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Equipping a fixed wing unmanned air vehicle (UAV) with low-level autopilots, we derive
high-level velocity and roll angle control laws for the UAV. Backstepping techniques are
applied to design the velocity and roll angle control laws from known velocity and heading
angle control laws that explicitly account for velocity and heading rate constraints of the
UAV. Regarding unknown autopilot constants, a parameter adaptation technique is used
to estimate autopilot parameters. Simulation results on a fixed wing UAV are presented
to show the effectiveness of our approach.

Nomenclature

x, y inertial position, m
ψ heading angle, rad
φ roll angle, rad
v Airspeed, m/s
h Altitude, m
α∗ Autopilot Parameters
g gravitational constant, m/s2

Subscript
r reference
Superscript
c command

I. Introduction

Advanced control technologies for unmanned air vehicles (UAVs) have received significant attention
in recent years. Potential applications of autonomous UAVs in both civilian and military sectors in-

clude environment monitoring, search and rescue, communication relays, border patrol, situation awareness,
surveillance, and battle damage assessment.

Fully-automating UAVs poses both theoretical and practical challenges.1 One important research is UAV
path planning.2,3 Another important aspect focuses on trajectory optimization for UAVs.4,5 In addition,
cooperative control of multiple UAVs is also studied extensively in the literature.6–8

Effective trajectory tracking algorithms guarantee that a UAV can accurately follow its pre-specified
desired trajectory. In addition, the study of nonlinear tracking control techniques for UAVs is essential for
the success of cooperative timing (e.g. Refs. 9,10) and formation keeping missions (e.g. Ref. 11). In Ref. 12,
velocity and heading control laws that explicitly account for stall conditions, thrust limitations, and saturated
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heading rate constraints are designed for small fixed wing UAVs equipped with velocity hold, heading hold,
and altitude hold autopilots. In Ref. 12, it is assumed that the autopilot response to heading commands is
first order in nature. However, the headings of the UAVs are controlled by their roll motions, which imply
that the kinematic model for UAVs should explicitly take into account the roll angle command. In addition,
the autopilot constants are generally unknown and depend on specific designs. Using inaccurate autopilot
constants in a control law design may result in degraded performance for the UAV. In this paper, we use
a more accurate kinematic model that takes into account the roll motion for heading control. We apply
backstepping techniques to derive velocity and roll angle control laws. In addition, a parameter adaptation
technique is developed for the control law design regarding unknown autopilot constants. This paper is the
continuation of the previous work presented in Ref. 12.

II. Problem Statement

Let (x, y), ψ, v, φ, and h denote the inertial position, heading angle, velocity, roll angle, and altitude
of the UAV respectively. We assume that the UAV is equipped with standard autopilots as described in
Ref. 13. The kinematic equations of motion are given by

ẋ = v cos(ψ)
ẏ = v sin(ψ)

ψ̇ = g
tan(φ)

v
(1)

v̇ =
1
αv

(vc − v),

φ̇ =
1

αφ
(φc − φ),

ḧ = − 1
αḣ

ḣ +
1
αh

(hc − h),

where φc, vc, and hc are the commanded roll angle, velocity, and altitude to the autopilots, g is the gravi-
tational constant, and α∗ are positive constants.13,14

In the following, we assume that an effective altitude controller exists and focus on the design of velocity
and roll angle control laws.

Due to the stall conditions, thrust limitations, and roll angle and pitch rate constraints of fixed wing
aircraft, the following input constraints are imposed on the UAV:

0 < vmin ≤ v ≤ vmax

−φmax ≤ φ ≤ φmax (2)

where φmax > 0.
We assume that the desired reference trajectory (xr, yr, ψr, vr, ωr) generated by a trajectory generator5

satisfies

ẋr = vr cos(ψr)
ẏr = vr sin(ψr) (3)

ψ̇r = ωr

where vr and ωr are continuous and satisfy that v̇r and ω̇r are bounded, inft≥0 vr(t) > vmin, supt≥0 vr(t) <
vmax, and supt≥0 |ωr(t)| < ωmax with ωmax > 0 denoting the heading rate constraint of the UAV.

