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Abstract— Consensus tracking problems with, respectively,
bounded control effort and directed switching interaction
topologies are considered when a time-varying consensus ref-
erence state is available to only a subgroup of a team. A
consensus tracking algorithm explicitly accounting for bounded
control effort is proposed and analyzed under a fixed directed
interaction topology. Furthermore, convergence analysis for a
consensus tracking algorithm is provided when the time-varying
consensus reference state is available to a dynamically changing
subgroup of the team under directed switching inter-vehicle
interaction topologies. Experimental results of a formation
control application are demonstrated on a multi-robot platform
to validate one of the proposed consensus tracking algorithms.

I. INTRODUCTION

Cooperative control often requires that individual vehicles

share a consistent view of the objectives and the world.

Consensus algorithms guarantee that vehicles sharing infor-

mation have a consistent view of information that is critical

to the coordination task. The instantaneous value of that

information is the information state. By necessity, consensus

algorithms are designed to be distributed, assuming only

neighbor-to-neighbor interaction between vehicles. A vehicle

updates the value of its information state based on the

information states of its neighbors. The goal is to design an

update law so that the information states of all vehicles in the

network converge to a common value (see [1] and references

therein). Consensus-type techniques have been used to solve

formation control problems in [2]–[7], to name a few.

Current research in consensus algorithms primarily as-

sumes that the consensus equilibrium is a weighted aver-

age or a weighted power mean of the initial information

states and therefore constant. This assumption might not be

appropriate when each vehicle’s information state evolves

over time, as occurs in formation maneuvering problems.

In addition, many consensus algorithms ensure only that

the information states converge to a common value but

does not allow specification of a particular value. While

this paradigm is useful for applications such as cooperative

rendezvous where there is not a single correct value, there

are many applications where there is a desired, or reference,

information state. In this case the convergence issues include

both convergence to a common value, as well as convergence

of the common state to its reference value.

Consensus with a constant leader state under undirected

switching inter-vehicle interaction topologies is addressed in

the leader following case of [8]. Consensus with a constant

leader state is further considered in [9], [10] in the context
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of a directed fixed interaction topology. Dynamic consensus

is considered in [11]. In [12], consensus tracking algorithms

are proposed and analyzed under a directed fixed interaction

topology, where a time-varying consensus reference state is

available to only a subset of the team members, called the

group leaders. The consensus tracking algorithms are also

applied in [7] to a formation control problem under a directed

fixed interaction topology.

While [7], [12] have addressed the consensus tracking

problem with a time-varying consensus reference state, the

algorithms in [7], [12] do not explicitly account for actuator

saturation. Furthermore, the convergence analysis in [12] is

restricted to the case of a directed fixed interaction topology.

In practice, both the group leaders and the directed inter-

vehicle interaction topologies may be dynamically switching.

In this paper, we first propose a consensus tracking

algorithm to account for actuator actuation and provide

convergence analysis in the case of fixed group leaders

and a directed fixed inter-vehicle interaction topology. We

then provide convergence analysis for a consensus tracking

algorithm in the case of dynamically changing group leaders

and directed switching inter-vehicle interaction topologies.

Finally, we experimentally implement and validate a con-

sensus tracking algorithm for a formation control problem

on our multi-robot platform in the case of dynamically

changing group leaders and directed switching inter-vehicle

interaction topologies. These results extend the consensus

tracking results in [7], [12]. All results in this paper are

based on directed interaction topologies. It is worthwhile to

mention that an undirected interaction topology is a special

case of a directed interaction topology.

II. PROBLEM STATEMENT

Suppose that there are n vehicles in a team and the

information states of all vehicles satisfy single-integrator

kinematics given by

ξ̇i = ui, i = 1, . . . , n, (1)

where ξi ∈ R
m is the information state of the ith vehicle and

ui ∈ R
m is the control input.

The objective of this paper is to design distributed control

laws for ui, i = 1, . . . , n, such that the information states of

all vehicles converge to a time-varying consensus reference

state with, respectively, bounded control effort and directed

switching interaction topologies when the time-varying con-

sensus reference state is available to only a subgroup of the

team.

