is synchronized
by infrequent communication with its neighbors follow-
ing a bidirectional ring topology.

2 Problem Statement

In this section, we introduce some preliminary nota-
tion and properties for spacecraft formation flying in-
cluding reference frames, unit quaternions, desired states
for each spacecraft, and spacecraft dynamics.

2.1 Reference Frames
Three coordinate frames are used in this paper. Ref-

erence frame FO is used as an inertial frame. Reference
frame FF is fixed at the virtual center of the formation.
Reference frame Fi is embedded at the center of mass
of each spacecraft as a body frame, which rotates with
the spacecraft and represents its orientation. Given any
vector p, the representation of p in terms of its compo-
nents in FO, FF , and Fi are represented by [p]O, [p]F ,
and [p]i respectively.

2.2 Unit Quaternions
Unit quaternions are used to represent the attitudes of

rigid bodies. A unit quaternion is defined as q = [q̂T , q̄]T ,
where q̂ is the vector part and q̄ is the scalar part.
The multiplicative identity quaternion is denoted by
1 = [0, 0, 0, 1]T . Note that a unit quaternion is not
unique since q and −q represent the same attitude. How-
ever, uniqueness can be achieved by restricting the Euler
angle φ to the range 0 ≤ φ ≤ π so that q̄ ≥ 0 all the
time [10]. In this paper, we assume that q̄ ≥ 0.
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2.3 The Desired States for Each Spacecraft
In the virtual structure approach, the entire formation

is treated as a single rigid body. Conceptually, we can
think that place holders corresponding to each space-
craft are embedded in the virtual structure to represent
the desired position and attitude for each spacecraft. As
the virtual structure as a whole translates or rotates in
time, the place holders trace out trajectories for each
corresponding spacecraft to track. The place holders in
the virtual structure maintain a rigid geometric config-
uration with fixed relative position and orientation.

Suppose that the virtual structure has position rF , ve-
locity vF , attitude qF , and angular velocity ωF relative
to FO. Let λF = [λ1, λ2, λ3] and λ̇F = [λ̇1, λ̇2, λ̇3], where
the components represent the expansion/contraction
rates of the virtual structure along each FF axis. There-
fore, the coordination vector of the virtual structure is
defined as ξ = [rT

F , v
T
F , q

T
F , ω

T
F , λ

T
F , λ̇

T
F ]

T , which can be
used to represent the states of the virtual structure.

Define the actual state of the ith spacecraft relative
to FO as Xi = [rT

i , v
T
i , q

T
i , ω

T
i ]

T , where ri, vi, qi, and
ωi represent the position, velocity, attitude, and an-
gular velocity of the ith spacecraft. Similarly, define
XiF = [rT

iF , v
T
iF , q

T
iF , ω

T
iF ]

T as the actual state of the
ith spacecraft relative to FF . A superscript “d” is also
used to represent the corresponding desired state of each
spacecraft, that is, the state of the place holders in the
virtual structure, relative to either FO or FF . Generally,
rd
iF , q

d
iF , v

d
iF , and ωd

iF can vary with time, which means
the formation shape is time-varying. Often, rd

iF and qd
iF

are constant and vd
iF and ωd

iF are zero since each place
holder needs to preserve fixed relative position and ori-
entation in the virtual structure, that is, the formation
shape is preserved during the maneuvers. In this pa-
per, we focus on formation maneuvers that preserve the
overall formation shape. Of course, the approach here
can be extended to the general case easily. By defining
Λ(t) = diag(λF ) and Λ̇(t) = diag(λ̇F ) as diagonal ma-
trices to represent expansions/contractions, we can also
loosen the requirement to preserve fixed relative posi-
tion between each place holder in the virtual structure
to make the formation shape more flexible by allowing
the place holders to expand or contract while still keep-
ing fixed relative orientation. In this case, the position
and velocity of the place holder relative to the formation
frame FF are given by Λ(t)rd

iF and Λ̇(t)rd
iF respectively.

