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Abstract— The problem of synchronized multiple spacecraft
rotations is revisited in the context of the emergent consensus
building paradigm. We propose control laws so that multiple
spacecraft can maintain given (time-varying) relative attitudes
and angular velocities during formation maneuvers. We also
propose control laws to guarantee that multiple spacecraft
can track a given (time-varying) reference attitude when the
reference attitude is only available to a part of the team
members. The proposed control laws for reference attitude
tracking allow information to flow from any spacecraft to any
other spacecraft to introduce information feedback between
neighbors, which generalizes the leader-follower approach in
the literature. Simulation results on reference attitude tracking
are presented to validate our approach.

I. INTRODUCTION

Multi-vehicle coordination is often tackled by means of a

behavioral approach [1], where the control action for each

vehicle is defined by a weighted average of the control

corresponding to each desired behavior for the vehicle. In [2],

several behavioral strategies are presented for formation

maneuvers of groups of mobile robots, where a bidirectional

ring topology is used to reduce the communication overhead

for the whole system and formation patterns are also defined

to achieve a sequence of maneuvers. As a decentralized

scheme, the behavioral approach can achieve more flexi-

bility, reliability, and robustness than centralized schemes.

For example, one advantage of the behavioral approach is

that explicit information feedback is included through the

information exchange between adjacent neighbors.

Related to the behavioral approach [2] are the consensus-

type problems in cooperative control of mobile autonomous

agents, where each agent in a team updates its information

state based on the information states of its local neighbors

in such a way that the final information state of each agent

converges to a common value (see [3] for a survey).

In some applications, it is desirable that multiple rigid bod-

ies maintain relative or the same attitudes during formation

maneuvers. One example is deep space interferometry, where

a formation of networked spacecraft are required to perform

a sequence of maneuvers while maintaining relative attitudes

accurately. The attitude synchronization problem for multiple

spacecraft have been studied in [4]–[8] via information

exchange with adjacent neighbors, to name a few, which

can be thought of as an extension of the consensus-type

problem from single or double integrator dynamics to rigid

body rotational dynamics.
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The main purpose of this paper is to extend the results

in [4]–[8]. In [6]–[8] multiple spacecraft are restricted to

achieve the same attitude while under certain circumstances

it might be desirable that multiple spacecraft maintain (time-

varying) relative attitudes and angular velocities. Also a

reference attitude for the group is not taken into account

in [6]–[8]. In addition, the convergence results of the control

laws in [8] rely on the assumption that the scalar parts of

the unit quaternions are non-negative for all time. How-

ever, no conditions are given in [8] to guarantee that this

assumption is always valid. In [4], [5], a leader-follower

approach is applied for attitude synchronization among a

group of spacecraft, where each spacecraft tracks its leader’s

attitude and information only flows from leaders to followers.

While the leader-follower approach is easy to understand

and implement, there are limitations. For example, the team

leader is a single point of failure for the whole team. Also,

there is no explicit feedback from the followers to the

leaders: if the follower is perturbed by some disturbances,

the attitude synchronization cannot be maintained.

The contributions of the current paper are twofold. First,

we propose control laws so that multiple spacecraft can

maintain given (time-varying) relative attitudes and angular

velocities during formation maneuvers. Second, we propose

control laws to guarantee that multiple spacecraft can track

a given (time-varying) reference attitude when the reference

attitude is only available to a part of the team members. The

proposed control laws for reference attitude tracking allow

information to flow from any spacecraft to any other space-

craft to introduce information feedback between adjacent

neighbors, which generalizes the leader-follower approach

in the literature (e.g., [4], [5]). It is worthwhile to mention

that although we study the attitude synchronization problem

in the context of spacecraft formation flying, the results

hereafter are valid for attitude synchronization among other

rigid bodies that satisfy the rotational dynamics. Note that

the extension from double integrator dynamics to rigid body

attitude dynamics is nontrivial. It is also worthwhile to

mention that compared to other work in spacecraft attitude

control (e.g., [9]) the novelty of this paper lies in the analysis

of how inter-spacecraft information exchange plays a key

role in attitude synchronization from a consensus-building

point of view.

II. BACKGROUND AND PRELIMINARIES

A. Matrix Theory Notations

Let 1 denote the n × 1 column vector of all ones. Let

In denote the n × n identity matrix. Given a real scalar γ,
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we use γ > 0 to denote that γ is positive. Given an n × n
real matrix P , we use P > 0 to denote that matrix P is

symmetric positive definite. In the following, a lower case

symbol denotes a scalar or vector while an upper case symbol

denotes a matrix.

B. Spacecraft Attitude Dynamics

We use unit quaternions to represent spacecraft attitudes

in this paper. A unit quaternion is defined as q = [q̂T , q̄]T ∈
IR4, where q̂ = a · sin(φ

2 ) ∈ IR3 denotes the vector part

and q̄ = cos(φ
2 ) ∈ IR denotes the scalar part of the unit

quaternion. In this notation, a ∈ IR3 is a unit vector, known

as the Euler axis, and φ ∈ IR is the rotation angle about

a, called the Euler angle. Note that qT q = 1 by definition.