Suppose that the consensus reference state, denoted by ξr,

satisfies

ξ̇r = f(t, ξr), (2)
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where f(·, ·) is piecewise continuous in t and locally Lip-

schitz in ξr.

We introduce a virtual vehicle with the states ξr and

ξ̇r, named vehicle n + 1 without loss of generality. Let

An+1 = [aij ] ∈ R
(n+1)×(n+1) be the weighted adjacency

matrix (see Appendix for graph theory notations) for the

n + 1 vehicles, denoting information flow among vehicles

and whether a vehicle has access to the consensus reference

state. In particular, aij > 0, i, j = 1, . . . , n, if vehicle i

receives information from vehicle j, ai(n+1) > 0 if ξr and ξ̇r

are available to vehicle i, and a(n+1)j = 0, j = 1, . . . , n+1.

Note that aii = 0, ∀i.
Before moving on, we need the following lemma:

Lemma 2.1: Suppose that Lp ∈ R
p×p satisfies the prop-

erty (11). Then the following conditions are equivalent: (i) Lp

has a simple zero eigenvalue with an associated eigenvector

1p = [1, . . . , 1]T and all other eigenvalues have positive real

parts; (ii) The directed graph of Lp has a directed spanning

tree; (iii) The rank of Lp is p − 1.

Proof: The equivalence of (i) and (ii) directly follows [13].

Note that the argument (i) implies that Nullity(Lp) = 1,

which in turn implies Rank(Lp) = p−1. That is, (i) implies

(iii). Next, we show that (iii) also implies (i). Given a system

ẋ = −Lpx, where x ∈ R
p, the solution is x(t) = e−Lptx(0).

Note that e−Lpt is a stochastic matrix with positive diagonal

entries [13]. Then it follows that
∥∥e−Lpt

∥∥
∞

= 1, ∀t, which

in turn implies that the system ẋ = −Lpx is marginally

stable. Note that an LTI system ẋ = Fx, where F ∈
R

p×p, is marginally stable if and only if all eigenvalues of

F have non-positive real parts and every eigenvalue with

zero real parts should have its geometric multiplicity equal

to its algebraic multiplicity. Also note that −Lp has at

least one zero eigenvalue with an associated eigenvector 1p

because −Lp has zero row sums. In addition, it follows from

Gershgorin’s disc theorem [14, page 334] that all nonzero

eigenvalues of −Lp have negative real parts because −Lp is

diagonally dominant and has non-positive diagonal entries.

Because the system ẋ = −Lpx is marginally stable, the

geometric multiplicity of the eigenvalue zero of Lp equals its

algebraic multiplicity. Note that Rank(Lp) = p − 1 implies

that Nullity(Lp) = 1, that is, the geometric multiplicity

of the eigenvalue zero is one. It follows that the algebraic

multiplicity of the eigenvalue zero is also one, which in

turn implies that Lp has a simple zero eigenvalue. That

is, (iii) implies (i). We conclude that (i), (ii), and (iii) are

equivalent.

III. CONSENSUS TRACKING ALGORITHMS

A. Bounded Control Inputs

We first consider consensus tracking with bounded control

inputs. We propose a consensus tracking algorithm that

guarantees that the maximum control effort is independent

of the initial conditions of the information states as

ui =
1

ηi

[
n∑

j=1

aij
̂̇
ξj + ai(n+1)ξ̇

r]

− 1

ηi

γ tanh[
n∑

j=1

aij(ξi − ξj) + ai(n+1)(ξi − ξr)], (3)

where i = 1, . . . , n, aij , i = 1, . . . , n, j = 1, . . . , n + 1,

is the (i, j)th entry of the weighted adjacency matrix An+1,

ηi
△
=

∑n+1
j=1 aij ,

̂̇
ξj is the estimate of ξ̇j , γ is a positive scalar,

and tanh(·) is defined componentwise. Note that aij , i, j =
1, . . . , n, specify whether an interaction link from vehicle j
to vehicle i exists, and ai(n+1), i = 1, . . . , n, specify whether

vehicle i has access to ξr and ξ̇r.

