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Micro Air Vehicles (MAVs) will provide a low-cost, redundant means to perform re-
connaissance missions in urban or traditional battlefield environments. These miniaturized
vehicles, however, will have extremely limited capacity for onboard navigation sensors, pro-
cessors, and inter-vehicle communication. This paper explores the application of emerg-
ing consensus algorithms to the problem of distributed MAV coordination and control.
Through the use of local information exchange (sensing or communication) links, MAV
teams are able to initialize and maintain controlled formation geometries, effectively form-
ing a sensor web despite the lack of centralized leadership. Results demonstrate the ability
of a twenty-MAV team to accurately assemble in a grid formation when all vehicles are
initialized in sufficient proximity to enable a (directed) information exchange topology that
spans the MAV network. Without such connectivity, MAV sub-groups form, each of which
assembles a smaller version of the original grid formation.

I. Introduction

The Unmanned Air Vehicle (UAV) has become a pervasive technology that enables surveillance with de-
creased operational cost and less risk to human life than manned vehicle counterparts. A new generation

of even more compact Micro Air Vehicles (MAV) is emerging, envisioned to fit in the palm of a soldier’s hand
and provide over-the-horizon or indoor reconnaissance capabilities.1 Because size, power, and weight con-
siderations will significantly limit the instrumentation and processing capacity of MAVs, they must achieve
robustness as a team rather than as individual vehicles, requiring an alternative approach to traditional
guidance, navigation, and control strategies.

Distributed control of multi-vehicle systems has received significant attention in recent years. In some
applications of distributed multi-vehicle systems, shared information plays a central role and facilitates the
coordination of the group. Often inspired by biological paradigms, in distributed control systems entities
organize by sensing only their local environment (e.g., no GPS) and activities of their immediate neighbors
(e.g., no network-wide broadcast). A primary challenge for distributed, coordinated control is to design
appropriate algorithms such that the group of vehicles can reach consensus on the shared information in the
presence of limited and unreliable information exchange and dynamically changing interaction topologies as
vehicles move in/out of range.

This paper applies consensus theory to the problem of initializing and maintaining an MAV formation
given only local information exchange and no global positioning data. A second-order MAV dynamic model
is presumed, and results demonstrate the use of consensus to initialize a twenty-vehicle MAV formation that
must form a sensor web over a surveillance target area. In this work, a vertical takeoff and landing (VTOL)
MAV design is presumed, enabling the formation to hover over its target and perform agile maneuvers as
a group. This choice was made to maximize mission design flexibility and to facilitate integration with
University of Maryland collaborators developing rotary-wing vehicle and onboard sensor technologies.2
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II. Problem Statement

A. MAV Equations of Motion

Let (xi, yi, hi), ψi, vi, ri, and vhi denote the three-dimensional inertial position, heading angle, forward
velocity, heading rate, and vertical velocity of the ith rotary-wing micro air vehicle (MAV) respectively.
With the rotary-wing MAV equipped with efficient low-level controllers, the simplified equations of motion
are given by

ẋi = vi cos(ψi)
ẏi = vi sin(ψi)

ψ̇i = ri

v̇i =
1

αvi
(vc

i − vi) (1)

ṙi =
1

αri
(rc

i − ri)

ḣi = vhi,

v̇hi =
1

αvhi

(vc
hi − vhi)

where vc
i , rc

i , and vc
hi are the commanded forward velocity, heading rate, and vertical velocity to the low-level

controllers, and α∗ are positive constants.3

To avoid the nonholonomic constraint introduced by Eq. (1), we define
[
xfi

yfi

]
=

[
xi

yi

]
+

[
di cos(ψi)
di sin(ψi)

]
.

Note that if (xi, yi) represents MAV i’s lateral CG position in inertial coordinates, (xfi, yfi) represents the
inertial position of a point fi located a distance di along the x body axis of the ith MAV, presuming zero
pitch angle. In the following, we will focus on the coordination of (xfi, yfi) instead of (xi, yi) to simplify
design of the coordination algorithms.