In the virtual structure approach, the desired states
for each spacecraft are determined by the coordination
vector ξ. The desired states for the ith spacecraft are
defined by

[rd
i (t)]O =[rF (t)]O + COF (t)Λ(t)[r

d
iF ]F

[vd
i (t)]O =[vF (t)]O + COF (t)Λ̇(t)[r

d
iF ]F

+ [ωF (t)]O × (COF (t)Λ(t)[r
d
iF ]F ) (1)

[qd
i (t)]O =[qF (t)]O[q

d
iF ]F

[ωd
i (t)]O =[ωF (t)]O,

where COF (t) is the rotation matrix of the frame FO

with respect to FF , and [·]O, [·]F , and [·]i are the cor-
responding coordinate representations. The derivatives
of the desired states can be derived correspondingly
(see [11]).

2.4 Spacecraft Dynamics
The translational and rotational dynamics of each

spacecraft relative to FO are

dri

dto
= vi

Mi

dvi

dto
= fi

dq̂i

dto
= −

1

2
ωi × q̂i +

1

2
q̄iωi (2)

dq̄i

dto
= −

1

2
ωi · q̂i

Ji

dωi

dto
= −ωi × (Jiωi) + τi,

where Mi and fi are the mass and control force, and
Ji and τi are the moment of inertia and control torque
associated with the ith spacecraft respectively.

3 A Decentralized Architecture via the Virtual
Structure Approach

In [7], a decentralized control is implemented using a
bidirectional ring topology, where each robot only needs
position information of its two neighbors. A formation
pattern is defined to be a set composed of the desired
locations for each robot. Here, instead of using a set of
desired locations for each agent as a formation pattern,
we take advantage of the virtual structure approach to
define the formation pattern by P = ξd, where ξd is the
desired constant coordination vector representing the de-
sired states of the virtual structure. The coordination
vector ξ can then be used to specify the desired states
for each agent to track. By specifying the formation pat-
tern for the group, the movements of each spacecraft can
be completely defined. Through a sequence of forma-
tion patterns P (k), k = 1, · · · ,K, the group can achieve
a class of formation maneuver goals.

In [7], the formation pattern is defined in such a way
that each vehicle only knows its final location in the for-
mation while the trajectory for each vehicle during the
maneuver is not specified. Here the formation pattern
is defined in such a way that each spacecraft will track
a trajectory specified by the state of the virtual struc-
ture. Those trajectories themselves preserve a certain
formation shape. From this point of view, this new for-
mation pattern can accomplish collision avoidance more
efficiently than the formation pattern defined in [7]. In
this paper, each spacecraft in the formation instantiates
a local copy of the formation control, i.e. the coordi-
nation vector ξ. We use a bidirectional ring topology
to communicate the coordination vector implementation
instead of the position or attitude information among
each spacecraft.

A decentralized architecture via the virtual structure
approach is shown in Figure 1. Similar to [9], the sys-
tem G is a discrete event supervisor, which evolves with
a series of formation patterns by outputting yG and the
system F is the formation control, which produces and
broadcasts the coordination vector ξ to represent the
states of the virtual structure, except that each space-
craft has a local copy of Fi and Gi in this decentralized
case. The system Ki is the local spacecraft controller for
the ith spacecraft, which receives the coordination vector
ξ from the formation control, converts ξ to the desired
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Figure 1: The decentralized architecture via the virtual
structure approach.

states for the ith spacecraft, and then controls the actual
states for the ith spacecraft to track its desired states.
The system Si is the ith spacecraft, with control input
ui representing control forces and torques, and output yi

representing the measurable outputs from the ith space-
craft. The coordination vector is instantiated in each
spacecraft respectively. We use ξi to represent the coor-
dination vector instantiated in the ith spacecraft. The
coordination vector ξi in each spacecraft is synchronized
through infrequent communication with its neighbors,
that is, the ith spacecraft needs ξi−1 and ξi+1 from the
(i − 1)th and the (i + 1)th spacecraft respectively. The
ith spacecraft then forms its own control from its own
coordination vector instantiation ξi. Formation feedback
is accomplished from the ith spacecraft controller to the
ith formation control through the performance measure
zi. Formation feedback from the ith formation control
Fi to the ith instantiation of Gi is also included through
the performance measure vector zFi.

The strength of this decentralized scheme is that only
low bandwidth communication is needed. The decen-
tralized implementation also has more flexibility, relia-
bility, and robustness than the corresponding centralized
alternative. The weakness is that each local instanti-
ation must be synchronized, which accounts for addi-
tional complexity and inter-vehicle communications to
the whole system. In addition, the decentralized scheme
brings additional computation burdens to each space-
craft in the formation.