Transforming the tracking errors expressed in the inertial frame to the UAV frame, the error coordinates15

become 


xe

ye

ψe


 =




cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1







xr − x

yr − y

ψr − ψ


 . (4)

Note that the motivation for this transformation is only to simplify the mathematics so that a constrained
Lyapunov function can be easily derived.
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Accordingly, the tracking error model can be represented as

ẋe = g
tan(φ)

v
ye − v + vr cos(ψe)

ẏe = −g
tan(φ)

v
xe + vr sin(ψe) (5)

ψ̇e = ωr − g
tan(φ)

v
.

III. Trajectory Tracking Using Backstepping and Parameter Adaptation
Techniques

In Ref. 12, the authors use the following simplified kinematic model for the UAV:

ẋ = vc cos(ψ)
ẏ = vc sin(ψ) (6)

ψ̇ =
1

αψ
(ψc − ψ),

where vc and ψc are the commanded velocity and heading to the autopilots and αψ > 0 is an autopilot
constant.

However, the autopilot response to the heading command is not truly first order in reality. As a result,
Eq. (1) represents a more accurate model of the UAV equipped with standard autopilots.

Let

v0 =





vmin, ηvxe < v

vr cos(ψe) + ηvxe, v ≤ ηvxe ≤ v̄

vmax, ηvxe > v̄

, (7)

ω0 =





ωmax, −ηωσω < ω

ωr + ηωσω, ω ≤ −ηωσω ≤ ω̄

−ωmax, −ηωσω > ω̄

, (8)

where v
4
= vmin − vr cos(ψe), v̄

4
= vmax − vr cos(ψe), ω

4
= ωr − ωmax, ω̄

4
= ωr + ωmax, σω

4
= λψe + ye√

x2
e+y2

e+1
,

and ηv and ηω are sufficiently large positive constants expressed precisely in Ref. 12. In Ref. 12, it is shown
that vc = v0 and ψc = αψω0 + ψ guarantees that |x − xr| + |y − yr| + |ψ − ψr| → 0 asymptotically. In
addition, v0 and ω0 satisfy the following input constraints

0 < vmin ≤ v0 ≤ vmax

−ωmax ≤ ω0 ≤ ωmax,

which represents the case that the UAV has limited velocity and heading rate constraints.
However, the velocity and heading rate commands (7) and (8) are no longer valid for Eq. (1), where the

control commands to the autopilot are the velocity and roll angle commands. In the following, we apply
backstepping techniques to derive velocity and roll angle commands.

Note that Eqs. (1) and (5) can be rewritten as

χ̇ = f(t, χ) + g(χ)ξ (9)

ζ̇ = ν, (10)

where χ = [xe, ye, ψe]T ,

ξ =

[
v

g tan(φ)
v

]
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ζ =

[
v

φ

]

f(t, χ) =




vr cos(ψe)
vr sin(ψe)

ωr




g(χ) =



−1 ye

0 −xe

0 −1




ν =

[
νv

νφ

]
=

[
1

αv
(vc − v)

1
αφ

(φc − φ)

]
.

Assume that ξ is the control input to Eq. (9) and suppose that we have found a control law ξd =
[vd, g tan(φd)

vd ]T that stabilizes χ. Furthermore, assume that there exists a Lyapunov function V1 satisfying
V̇1 ≤ −W (χ) with ξd as the control input, where W (·) is a positive definite function.

However, ξ is not a true control input in reality, so we will try to design vc and φc such that ξ →
[vd, g tan(φd)

vd ]T in the next step.

Let ω = g tan(φ)
v and ωd = g tan(φd)

vd . Consider a Lyapunov function candidate

V2 = V1 +
1
2
zT z, (11)

where

z = ξ − ξd =

[
v − vd

ω − ωd

]
. (12)

Differentiating Eq. (11), we get that

V̇2 =
∂V1

∂χ
f(t, χ) +

∂V1

∂χ
g(χ)ξ + zT ż

=
∂V1

∂χ
f(t, χ) +

∂V1

∂χ
g(χ)[ξd + (ξ − ξd)]

+ zT

[
v̇ − v̇d

g sec2(φ)vφ̇−tan(φ)v̇
v2 − ẇd

]

= −W (χ)

+ zT

([
v̇ − v̇d

g sec(φ)2vφ̇−tan(φ)v̇
v2 − ẇd

]
+ (

∂V1

∂χ
g(χ))T

)
,

where v̇d and ω̇d represent the time derivative of vd and ωd in the case that vd and ωd are differentiable. In
the case that vd and ωd are not differentiable, we let ˙̃vd and ˙̃ωd denote the generalized time derivative of vd

and ωd respectively and let v̇d and ω̇d represent the minimum norm element of ˙̃vd and ˙̃ωd respectively (see
Refs. 16,17).