Motivated by Ref. 4, if we let
[
vc

i

rc
i

]
=

[
vi

ri

]
+

[
αvi 0
0 αri

][
cos(ψi) −di sin(ψi)
sin(ψi) di cos(ψi)

]−1 [
µxi + viri sin(ψi) + dir

2
i cos(ψi)

µyi − viri cos(ψi) + dir
2
i sin(ψi)

]

and
vc

hi = vhi + αvhi
µhi,

we obtain the following equations of motion:

ẋfi = vxi

v̇xi = µxi

ẏfi = vyi (2)
v̇yi = µyi

ḣi = vhi

v̇hi = µhi

Noting that the transformation between (µxi, µyi, µhi) and (vc
i , r

c
i , v

c
hi) are invertible, we will focus on the

design for control efforts µxi, µyi, and µhi in the following.

B. Information Exchange between MAVs

It is natural to model information exchange between vehicles by directed/undirected graphs. A digraph
(directed graph) consists of a pair (N , E), where N is a finite nonempty set of nodes and E ∈ N 2 is a set
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of ordered pairs of nodes, called edges. As a comparison, the pairs of nodes in an undirected graph are
unordered. If there is a directed edge from node vi to node vj , then vi is defined as the parent node and vj is
defined as the child node. A directed path is a sequence of ordered edges of the form (vi1 , vi2), (vi2 , vi3), · · · ,
where vij

∈ N , in a digraph. An undirected path in an undirected graph is defined accordingly. A digraph
is called strongly connected if there is a directed path from every node to every other node. An undirected
graph is called connected if there is a path between any distinct pair of nodes. A directed tree is a digraph,
where every node, except the root, has exactly one parent. A directed spanning tree of a digraph is a directed
tree formed by graph edges that connect all the nodes of the graph. We say that a graph has (or contains)
a directed spanning tree if there exists a directed spanning tree being a subset of the graph. Note that the
condition that a digraph has a directed spanning tree is equivalent to the case that there exists a node having
a directed path to all the other nodes.

The adjacency matrix A = [aij ] of a weighted digraph is defined as aii = 0 and aij > 0 if (j, i) ∈ E
where i 6= j. The Laplacian matrix of the weighted digraph is defined as L = [`ij ], where `ii =

∑
j 6=i aij and

`ij = −aij where i 6= j. For an undirected graph, the Laplacian matrix is symmetric positive semi-definite.

III. Consensus Schemes

In this section we review second-order consensus algorithms. Let ξi ∈ IR and ζi ∈ IR be the information
states of the ith MAV. For example, ξi may take the role of xfi, yfi, or hi while ζi may take the role of vxi, vyi,
or vhi. Consensus is said to be reached among multiple MAVs if ‖ξi(t)− ξj(t)‖ → 0 and ‖ζi(t)− ζj(t)‖ → 0,
∀i 6= j, asymptotically as t →∞ for any ξi(0) and ζi(0).

In Ref. 5, a second-order consensus algorithm is proposed as

ξ̇i = ζi

ζ̇i = −
n∑

j=1

gijkij [(ξi − ξj) + γ(ζi − ζj)], (3)

where kij > 0, γ > 0, gii
4
= 0, and gij = 1 if information flows from vehicle j to vehicle i and 0 otherwise.

Let ξ = [ξ1, · · · , ξn]T and ζ = [ζ1, · · · , ζn]T . Eq. (3) can be written in matrix form as
[

ξ̇

ζ̇

]
=

[
0n×n In

−L −γL

] [
ξ

ζ

]
, (4)

where 0n×n is the n× n zero matrix, In is the n× n identity matrix, and L = [`ij ] is the digraph Laplacian
matrix with `ii =

∑
j 6=i gijkij and `ij = −gijkij , ∀i 6= j.

As shown in Ref. 5, consensus algorithm (3) achieves consensus asymptotically if the information exchange
topology has a (directed) spanning tree (i.e., there exists at least one MAV that can send information directly
or indirectly to all the other MAVs in the team) and

γ > max
i=2,··· ,n

√
2

|µi| cos(π
2 − tan−1 −Re(µi)

Im(µi)
)
,

where µi, i = 2, · · · , n, are the non-zero eigenvalues of −L, and Re(·) and Im(·) represent the real and
imaginary parts of a number respectively.

In one case, it may be desirable that the MAVs preserve a certain formation during their maneuvers.
That is, rather than having ξi agree on a certain value, we want to have ξi − ξ̃i0 reach a common value,
denoted as ξ∗f . As a result, we know that ξi → ξ∗f + ξ̃i0, where ξ∗f represents the formation center and ξ̃i0

represents the deviation of each vehicle from the formation center. In this case, we treat ξi − ξ̃i0 as the
information state of the ith vehicle.