Note that in (3) each vehicle’s control input depends on

its local neighbors’ information states and their derivative

estimates because of the tracking nature of (3). In prac-

tical implementation, the derivatives can be estimated by

numerical differentiation of the local neighbors’ information

states. For example, in the simplest case, we can let
̂̇
ξj =

ξj [k]−ξj [k−1]
T

, where k is the discrete-time index and T is the

sampling period. Next, we will show conditions under which

each control input is bounded and independent of the initial

information states, and consensus tracking is achieved under

a directed fixed interaction topology.

Theorem 3.1: Let ǫj
△
=

̂̇
ξj − ξ̇j and δ

△
= [δT

1 , . . . , δT
n ]T

with δi
△
=

∑n
j=1 aijǫj . Suppose that ‖δ‖ <

√
mnγθ, where

0 < θ < 1, f(t, ξr) in (2) is bounded, and the directed graph

of An+1 has a directed spanning tree1. Using (3) for (1), ui

is bounded, ‖ui‖∞ is independent of ξi(0), and the closed-

loop system is input-to-state stable with ξi − ξr being the

state and δi being the input. In addition, when δi(t) → 0,

i = 1, . . . , n, as t → ∞, ξi(t) → ξr(t), i = 1, . . . , n, as

t → ∞.

Proof: Noting that all entries of the last row of An+1 are

zero, it follows that the virtual vehicle n + 1 with the states

ξr and ξ̇r does not have any incoming interaction link. As a

result, if the directed graph of An+1 has a directed spanning

tree, then each vehicle except the virtual vehicle n + 1 has

at least one incoming interaction link, which implies that

ηi 6= 0, i = 1, . . . , n. Thus (3) is well defined.

Let ei
△
=

∑n
j=1 aij(ξi−ξj)+ai(n+1)(ξi−ξr). Note that (3)

can be written as

(
n+1∑

j=1

aij)ui =
n∑

j=1

aij ξ̇j +
n∑

j=1

aijǫj +ai(n+1)ξ̇
r−γ tanh(ei),

which implies

ėi = −γ tanh(ei) + δi (4)

by noting that ξ̇i = ui. It thus follows that (4) can be written

in matrix form as

(Ln×(n+1) ⊗ Im)u = −γ tanh(e) + δ, (5)

where u
△
= [uT

1 , . . . , uT
n , ξ̇rT

]T , e
△
= [eT

1 , . . . , eT
n ]T , ⊗ de-

notes the Kronecker product (see [15] for its properties), and

Ln×(n+1) is an n× (n + 1) matrix with ℓii =
∑n+1

j=1,j 6=i aij

and ℓij = −aij , i, j = 1, . . . , n, and ℓi(n+1) = −ai(n+1),

i = 1, . . . , n.

Let L(n+1)×(n+1) =

[
Ln×(n+1)

01×(n+1)

]
. Note that according

to the definition of L(n+1)×(n+1), the directed graph of

1Equivalently, the virtual vehicle n+1 has a directed path to all vehicles
1 to n.
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L(n+1)×(n+1) has a directed spanning tree if and only if

the directed graph of An+1 has a directed spanning tree.

Also note that L(n+1)×(n+1) satisfies the property (11) with

p = n + 1. From the arguments (ii) and (iii) of Lemma 2.1,

it follows that rank(L(n+1)×(n+1)) = n if and only if the

directed graph of An+1 has a directed spanning tree. This

in turn implies that rank(Ln×(n+1)) = n if and only if the

directed graph of An+1 has a directed spanning tree because

all entries in the last row of L(n+1)×(n+1) are zero. Rewrite

Ln×(n+1) = [W |b], where W = [wij ] ∈ R
n×n is given as

wij = −aij , i 6= j, and wii =
∑n+1

j=1,j 6=i aij , and b ∈ R
n×1

is given as b = [−a1(n+1), . . . ,−an(n+1)]
T . Noting that

Ln×(n+1) has n+1 columns and each of its row sum is zero,

it follows that the last column of Ln×(n+1) is dependent on

its first n columns, where b = −W1n. As a result, it follows

that Rank(W ) = Rank([W |b]) = n if and only if the directed

graph of An+1 has a directed spanning tree.