Define

P =

[
1 0

−g tan(φ)
v2 g sec2(φ)

v

]
.

Letting [
νv

νφ

]
= P−1

(
−Kz − (

∂V1

∂χ
g(χ))T +

[
v̇d

ω̇d

])
,

we have

vc = αvνv + v

φc = αφνφ + φ. (13)
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Given the control command (13), we can see that V̇2 = −W (χ) − zT Kz, which is negative definite. As a
result, it is straightforward to see that the control command (13) guarantees that |xe| + |ye| + |ψe| + |v −
vd|+ |g tan(φ)

v − g tan(φd)
vd | → 0, which in turn implies that |x− xr|+ |y − yr|+ |ψ − ψr| → 0.

Now we need to find vd and ωd and a Lyapunov function V such that

V̇ =
∂V

∂χ
f(t, χ) +

∂V

∂χ
g(χ)

[
vd

ωd

]

is negative definite.
In Ref. 12 we have shown that

V0(χ) =

√√√√
(

λψe +
ye√

x2
e + y2

e + 1

)2

+ 1 (14)

+ k
√

x2
e + y2

e + 1− (1 + k) (15)

is a constrained Lyapunov function for system χ̇ = f(t, χ) + g(χ)[v, ω]T with virtual control inputs v and ω
given by Eqs. (7) and (8) such that V̇0(χ) ≤ −W (χ), where W (χ) is a continuous positive-definite function,
k > 1

2 , λ > κ, where κ is a positive constant expressed precisely in Ref. 12.
Therefore, we have the following lemma.

Lemma III.1 Let vd = v0 and ωd = ω0, where v0 and ω0 are given by Eqs. (7) and (8). The control
command (13) guarantees that |x− xr|+ |y − yr|+ |ψ − ψr|+ |v − vr|+ |g tan(φ)

v − ωr| → 0 asymptotically.

Proof: Letting V1 = V0(χ) in Eq. (11), we can see that V̇2 = −W (χ) − zT Kz, which implies that χ → 0
and z → 0 asymptotically, that is, |xe| + |ye| + |ψe| → 0 and |v − vd| + |g tan(φ)

v − ωd| → 0. The fact
that χ → 0 also implies that |vd − vr| + |ωd − ωr| → 0. Combining the above arguments, we know that
|x− xr|+ |y − yr|+ |ψ − ψr|+ |v − vr|+ |g tan(φ)

v − ωr| → 0 asymptotically.
In reality, the parameter vector θ = [αv, αφ]T is unknown and depends on the autopilot design. The

commanded velocity vc and roll angle φc are given by vc = α̂vνv +v and φc = α̂φνφ +φ, where θ̂ = [α̂v, α̂φ]T

is an estimate of θ.
Let the parameter estimate vector be updated as

˙̂
θ = −Γ

[
νv 0
0 νφ

]
PT z, (16)

where Γ is a diagonal positive definite matrix.
Consider a Lyapunov function candidate

V3 = V2 +
1
2
θ̃T

[
1

αv
0

0 1
αφ

]
Γ−1θ̃, (17)

where θ̃ = θ − θ̂.
Differentiating Eq. (17), we get that

V̇3 = −W (χ)− zT Kz − zT P

[
νv

αv
0

0 νφ

αφ

][
α̃v

α̃φ

]

+ θ̃T

[
1

αv
0

0 1
αφ

]
Γ−1 ˙̃

θ

= −W (χ)− zT Kz,

where the last equality comes from the fact that

˙̃
θ = Γ

[
νv 0
0 νφ

]
PT z.