In another case, it may be desirable that ξi approaches a constant while ζi approaches zero. As a result,
we apply the following consensus algorithm:

ξ̇i = ζi

ζ̇i = −αζi −
n∑

j=1

gijkij [(ξi − ξj) + γ(ζi − ζj)], (5)
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where α > 0. In this case, ξi → ξj and ζi → ζj → 0 as t →∞.
In addition, if it is desirable that ζi approaches ζd(t), we apply the following consensus algorithm:

ξ̇i = ζi

ζ̇i = ζ̇d − α(ζi − ζd)−
n∑

j=1

gijkij [(ξi − ξj) + γ(ζi − ζj)], (6)

where α > 0. In this case, ξi → ξj and ζi → ζj → ζd(t) as t →∞.
One novel feature of consensus algorithms (3), (5) and (6) are that they are distributed in the sense that

each vehicle only needs information from its (possibly time-varying) local neighbors. In addition, consensus
algorithms (3), (5) and (6) allow time-varying uni-directional information exchange, which takes into account
measurements from sensors with limited fields of views as well as random data loss for some information
exchange links.

IV. Coordination of Multiple MAVs Using Consensus

In this section, we extend the second-order consensus algorithms to coordinate multiple MAVs in the
absence of global positioning data, for example, no GPS unit is installed on each vehicle or GPS information
is blocked intermittently (e.g., battle field scenario). The MAVs are driven from their initial locations on a
desired heading. During their maneuvers, local neighboring MAVs are required to preserve a certain distance
between each other and avoid collisions with each other with only relative information available. The tasks
of formation keeping and collision avoidance will be achieved via distributed communication or sensing in
that each MAV may only be able to interact with neighboring MAVs that are within communication/sensing
range.

We propose the following control law for µhi as

µhi = −αhvhi −
n∑

j=1

gijkij [(hi − hj) + γh(vhi − vhj)], (7)

where αh > 0, kij > 0, γh > 0, the first term is used to guarantee that vhi → 0, and the second term is
applied to guarantee that ‖hi − hj‖ → 0 and ‖vhi − vhj‖ → 0. Control law (7) guarantees that each MAV
aligns its altitude with its local neighbors in a distributed manner.

Let dij =
√

(xfi − xfj)2 + (yfi − yfj)2. Let dsep represent a desired lateral separation distance between
two neighboring MAVs. Let ri = [xfi, yfi]T . We define a continuous function φ(dij) such that φ = 0 when
dij = dsep, φ > 0 when dij > dsep, φ < 0 when 2rs < dij < dsep, and φ → −∞ when dij → 2rs, where
{ρ| ‖ρ− ri‖ ≤ rs} defines the safe region of each MAV. Also let (vd

x, vd
y) be the desired group velocity for the

whole team represented in the inertial x-y plane. Motivated by Refs. 4,6–9, we propose the following control
laws for µxi and µyi.

µxi = v̇d
x − αx(vxi − vd

x)−
n∑

j=1

gijγx(vxi − vxj)−
n∑

j=1

gijβxφ(dij)(xfi − xfj) (8)

µyi = v̇d
y − αy(vyi − vd

y)−
n∑

j=1

gijγy(vyi − vyj)−
n∑

j=1

gijβyφ(dij)(yfi − yfj) (9)

where αx > 0, αy > 0, βx > 0, βy > 0, γx > 0, and γy > 0. The first two terms in Eqs. (8) and (9) are used
to guarantee that (vxi, vyi) approaches (vd

x, vd
y), the third terms in Eqs. (8) and (9) are used to guarantee that

|vxi − vxj | → 0 and |vyi − vyj | → 0, and the fourth terms in Eqs. (8) and (9) are used to achieve collision
avoidance and maintain dsep between each neighboring MAV pair.