Note that (5) can be written as

(W ⊗ Im)u + (b ⊗ Im)ξ̇r = −Γ tanh(e) + δ, (6)

where u = [uT
1 , . . . , uT

n ]T . Because W has full rank and

therefore is invertible if and only if the directed graph of

An+1 has a directed spanning tree, the boundedness of ui

comes from the fact that b, ξ̇r, tanh(·), W−1, and δ are all

bounded. In addition, it is straightforward to see that ‖ui‖∞
is independent of ξi(0) because ‖tanh(·)‖∞ ≤ 1.

Consider a positive-definite function V =
1

T
mn log(cosh(e)), where log(cosh(·)) is defined

componentwise. It follows from (4) that the derivative of V is

given by V̇ = ėT tanh(e) = −γ ‖tanh(e)‖2
+δT tanh(e) ≤

−γ(1 − θ) ‖tanh(e)‖2 − γθ ‖tanh(e)‖2
+ ‖δ‖ ‖tanh(e)‖.

Noting that | tanh(x)| ≤ 1, ∀x ∈ R, and ‖δ‖ <
√

mnγθ, it

follows that V̇ ≤ −γ(1−θ) ‖tanh(e)‖2
if ‖tanh(e)‖ >

‖δ‖
γθ

.

Therefore, it follows from Theorem 4.19 in [16] that the

closed-loop system of (1) using (3) is input-to-state stable

with e being the state and δ being the input.

Note that e = (W ⊗ Im)ξ + (b ⊗ Im)ξr, where ξ
△
=

[ξT
1 , . . . , ξT

n ]T . Also note from the previous argument that

W−1b = −1n if and only if the directed graph of An+1

has a directed spanning tree. It follows that ξ − 1n ⊗ ξr =
(W−1 ⊗ Im)e. Similarly, the closed-loop system of (1)

using (3) is input-to-state stable with ξ − 1n ⊗ ξr being the

state and δ being the input, which in turn implies the first

statement of the theorem. When δi(t) → 0, i = 1, . . . , n,

as t → ∞, it follows from the property of input-to-state

stability that ξi(t) → ξr(t), i = 1, . . . , n, as t → ∞.

B. Directed Switching Interaction Topologies

We then consider a consensus tracking algorithm given as

ui =
1

ηi(t)

n∑

j=1

aij(t)[
̂̇
ξj − γ(ξi − ξj)]

+
1

ηi(t)
ai(n+1)(t)[ξ̇

r − γ(ξi − ξr)], (7)

where i = 1, . . . , n, aij(t), i = 1, . . . , n, j = 1, . . . , n+1, is

the (i, j)th entry of the weighted adjacency matrix An+1(t)

at time t, γ is a positive scalar, ηi(t)
△
=

∑n+1
j=1 aij(t), and

̂̇
ξj is the estimate of ξ̇j . Note that (7) generalizes the algo-

rithm proposed in [12] to allow time-varying or dynamically

switching weights aij(t), i = 1, . . . , n, j = 1, . . . , n + 1.
Similar to (3), each vehicle’s control input in (7) depends

on its local neighbors’ information states and their derivative

estimates because of the tracking nature of (7). Next, we will

show conditions under which consensus tracking is achieved

in the case of dynamically changing group leaders under

directed switching inter-vehicle interaction topologies.
Theorem 3.2: Let δi be defined as in Theorem 3.1. Let t0

be the initial time. Also let t1, t2, . . . be the switching times

for the directed graph of An+1(t) = [aij(t)] ∈ R
(n+1)×(n+1)

defined in (7). Suppose that An+1(t) is piecewise continuous

and each nonzero (and therefore positive) entry of An+1(t)
is chosen from a compact set [a, ā], where a an ā are positive