4 Decentralized Formation Control Strategies

Two major tasks need to be carried out in the decen-
tralized formation control scheme via the virtual struc-
ture approach. One is to propose suitable control laws
for each spacecraft to track its desired states defined by
the virtual structure. The other is to control the virtual
structure to achieve the desired formation patterns in a
decentralized manner.

4.1 Formation Control Strategies for Each
Spacecraft

Before proposing the control laws for each spacecraft,
we assume that the desired attitude and angular veloc-

ity for each spacecraft also satisfy the rotational dynam-
ics in (2). This is a valid assumption since in the vir-
tual structure approach we can imagine that each place
holder embedded in the virtual structure traces out the
desired trajectory for each spacecraft to track, which can
be thought of as a rigid body.

The proposed control force for the ith spacecraft is
given by

fi = Mi(v̇
d
i −Kr(ri − rd

i )−Kv(vi − vd
i )), (3)

where Mi is the mass of the ith spacecraft, and Kr and
Kv are symmetric positive definite matrices.

The proposed control torque for the ith spacecraft is
given by

τi =Jiω̇
d
i +

1

2
ωi × Ji(ωi + ωd

i )− kqV(q
d∗
i qi)

−Kω(ωi − ωd
i ), (4)

where Ji is the moment of inertia of the ith spacecraft,
kq is a positive scalar, Kω is a symmetric positive def-
inite matrix, and V(·) represent the vector part of the
quaternion.

Theorem 4.1 If the spacecraft dynamics satisfy (2),

Xd
i and Ẋd

i are specified from (1), and the control laws

are given by (3) and (4), then
∥

∥Xi −Xd
i

∥

∥ → 0 asymp-
totically.

Proof: see [4] and [11].

Note that if we define a translational tracking error
as Eti = r̃T

i Kr r̃i +
1
2 ‖ṽi‖

2
, where r̃i = ri − rd

i and ṽi =

vi−v
d
i , Eti decreases during the maneuver and r̃T

i Kr r̃i is

bounded by Eti(0)−
1
2 ‖ṽi‖

2
. Similarly if we define a ro-

tational tracking error as Eri = kq ‖q̃i‖
2
+ 1

2 ω̃iJiω̃i, where

q̃i = qi − qd
i and ω̃i = ωi − ωd

i , Eri decreases during the

maneuver and ‖q̃i‖
2
is bounded by 1

kq
(Eri(0)−

1
2 ω̃iJiω̃i).

4.2 Formation Control Strategies for the Virtual
Structure

There exist two objectives for the instantiation of the
coordination vector ξ implemented in each spacecraft.
The first objective is to reach its constant desired goal
ξd defined by the formation pattern set. The second
objective is to synchronize each instantiation ξi. Follow-
ing the idea introduced in [7, 8], where behavior-based
strategies are used to realize goal seeking and formation
keeping for each agent, we apply behavior-based strate-
gies to synchronize the coordination vector instantiation
during the maneuver as well as evolve it to its desired
goal at the end of the maneuver.

Let ξi = [rT
Fi, v

T
Fi, q

T
Fi, ω

T
Fi, λ

T
Fi, λ̇

T
Fi]

T be the ith in-
stantiation of the coordination vector. Accordingly, let

ξd = [rT d

F , vT d

F , qT d

F , ωT d

F , λT d

F , λ̇T d

F ]T be the desired con-
stant goal defined in the formation pattern set. A
series of formation patterns can be defined by ξd(k),

k = 1, · · · ,K. Define EG =
∑N

i=1

∥

∥ξi − ξd
∥

∥

2
as the goal

seeking error to represent the total error between the
current instantiation ξi and the desired goal ξd. Also

define ES =
∑N

i=1 ‖ξi − ξi+1‖
2
as the synchronization

error to represent the total synchronization error be-
tween neighboring instantiations, where the summation
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index i is defined modulo N , i.e., ξN+1 = ξ1. Define
E(t) = EG(t) + ES(t), then the control objective is to
drive E(t) to zero asymptotically.