In contrast to Refs. 4,7–9, where bi-directional information exchange is required, the information exchange
topology may be uni-directional in Eqs. (7), (8), and (9) to account for measurements from sensors with
limited fields of views, random information loss, or delayed data transmission (e.g., to save power). Control
laws (7), (8), and (9) can guarantee formation maintenance of a team of MAVs if at each time there exists
at least one MAV that can send information directly or indirectly to all the other MAVs in the team and
γx, γy, and γh are sufficiently large.
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As two examples of φ(·), let φ1(dij) = log( dij−2rs

dsep−2rs
) and φ2(dij) = log( sat(dij−2rs,εs,∞)

dsep−2rs
), where εs is a

small positive number and sat(·, ·, ·) is defined as

sat(a, b, c) =





b, a < b

a, b ≤ a ≤ c

c, a > c

,

where it is assumed that b < c. Fig. 1 shows a plot of φ1(dij) and φ2(dij), where dsep = 8 meters, rs = 0.5
meters, and εs = 0.001 meters. Note that φ2(·) assumes a finite repulsive force when two MAVs move
sufficiently close.

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

d
ij
 (m)

φ 1(d
ij)

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

d
ij
 (m)

φ 2(d
ij)

Figure 1. Plot of φ1(dij) and φ2(dij) with respect to dij .

V. Simulation Results

In this section, we simulate a scenario where twenty MAVs are controlled to form a sensor web using
control laws (7), (8), and (9). The parameter values used in the simulation are given by Table 1. In this
paper, we assume that each MAV has a limited communication/sensing range R. We also assume that
each MAV has a safe region defined by {ρ| ‖ρ− ri‖ ≤ rs}. As illustrated in Fig. 2, each MAV can only
communicate with or sense neighboring MAVs that are within R of the current MAV. Note that each MAV’s
nearest neighbors may be time-varying as MAVs move around. Taking into account measurements from
sensors with limited fields of views or random communication data loss, we assume that it is possible that
the ith MAV can obtain information from the jth MAV but not vice versa at a certain time. That is, the
communication/sensing graph is generally bi-directional but may be sporadically uni-directional over one or
more time steps. In the following we assume that at each time step 10% of the existing information exchange
links fail, which implies that the communication/sensing graph may be uni-directional at some time steps.

We will consider six cases. In the first and third cases, the initial configuration of the MAVs forms a grid,
where the distance between two neighboring MAVs along the x-axis is chosen randomly from [6, 7] meters
and the distance between two neighboring MAVs along the y-axis is chosen randomly from [9, 10] meters.
The initial altitude of each MAV is chosen randomly from [100, 110] meters. In the other four cases, the
initial (x, y) coordinates of each MAV are chosen randomly and the initial altitudes are chosen randomly
from [100, 110] meters. Table 2 shows the parameters specific for each case.

In the following we use squares and circles to represent the initial and final positions of each MAV
respectively. In Case 1, Fig. 3 shows the configuration of the MAVs in 3D at t = 0 and t = 60 seconds. Fig. 4
shows the locations of the MAVs in x-y plane while Fig. 5 shows the altitudes of four MAVs. Note that the
distance between neighboring MAVs converges to the 8 meter value and the altitude of each MAV reaches a
common value. Fig. 6 shows the commanded forward velocities, heading rates, and vertical velocities of four
MAVs. Note that the control commands satisfy the saturation constraints defined in Table 1.
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Table 1. Parameter values used in simulation.

Parameter Value

αvi 1
αri 1
αvhi

1
kij 1

αx, αy, αh 2
γx, γy, γh 2

βx, βy
5

dij+0.01

vc
i ∈ [−1, 1] m/s

rc
i ∈ [−1, 1] rad/s

vc
hi ∈ [−0.5, 0.5] m/s

vd
x

√
2

2 m/s
vd

y

√
2

2 m/s
rs 0.5 m

Table 2. Control parameters for different cases.

Case 1, 2 t ∈ [0, 60] sec R = 10 m dsep = 8 m
Case 3 t ∈ [0, 80] sec R = 10 m dsep = 8 m
Case 4, 5 t ∈ [0, 80] sec R = 20 m dsep = 8 m
Case 6 t ∈ [0, 120] sec R = 20 m dsep = 8 m, t ∈ [0, 80); dsep = 10 m, t ∈ [80, 120]

In Case 2, Fig. 7 shows the configuration of the MAVs in 3D at t = 0 and t = 60 seconds. Fig. 8 shows
the locations of the MAVs in the x-y plane while Fig. 9 shows the altitudes of four MAVs. From Fig. 8,
we can see that the MAVs form two separated subgroups at t = 0 in the sense that MAVs #16, #17, #18,
#19, denoted as subgroup 1, have no information exchange with the other MAVs, denoted as subgroup 2,
in the team. As a result, two separate subgroups are formed with the distance between neighboring MAVs
in each subgroup converging to the 8 meter value. In addition, the altitudes of subgroup 1 reach a common
value while the altitudes of subgroup 2 reach another common value. Fig. 10 shows the commanded forward
velocities, heading rates, and vertical velocities of four MAVs. Note that the control commands satisfy the
saturation constraints defined in Table 1.