constants. Also suppose that the directed switching graph of

An+1(t) has a directed spanning tree across each interval

[tj , tj+1), j = 0, 1, . . .. Using (7) for (1), the closed-loop

system is input-to-state stable with ξi−ξr being the state and

δi being the input. In addition, when δi(t) → 0, i = 1, . . . , n,

as t → ∞, ξi(t) → ξr, i = 1, . . . , n, as t → ∞.
Proof: The same argument as that in the first paragraph of the

proof of Theorem 3.1 can be used to show that ηi(t) 6= 0,

i = 1, . . . , n, across each interval [tj , tj+1), j = 0, 1, . . .
if the directed switching graph of An+1(t) has a directed

spanning tree across that interval. Thus (7) is well defined

across each interval [tj , tj+1), j = 0, 1, . . ..
Note that (7) can be written as

[W (t) ⊗ Im]u + [b(t) ⊗ Im]ξ̇r

= −γ ([W (t) ⊗ Im]ξ + [b(t) ⊗ Im]ξr) + δ, (8)

where u, ξ, δ, W (t), and b(t) are defined as in the proof of

Theorem 3.1 except that W (t) and b(t) are switching in (8).

Following the proof of Theorem 3.1, we can show that W (t)
is invertible across each interval [tj , tj+1), j = 0, 1, . . . if and

only if the directed graph of An+1(t) has a directed spanning

tree across that interval.
We next show that W−1(t) is bounded under the as-

sumption of the theorem. Noting that each nonzero entry

of An+1(t) is chosen from a compact set, it follows that

each nonzero entry of W (t) is also within a compact set.

Two matrices are said to have the same structure if their

positive, zero, and negative entries are in the same places.

Under the assumption that the directed graph of An+1(t)
is switching but has a directed spanning tree across each

interval [tj , tj+1), the number of possible directed graphs of

An+1(t) is finite. It then follows that there are a finite number

of possible structures for An+1(t), which implies that there

are a finite number of possible structures for W (t). For

each possible structure of W (t), W−1(t) exists across each

interval [tj , tj+1), which implies that det(W (t)) 6= 0 across

each interval [tj , tj+1) if the directed graph of An+1(t) has

a directed spanning tree across that interval. Thus for each

possible structure of W (t), det(W (t)) is within a compact set

that does not include zero. Also note that for each possible

structure of W (t), all entries of its adjoint are within a

compact set. It thus follows that each entry of W−1(t) is

within a compact set.
Noting that b(t) = −W (t)1n and W (t) is invertible across

each interval [tj , tj+1) under the assumption of the theorem,
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it follows that −W−1(t)b(t) = 1n. Note that ξ̇ = u, we

rewrite (8) as ξ̇−1n⊗ξ̇r = −γ(ξ−1n⊗ξr)+[W−1(t)⊗Im]δ.

The statements of the theorem then follow directly.

Note that the tracking nature of the algorithm (7) requires

more stringent conditions for convergence under directed

switching interaction topologies than those for the standard

consensus algorithm of the form ui = −
∑n

j=1 aij(ξi − ξj)
as studied in [8], [13], [17], where the final consensus

equilibrium is a constant.

IV. EXPERIMENTAL VALIDATION ON A

MULTI-ROBOT PLATFORM

In this section, we apply a consensus tracking algorithm

to a formation control problem and experimentally validate

the application on a multi-robot platform under directed

switching interaction topologies. In particular, four wheeled

mobile robots are required to maintain a square formation

while their geometric center (GC) is required to follow a

circle clockwise.

Let (rxi, ryi), θi, and (vi, ωi) denote, respectively, the

Cartesian position, orientation, and linear and angular speed

of the ith robot. The kinematic equations for the ith robot are

ṙxi = vi cos(θi), ṙyi = vi sin(θi), θ̇i = ωi. (9)

To focus on the main issue, we feedback linearize (9)

for a fixed point off the center of the wheel axis de-

noted as (xi, yi), where xi = rxi + di cos(θi) and yi =

ryi + di sin(θi) with di = 0.15 m. Letting

[
vi

ωi

]
=

[
cos(θi) sin(θi)

− 1
di

sin(θi)
1
di

cos(θi)

] [
uxi

uyi

]
, gives

[
ẋi

ẏi

]
=

[
uxi

uyi

]
,

which is a simplified kinematic equation but is sufficient for

the purpose of this paper.