A unit quaternion is not unique since q and −q represent

the same attitude. However, uniqueness can be achieved by

restricting φ to the range 0 ≤ φ ≤ π so that q̄ ≥ 0 [10].

The product of two unit quaternions p and q is defined by

qp =

[
q̄p̂ + p̄q̂ + q̂ × p̂

q̄p̄ − q̂T p̂

]
, which is also a unit quaternion.

The conjugate of the unit quaternion q is defined by q∗ =
[−q̂T , q̄]T . The conjugate of qp is given by (qp)∗ = p∗q∗.

The multiplicative identity quaternion is denoted by qI =
[0, 0, 0, 1]T , where qq∗ = q∗q = qI and qqI = qIq = q [10].

Spacecraft attitude dynamics are given by

˙̂qi = −
1

2
ωi × q̂i +

1

2
qiωi, q̇i = −

1

2
ωi · q̂i

Jiω̇i = −ωi × (Jiωi) + τi, i = 1, · · · , n (1)

where n is the total number of spacecraft in the team,

q̂i ∈ IR3 and qi ∈ IR are vector and scalar parts of the

unit quaternion of the ith spacecraft, ωi ∈ IR3 is the angular

velocity, and Ji ∈ IR3×3 and τi ∈ IR3 are inertia tensor and

control torque [10].

Before moving on, we need the following lemma for our

main results.

Lemma 2.1: If the unit quaternion and angular velocity

pairs (qk, ωk) and (qℓ, ωℓ) satisfy the quaternion kinematics

defined by the first two equations in Eq. (1), then the unit

quaternion and angular velocity pair (q∗ℓ qk, ωk − ωℓ) also

satisfies the quaternion kinematics. In addition, if Vq =

‖q∗ℓ qk − qI‖
2
, then V̇q = (ωk − ωℓ)

T q̂∗ℓ qk, where p̂ denotes

the vector part of quaternion p.

Proof: See [9].

C. Graph Theory

It is natural to model information exchange between

spacecraft by directed/undirected graphs. A digraph (directed

graph) consists of a pair (N , E), where N is a finite

nonempty set of nodes and E ∈ N 2 is a set of ordered

pairs of nodes, called edges. As a comparison, the pairs of

nodes in an undirected graph are unordered. If there is a

directed edge from node vi to node vj , then vi is defined

as the parent node and vj is defined as the child node. A

directed path is a sequence of ordered edges of the form

(vi1 , vi2), (vi2 , vi3), · · · , where vij
∈ N , in a digraph. An

undirected path in an undirected graph is defined accordingly.

In a digraph, a cycle is a path that starts and ends at the

same node. A digraph is called strongly connected if there

is a directed path from every node to every other node.

An undirected graph is called connected if there is a path

between any distinct pair of nodes. A directed tree is a

digraph, where every node has exactly one parent except for

one node, called root, which has no parent, and the root has

a directed path to every other node. Note that in a directed

tree, each edge has a natural orientation away from the root,

and no cycle exists. In the case of undirected graphs, a tree is

a graph in which every pair of nodes is connected by exactly

one path. A directed spanning tree of a digraph is a directed

tree formed by graph edges that connect all the nodes of the

graph. A graph has (or contains) a directed spanning tree if

there exists a directed spanning tree being a subset of the

graph. Note that the condition that a digraph has a directed

spanning tree is equivalent to the case that there exists at least

one node having a directed path to all the other nodes. In

the case of undirected graphs, having an undirected spanning

tree is equivalent to being connected. However, in the case of

directed graphs, having a directed spanning tree is a weaker

condition than being strongly connected.

The adjacency matrix G = [gij ] ∈ IRn×n of a graph is

defined as gii = 0 and gij = 1 if (j, i) ∈ E where i 6= j.

For a weighted graph, G is defined as gii = 0 and gij > 0
if (j, i) ∈ E where i 6= j. Note that the adjacency matrix

of an undirected graph is symmetric since (j, i) ∈ E implies

(i, j) ∈ E . However, the adjacency matrix of a digraph does

not have this property. Let matrix L = [ℓij ] ∈ IRn×n be

defined as ℓii =
∑

j 6=i gij and ℓij = −gij where i 6= j. The

matrix L satisfies the following conditions:

ℓij ≤ 0, i 6= j,

n∑

j=1

ℓij = 0, i = 1, · · · , n. (2)

For an undirected graph, L is called the Laplacian ma-

trix [11], which is symmetric positive semi-definite. How-

ever, L for a digraph does not have this property.