As a result, we know that W (χ) → 0 and z → 0 from Theorem 5.27 in Ref. 18. Note that here θ̃ may
not approach zero.
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IV. Simulation Results

In this section, we simulate a small Zagi airframe19 based UAV that tracks a trajectory generated by
a trajectory generator described in Ref. 5. The simulation results in this section are based on a full six
degree-of-freedom twelve-state model equipped with low-level autopilots described in Ref. 13. The UAV is
equipped with a standard autopilot and the autopilot constants α∗ are generally unknown. However, we
have tuned the autopilot design to find out that αv ≈ 1

2 and αφ ≈ 1
0.55 for comparison purposes. Table 1

shows the specifications of the UAV and the control law parameters.

Table 1. Specifications of the UAV and the control law parameters.

Parameter Value

vmin 7.5 (m/s)
vmax 13.5 (m/s)
ωmax 0.671 (rad/s)
φmax

π
4 (rad)

vr ∈ [9.5, 11.5] (m/s)
ωr ∈ [−0.471, 0.471] (rad/s)
λ 1
ηv 10
ηω 10
K diag{10, 10}
Γ I

In the first case, we let vc = α̂vνv + v and φc = α̂φνφ + φ, where α̂v = 1
2 and α̂φ = 1

0.55 . Fig. 1 shows the
actual and desired trajectories of the UAV without parameter adaptation. Here we use circles to represent
the starting position of the UAV and squares to represent the ending position of the UAV. Also, we use
diamonds to represent the position of the UAV at t = 10, 20, 30, 40 (secs). It can be seen that the UAV can
track its desired trajectory accurately with known αv and αφ. Fig. 2 shows the tracking error for position
and heading. Fig. 3 shows the velocity and roll angle of the UAV. Note that the velocity and roll angle of
the UAV satisfy their constraints. The switching phenomena of the roll angle are due to the fact that the
reference velocity and heading rate vr and ωr are only piecewise continuous.

−600 −500 −400 −300 −200 −100 0
−100

−50

0

50

x (m)

y 
(m

)

Reference and Actual Trajectories

Reference
Saturation

Figure 1. Actual and desired trajectories of the UAV with accurate αv and αφ but without parameter adap-
tation.

In the second case, we assume that no parameter adaptation law is applied. Here we let vc = α̂vνv + v
and φc = α̂φνφ + φ, where α̂v and α̂φ are arbitrarily chosen as 0.192 and 0.55. Fig. 4 shows the actual and
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Figure 2. Tracking errors of the UAV with accurate αv and αφ but without parameter adaptation.
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Figure 3. Velocity and roll angle of the UAV with accurate αv and αφ but without parameter adaptation.

desired trajectories of the UAV with neither accurate αv and αφ nor parameter adaptation. It can be seen
that the UAV cannot track its desired trajectory accurately. Fig. 5 shows the tracking error for position and
heading. Fig. 6 shows the velocity and roll angle of the UAV.

In the third case, Eq. (16) is applied to update the estimated parameters α̂v and α̂φ, where we assume
that α̂v(0) = 0.192 and α̂φ(0) = 0.55. Fig. 7 shows the actual and desired trajectories of the UAV with
inaccurate αv and αφ but with parameter adaptation. It can be seen that the UAV can track its desired
trajectory more accurately in this case than in the second case. Fig. 8 shows the tracking error for position
and heading with adaptation. Fig. 9 shows the velocity and roll angle of the UAV with adaptation. Fig. 10
shows the actual and estimated parameters of the UAV. Note that although the estimated parameters do
not match the actual parameters here, trajectory tracking errors are still guaranteed to converge to zero due
to the inherent properties of adaptive control.20

V. Conclusion

With a UAV equipped with low-level autopilots, the twelve-state model of the UAV is reduced to a seven-
state model with velocity, roll angle, and altitude command inputs. We have used backstepping techniques
to design velocity and roll angle control laws from known velocity and heading angle control laws for small
UAVs equipped with effective autopilots. The velocity and roll angle control laws have extended the velocity
and heading controllers in Ref. 12, where the velocity and heading controllers explicitly account for limited
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Figure 4. Actual and desired trajectories of the UAV with neither accurate αv and αφ nor parameter adaptation.
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Figure 5. Tracking errors of the UAV with neither accurate αv and αφ nor parameter adaptation.

velocity and heading rate constraints of fixed wing UAVs. A parameter adaptation technique has been
applied to estimate unknown autopilot parameters. Simulation results on a small fixed wing UAV have
shown the effectiveness of our approach.
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