In our implementation, a consensus tracking algorithm is

applied on the group level, where the robots share their

understandings of the geometric center of the team and reach

consensus on the time-varying reference trajectory for the

geometric center of the team in a distributed manner. Based

on the group-level consensus tracking algorithm, a local

control law is then applied for robot level control, where

the robots are driven to follow their desired positions. As a

result, information sharing and consensus occur on the group

level rather than on the robot level.

On the group level, let ξr △
= [xr

c , y
r
c , θr

c ] denote the

consensus reference state for the team of robots, where

(xr
c , y

r
c ) and θr

c represent, respectively, the reference position

and orientation for the geometric center of the team. We

consider the case where the group leaders that have access

to ξr and ξ̇r are dynamically changing and the directed inter-

robot interaction topologies are also dynamically changing.

Because ξr and ξ̇r are only available to a dynamically

changing subgroup of the team, each robot maintains a local

variable, ξi = [xci, yci, θci]
T , which denotes the ith robot’s

understanding of ξr. Here ξi is the information state for the

ith robot. We apply the consensus tracking algorithm (7)

to guarantee that ξi(t) tracks ξr(t), i = 1, . . . , n, for all

ξi(0). In our experiments, the algorithm (7) is implemented

in discrete time and
̂̇
ξj is set to be

ξj [k]−ξj [k−1]
T

.

On the robot level, each robot determines its

desired position (xd
i , y

d
i ) as

[
xd

i

yd
i

]
=

[
xci

yci

]
+

[
cos(θci) − sin(θci)
sin(θci) cos(θci)

] [
x̃iF

ỹiF

]
, where [x̃iF , ỹiF ]T represents

the desired deviation vector of the ith robot relative to the

geometric center of the team. A simple local control law of

the form

uxi = ẋd
i − kxi(xi − xd

i )

uyi = ẏd
i − kyi(yi − yd

i ), (10)

where kxi > 0 and kyi > 0, is applied to guarantee that

xi(t) → xd
i (t) and yi(t) → yd

i (t) as t → ∞.

With both the group level control law (7) and the vehicle

level control law (10), if ξi(t) tracks ξr(t), xi(t) tracks

xd
i (t), and yi(t) tracks yd

i (t), i = 1, . . . , n, then the desired

formation shape is maintained and the geometric center of

the formation follows its reference trajectory.

In our experiment, the consensus reference state ξr =
[xr

c , y
r
c , θr

c ] satisfies

ẋr
c = vr

c cos(θr
c), ẏr

c = vr
c sin(θr

c), θ̇r
c = ωr

c ,

where vr
c = 9π

500 m/sec, ωr
c = π

50 rad/sec, (xr
c(0), yr

c (0)) =
(0, 0) m, and θr

c(0) = 0 degree. In addition, we let x̃iF =
ℓi cos(φi) and ỹiF = ℓi sin(φi), where ℓi = 0.6 m and φi =
π− π

4 i rad, i = 1, . . . , 4. Thus the lateral length of the square

formation is 0.6
√

2 m.

Fig. 1 shows a team of four AmigoBots at Utah State

University. The robots can communicate with each other

through ethernet with TCP/IP protocols. The robots rely on

encoder and sonar data for their position and orientation

measurements.

Fig. 1. Multi-robot experimental platform at Utah State University.

We assume that the directed graphs of An+1(t), where

An+1(t) is defined in (7), switch randomly from the set Ḡ =
{G1, . . . ,G6} as shown in Fig. 2 with a switching time around

10 seconds. In Fig. 2, a subscript ℓ denotes a group leader

that has access to ξr and ξ̇r, a subscript f denotes a follower,

and a link from node j to node i denotes that aij > 0,

i, j = 1, . . . , 4, in (7). Note that all Gi, i = 1, . . . , 6, have a

directed spanning tree with node ξr being the root.
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Fig. 2. Directed switching graphs of An+1(t).