Since the coordination vector represents the states of
the virtual structure, we suppose that the ith coordi-
nation vector instantiation satisfies the following rigid
body dynamics















ṙFi

MF v̇Fi

q̇Fi

JF ω̇Fi

λ̇Fi

λ̈Fi















=















v̇Fi

fFi
1
2Ω(ωFi)qFi

−ωFi × JFωFi + τFi

λ̇Fi

νFi















, (5)

where MF and JF are the virtual mass and virtual iner-
tia of the virtual structure, fFi and τFi are the virtual
force and virtual torque exerted on the ith implemen-
tation of the virtual structure, and νFi is the virtual
control effort used to expand or contract the formation.

The tracking error for the ith spacecraft is defined
as ETi =

∥

∥Xi −Xd
i

∥

∥. Define ηG = DG + KFETi to
incorporate formation feedback (see [11]) from the ith
spacecraft to the ith coordination vector implementa-
tion, where DG and KF are symmetric positive definite
matrices. The proposed control force fFi is given by

fFi =MF (−KG(rFi − rd
F )− ηGvFi

−KS(rFi − rF (i+1))−DS(vFi − vF (i+1)) (6)

−KS(rFi − rF (i−1))−DS(vFi − vF (i−1))),

where KG is a symmetric positive definite matrix, and
KS and DS are symmetric positive semi-definite matri-
ces.

The proposed control torque τFi is given by

τFi =− kGV(q
d∗qFi)− ηGωFi

− kSV(q
∗
F (i+1)qFi)−DS(ωFi − ωF (i+1)) (7)

− kSV(q
∗
F (i−1)qFi)−DS(ωFi − ωF (i−1)),

where kG > 0 and kS ≥ 0 are scalars, ηG follows the
same definition as above, DS is a symmetric positive
semi-definite matrix, and V(·) represent the vector part
of the quaternion.

Similar to (6), the proposed control effort νFi is given
by

νFi =−KG(λFi − λd
Fi)− ηGλ̇Fi

−KS(λFi − λF (i+1))−DS(λ̇Fi − λ̇F (i+1)) (8)

−KS(λFi − λF (i−1) −DS(λ̇Fi − λ̇F (i−1)),

where KG is symmetric positive definite matrix, ηG fol-
lows the same definition as above, and KS and DS are
symmetric positive semi-definite matrices.

Note that the matrices in (6), (7), and (8) can be
chosen differently based on specific requirements. In
(6), (7), and (8), the first two terms are used to drive
EG → 0, the third and fourth terms are used to syn-
chronize the ith and (i + 1)th coordination vector in-
stantiations, and the fifth and sixth terms are used to
synchronize the ith and (i−1)th coordination vector in-
stantiations. The second term, that is, the formation

feedback term is also used to slow down the ith virtual
structure implementation when the ith spacecraft has a
large tracking error. This strategy needs each spacecraft
to know its neighboring coordination vector instantia-
tions, which can be accomplished by infrequent commu-
nications between neighbors.

Theorem 4.2 If the coordination vector implementa-
tions satisfy (5) and the control strategies are given by
(6), (7) and (8), then E(t)→ 0 asymptotically.

Proof: Since the translational, rotational, and expan-
sion/contraction dynamics are decoupled in (5), we first
show the convergence of each case and then prove the
the convergence of E(t).

Let r̃Fi = rFi − rd
F , then vFi = ṙFi = ˙̃rFi. Also let

r̃F = [r̃T
F1, · · · , r̃

T
FN ]T and vF = [vT

F1, · · · , v
T
FN ]T .

For the translational dynamics, following [7],
consider the Lyapunov function candidate

V1 = 1
2

∑N
i=1(rFi − rF (i+1))TKS(rFi − rF (i+1)) +

1
2

∑N
i=1 r̃

T
FiKGr̃Fi +

1
2

∑N
i=1 v

T
FivFi. Differentiating it,

we can get V̇1 =
∑N

i=1 v
T
Fi(KS(rFi−rF (i+1))+KS(rFi−

rF (i−1)) +KGr̃Fi +
fF i

MF
).

According to (6), V̇1 = −vT
F (IN ⊗ ηG + C ⊗ DS)vF ,

where IN is a N × N identity matrix, C is a circular
matrix with the first row given by [2,−1, 0, · · · , 0,−1] ∈
R

N , and ⊗ denotes the Kronecker product. Based on
Lemma IV.1 in [7], IN ⊗ DG is positive definite and

C ⊗ DS is positive semi-definite. Thus V̇1 is negative
semi-definite.