In the following we only show locations of each MAV in the x-y plane for simplicity. In Case 3, we assume
that MAV #4 and #13 fail when t ≥ 40 seconds. Fig. 11 shows the locations of the MAVs in the x-y plane
at t = 0 and t = 80 seconds. Note that the remaining MAVs in the team are reorganized and still preserve
the desired 8 meter separation distance between neighboring MAVs after MAV #4 and #13 dropped out of
the formation.

In Case 4, we assume that the communication/sensing range R is increased to be 20 meters. Fig. 12
shows the locations of the MAVs in the x-y plane at t = 0 and t = 80 seconds. Note that the desired 8 meter
separation distance between neighboring MAVs is not preserved although the MAVs still form a sensor web.
This is due to the fact that R À dsep and the team of MAVs reaches a local minimum.

In Case 5, we still assume that R = 20 meters. However, rather than exchanging information with
neighbors that are within its communication/sensing range, each MAV only exchanges information with its
nearest neighbors. Fig. 13 shows the locations of the MAVs in the x-y plane at t = 0 and t = 80 seconds.
Note that the desired 8 meter separation distance between neighboring MAVs is preserved even if R À dsep.
However, separated subgroups may occur as shown in Fig. 13.

In Case 6, we still assume that R = 20 meters. At t ∈ [0, 40) seconds, each MAV exchanges information
with neighbors that are within its communication/sensing range. At t ∈ [40, 120] seconds, each MAV
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Figure 2. Communication/sensing relationship between neighboring MAVs.
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Figure 3. Locations of each MAV in 3D at t = 0 sec and t = 60 sec in Case 1

exchanges information with its nearest neighbors. Also at t ∈ [80, 120) the desired separation distance
between neighboring MAVs is increased from 8 meters to 10 meters. Fig. 14 shows the locations of the
MAVs in the x-y plane at t = 0, 40, 80, 120 seconds. Unlike in Case 5, the issue of separated subgroups is
avoided since we require the team of MAVs to aggregate at the beginning (t ∈ [0, 40) seconds) and then
use information exchange with nearest neighbors to achieve the desired separation distance. Note that the
desired 8 meter separation distance between neighboring MAVs is preserved at t = 80 seconds while the
desired 10 meter separation distance between neighboring MAVs is preserved at t = 120 seconds.

VI. Conclusion

This paper has applied second-order consensus algorithms to the task of coordinating Micro Air Vehicles
(MAVs) in a distributed fashion given limited communication/sensing capabilities. The twenty-MAV team
deployed in our simulations illustrates the system’s capability to initialize formations provided the vehicles
are initially arranged such that they form a (directed) network connecting all MAVs at least indirectly.

Although we have only presented results from formation initialization, our simulator can straightforwardly
maintain the formation long-term provided injected navigation sensor and communication link noise levels
are not prohibitively high. The simple second-order model of vehicle dynamics was derived from a controlled
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Figure 4. Locations of each MAV in x-y plane at t = 0 sec and t = 60 sec in Case 1.
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Figure 5. MAV altitudes in Case 1.

UAV helicopter. However, it is somewhat idealistic to presume, particularly since MAV sensors are likely
to provide less precise vehicle control capabilities. As more realistic MAV sensor and dynamics models
become available, it is expected that consensus algorithms can not only organize a formation in a distributed
fashion, but they may also act as a filter over multiple vehicle datasets such that the team flies along a
smooth trajectory despite the limited sensor capabilities onboard each MAV.
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Figure 11. Locations of each MAV in x-y plane at t = 0 sec and t = 80 sec in Case 3.
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Figure 12. Locations of each MAV in x-y plane at t = 0 sec and t = 80 sec in Case 4.
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Figure 13. Locations of each MAV in x-y plane at t = 0 sec and t = 80 sec in Case 5.
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Figure 14. Locations of each MAV in x-y plane at t = 0, 40, 80, 120 sec in Case 6
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