Fig. 3(a) shows the trajectories of the four robots at

t ∈ [0, tf ] sec and snapshots at t = 0,
tf

3 ,
2tf

3 sec, where

tf is the ending time of the experiment. Note that the four

robots maintain a tight formation in our experiment even

when both the group leaders and the directed inter-robot

interaction topologies are dynamically changing. Fig. 3(b)

shows the formation maintenance errors, defined as eij =√
(xi − xj)2 + (yi − yj)2 − δij , where δij is the desired

separation distance between robots i and j. That is, eij repre-

sents the difference between the desired and actual separation

distance between the robots. Note that the formation mainte-

nance error are between −6 cm and 5 cm in our experiment.

Fig. 3(c) shows the consensus tracking errors for the geomet-

ric center position, defined as
√

(xr
c − xci)2 + (yr

c − yci)2.

The consensus tracking errors for the geometric center are

below 1.6 cm. Fig. 3(d) shows the consensus tracking errors

for the geometric center orientation, defined as θr
c −θci. The

consensus tracking errors for the geometric center orientation

are between −0.1 degrees and 0.15 degrees.

V. CONCLUSION AND FUTURE WORK

We have proposed and analyzed a consensus tracking

algorithm accounting for bounded control effort and have

shown a convergence condition for a consensus tracking

algorithm when the group leaders are dynamically changing

and the directed inter-vehicle interaction topologies are

switching. We have also applied a consensus tracking

algorithm to a formation control problem on our multi-robot

experimental platform. Experimental results have shown

the effectiveness of the algorithm even in the presence of

dynamically changing group leaders and directed switching

inter-robot interaction topologies. The experimental movies

of the current paper can be found at http://www.

neng.usu.edu/ece/faculty/wren/videos/

Amigobots/multi-leader-experiments.wmv.

APPENDIX

A weighted graph consists of a node set V = {1, . . . , p},

an edge set E ⊆ V × V , and a weighted adjacency matrix

Ap = [aij ] ∈ R
p×p. An edge (i, j) in a weighted directed

graph denotes that vehicle j can obtain information from

vehicle i, but not necessarily vice versa. In contrast, the

pairs of nodes in a weighted undirected graph are unordered,

where an edge (i, j) denotes that vehicles i and j can obtain

information from one another. The weighted adjacency ma-

trix Ap of a weighted directed graph is defined such that aij

is a positive weight if (j, i) ∈ E , while aij = 0 if (j, i) 6∈ E .

The weighted adjacency matrix Ap of a weighted undirected

graph is defined analogously except that aij = aji, ∀i 6= j,

since (j, i) ∈ E implies (i, j) ∈ E . If the weights are not

relevant, then aij is set equal to 1 for all (j, i) ∈ E . In this

paper, self edges are not allowed, i.e. aii = 0.

A directed path is a sequence of edges in a directed graph

of the form (i1, i2), (i2, i3), . . ., where ij ∈ V . An undi-

rected path in an undirected graph is defined analogously. A

directed graph has a directed spanning tree if there exists at

least one node having a directed path to all other nodes. An

undirected graph is connected if there is an undirected path

between every pair of distinct nodes.

Let the matrix Lp = [ℓij ] ∈ R
p×p be defined as ℓii =∑p

j=1,j 6=i aij and ℓij = −aij , i 6= j. The matrix Lp satisfies

the conditions

ℓij ≤ 0, i 6= j,

p∑

j=1

ℓij = 0, i = 1, . . . , p. (11)

For an undirected graph, the Laplacian matrix Lp is sym-

metric positive semi-definite. However, Lp for a directed

graph does not have this property. In both the undirected and

directed cases, 0 is an eigenvalue of Lp with the associated

eigenvector 1p, where 1p is a p×1 column vector of all ones.

In the case of undirected graphs, 0 is a simple eigenvalue

of Lp and all other eigenvalues are positive if and only

if the undirected graph is connected [18]. In the case of

directed graphs, 0 is a simple eigenvalue of Lp and all other

eigenvalues have positive real parts if and only if the directed

graph has a directed spanning tree [13].
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Fig. 3. Consensus tracking experimental results with four mobile robots.
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