Let
∑

= {(r̃F , vF )|V̇1 = 0}, and let ¯∑ be the largest

invariant set in
∑

. On ¯∑, V̇1 = 0, which implies that
vF = 0. Then from (6), we know that KGr̃Fi+KS(rFi−
rF (i+1))+KS(rFi− rF (i−1)) = 0, i = 1, · · · , N . That is,
(IN ⊗KG + C ⊗KS)r̃F = 0.

Similarly, IN ⊗KG is positive definite and C ⊗KS is
positive semi-definite. Thus we know that r̃F = 0.

Therefore, by LaSalle’s invariance principle,
∥

∥rFi − rd
F

∥

∥ → 0, ‖vFi‖ → 0, and
∥

∥rFi − rF (i+1)

∥

∥ → 0,

i = 1, · · · , N . Accordingly,
∥

∥vFi − vF (i+1)

∥

∥ → 0,
i = 1, · · · , N .

For the rotational dynamics, following [8],
consider the Lyapunov function candidate

V2 = kG

∑N
i=1

∥

∥qFi − qd
F

∥

∥

2
+kS

∑N
i=1

∥

∥qFi − qF (i+1)

∥

∥

2
+

1
2

∑N
i=1 ω

T
FiJFωFi.

In [12], it is shown that

d

dt
‖q − p‖

2
= V(p∗q)T (ωq − ωp), (9)

where ωq and ωp are the angular velocities corresponding
to q and p respectively.

Applying (9), the derivative of V2 is

V̇2 =
∑N

i=1 ω
T
FikGV(q

d∗
F qFi) +

∑N
i=1(ωFi −

ωF (i+1))
T kSV(q

∗
F (i+1)qFi)+

∑N
i=1 ω

T
Fi(−

1
2ωFi×JFiωFi+

τFi).

According to (7) and with some manipulations, V̇2 =

−
∑N

i=1

(

ωT
FiηGωFi + (ωFi − ωF (i+1))

TDS(ωFi − ωF (i+1))
)

,
which is negative semi-definite.

Let
∑

= {(qF1, · · · , qFN , ωF1, · · · , ωFN )|V̇2 = 0},
and let ¯∑ be the largest invariant set in

∑

. On ¯∑,

V̇2 = 0, which implies that ωFi = 0, i = 1, · · · , N .
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Then from (7), we know that

kGV(q
d∗
F qFi) + kSV(q

∗
F (i+1)qFi) + kSV(q

∗
F (i−1)qFi) = 0.

(10)
Applying the property of the unit quaternion, (10) is
equivalent to

kGV(q
d∗
F qFi) + kSV(q

∗
F (i+1)q

d
F q

d∗
F qFi

+ kSV(q
∗
F (i−1)q

d
F q

d∗
F qFi) = 0. (11)

Following the similar procedure in [8], (11) can
be written as V(p∗i qFi) = 0, where pi = kG1 +
kSq

d∗
F qF (i+1) + kSq

d∗
F qF (i−1).

Then following the similar proof in [8], we can show
that V(qd∗

F qFi) = 0, which implies that qFi = qd
F . There-

fore, by LaSalle’s principle,
∥

∥qFi − qd
F

∥

∥→ 0, ‖ωFi‖ → 0,

and
∥

∥qFi − qF (i+1)

∥

∥ → 0, i = 1, · · · , N . Accordingly,
∥

∥ωFi − ωF (i+1)

∥

∥→ 0, i = 1, · · · , N .
For the expansion/contraction dynamics, the proof is

the same as the translational dynamics.
Combining three parts of the proof, E(t)→ 0 asymp-

totically.

Combined with the control law for each spacecraft, we
can see that the virtual structure will achieve its final
goal asymptotically and each spacecraft will also track
its desired state specified by the virtual structure asymp-
totically during the maneuver. Therefore, the formation
maneuver can be achieved asymptotically.

5 Simulation Results

In this section, we consider a scenario with nine space-
craft. In the scenario, a mothership spacecraft with
mass 1500 Kg is located one kilometer away from a
plane where eight daughter spacecraft each with mass
150 Kg are distributed equally along a circle with a di-
ameter one kilometer in the plane. We assume that the
nine spacecraft evolves like a rigid structure, that is, the
formation shape is preserved and each spacecraft pre-
serves a fixed relative orientation within the formation
throughout the formation maneuvers. The configuration
of the nine spacecraft is shown in Figure 2, where the
spacecraft off the plane is labeled as #1 and the rest are
labeled from #2 to #9 clockwise around the circle.

We simulate a scenario when the nine spacecraft start
from rest with some initial position and attitude errors
and then rotate 45 degrees about the inertial z axis as a
whole. Here we assume that each place holder in the for-
mation has the same orientation, that is, qd

iF is the same
for each spacecraft. In simulation, we instantiate a local
copy of the coordination vector ξ in each spacecraft and
synchronize them using the control strategy introduced
in section 4.2. To show the robustness of the control
strategy, we start the coordination vector implementa-
tion in each spacecraft at a different time instance and
introduce a different sample time for each coordination
vector instantiation. Three cases will be compared in
this section. These include cases without actuator sat-
uration and formation feedback (case 1), with actuator
saturation but without formation feedback (case 2), with
both actuator saturation and formation feedback (case
3).

In this section, the average coordination error is de-

fined as 1
N

∑N
i=1

∥

∥ξi − ξ̄
∥

∥, where ξ̄ = 1
N

∑N
i=1 ξi. The
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Figure 2: The geometric configuration of nine spacecraft.
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Figure 3: The average coordination error of the coordina-
tion vector instantiations.

average coordination error in these three cases is plot-
ted in Figure 3. We can see that each instantiation of
the coordination vector is synchronized asymptotically
in all these cases. Also, the average coordination error
is large during the initial time interval since each local
instantiation starts at a different time instance. Case
1 and 2 are identical since the actuator saturation for
each spacecraft does not affect the dynamics of the vir-
tual structure when there is no formation feedback from
each spacecraft to its coordination vector instantiation.
Case 3 has a larger maximum average coordination er-
ror than the other two cases since formation feedback
is introduced for each coordination vector instantiation,
which may add some unsynchronization between differ-
ent instantiations.

In Figure 4, we plot the absolute position and atti-
tude tracking errors for spacecraft #7 in each case. The
position tracking error is defined as

∥

∥ri − rd
i

∥

∥ while the

attitude tracking error is defined as
∥

∥qi − qd
i

∥

∥. We can
see the tracking errors in each case will decrease to zero
asymptotically by using the control law given in section
4.1. The absolute position tracking error in case 2 is
much larger than that in the other two cases due to the
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Figure 4: The absolute position and attitude tracking error
for the 7th spacecraft.
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Figure 5: The relative position and attitude errors.

control force saturation. With formation feedback, the
absolute position tracking errors in case 3 is similar to
that in case 1 even if there is control force saturation.
When we increase the formation feedback gains, the ab-
solute tracking errors can be decreased further.

In Figure 5, we plot the relative position and attitude
errors between some spacecraft in each case respectively.
Based on the configuration, the desired relative distance
between spacecraft #1 and #2 and the desired relative
distance between spacecraft #1 and #6 should be equal.
We plot | ‖r1 − r2‖−‖r1 − r6‖ | in part (a) as an example
to see how well the formation shape is preserved. The
desired relative attitude between each spacecraft should
be equal based on our previous assumption. We plot
‖q4 − q7‖ in part (b) as an example to see how well the
relative orientation relationship is preserved. Similarly,
the relative position tracking error in case 2 is larger
than that in the other two cases due to the control force
saturation. With formation feedback, case 3 has a simi-
lar relative position error to case 1. The relative attitude
error in case 3 is even smaller than that in the other two
cases due to the formation feedback. When we increase

the formation feedback gains, the relative errors can be
decreased further.

6 Conclusion

In this paper, we proposed a decentralized scheme
for spacecraft formation control via the virtual struc-
ture approach. Through low bandwidth communication
between neighboring spacecraft, the instantiation of the
coordination vector in each spacecraft can be synchro-
nized and then be used to define the desired states for
each spacecraft to track. Decentralized formation con-
trol strategies were presented for each spacecraft to syn-
chronize the coordination vector instantiation and track
its desired states. An example has demonstrated the
effectiveness of the proposed strategies.
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