In the case of an undirected information-exchange graph,

L has a simple zero eigenvalue with an associated eigen-

vector 1 and all the other eigenvalues are positive if and

only if the graph is connected [11]. In the case of a directed

information-exchange graph, L has a simple zero eigenvalue

with an associated eigenvector 1 and all the other eigenvalues

have positive real parts if and only if the digraph has a

directed spanning tree [12]. Let x = [x1, · · · , xn]T , where

xj ∈ IR, j = 1, · · · , n, and y = [yT
1 , · · · , yT

n ]T , where

yj ∈ IRm, j = 1, · · · , n. Under the conditions of both cases,

Lx = 0 implies that x = α1 (i.e. x1 = · · · = xn), where

α ∈ IR, and (L ⊗ Im)y = 0, where ⊗ is the Kronecker

product, implies that y = 1 ⊗ β (i.e. y1 = · · · = yn), where

β ∈ IRm.

The digraph of an n×n real matrix S = [sij ], denoted by

Γ(S), is the digraph on n nodes such that there is a directed

edge in Γ(S) from vj to vi if and only if sij 6= 0 (c.f. [13]).
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III. RELATIVE ATTITUDE MAINTENANCE

In this section, we consider the case that multiple space-

craft are required to maintain given relative attitudes and an-

gular velocities during formation maneuvers. Before moving

on, we need the following lemmas.

Lemma 3.1: [8] Let

τi = −kGq̂d∗qi − DGiωi −
n∑

j=1

gij [aij q̂∗j qi + bij(ωi − ωj)],

(3)

where kG ∈ IR ≥ 0, DGi ∈ IR3×3 > 0, qd ∈ IR4

denotes the desired constant attitude for each spacecraft,

aij = aji ∈ IR > 0, bij = bji ∈ IR > 0, gii
△
= 0, and

gij is 1 if spacecraft i receives information from spacecraft

j and 0 otherwise. If V = kG

∑n

i=1

∥∥qd∗qi − qI

∥∥2
+

1
2

∑n
i=1

∑n
j=1 gijaij

∥∥q∗j qi − qI

∥∥2
+ 1

2

∑n
i=1(ω

T
i Jiωi), then

V̇ = −
∑n

i=1(ω
T
i DGiωi)−

1
2

∑n

i=1

∑n

j=1 gijbij ‖ωi − ωj‖
2
.

Lemma 3.2: [8] Let

kGq̂d∗qi +

n∑

j=1

gijaij q̂∗j qi = 0, i = 1, · · · , n. (4)

Then Eq. (4) can be written in matrix form as

(P (t) ⊗ I3) q̂s = 0, (5)

where ⊗ is the Kronecker product, I3 is the 3 × 3 identity

matrix, q̂s ∈ IR3n is a column vector stack composed of

q̂d∗qℓ, ℓ = 1, · · · , n, and P (t) = [pij(t)] ∈ IRn×n is

given by pii(t) = kG +
∑n

j=1 gijaijqd∗qj and pij(t) =

−gijaijqd∗qi.

Lemma 3.3: [14, Corollary 4.1] Let x = 0 be an equilib-

rium for ẋ = f(x), where f : D → IRn is a locally Lipschitz

map from a domain D ∈ IRn into IRn. Let V : D → IR be

a continuously differentiable positive-definite function on a

domain D containing the origin x = 0, such that V̇ (x) ≤ 0
in D. Let S = {x ∈ D|V̇ (x) = 0} and suppose that

no solution can stay identically in S, other than the trivial

solution x(t) ≡ 0. Then, the origin is asymptotically stable.

A. Fixed Relative Attitudes with Zero Final Angular Veloci-

ties

In the case that multiple spacecraft are required to maintain

fixed relative attitudes with zero final angular velocities, we

propose the control torque to the ith spacecraft as

τi = −kG
̂qd∗qiqδi

− DGiωi

−
n∑

j=1

gij [aij
̂q∗δj
q∗j qiqδi

+ bij(ωi − ωj)], (6)

where qδℓ
∈ IR4, ℓ = 1, · · · , n, are constant quaternions

defining the relative attitudes between the ℓth spacecraft and

the desired constant attitude qd, and kG, DGi, aij , bij , gij

are defined as in Eq. (3).

Note that the ith spacecraft defines qδi
. Also note that

product qδj
q∗δi

defines the relative attitudes between the ith

spacecraft and the jth spacecraft. As a result, relative attitudes

between the spacecraft can be achieved by appropriately

choosing qδi
, i = 1, · · · , n.

Theorem 3.1: Assume that the control torque is given

by Eq. (6) and the undirected communication graph is

connected. Let E denote the edge set of unordered pairs of

spacecraft, where an edge (k, ℓ) ∈ E implies that gkℓ =
gℓk = 11. Also let |E| denote the cardinality of E . If

kG > 2
∑n

j=1 gijaij , then qi → qdq∗δi
, i = 1, · · · , n, and

ωi → ωj → 0 asymptotically, ∀i 6= j. If kG = 0 and |E| ≤ n,

then q∗j qi → qδj
q∗δi

and ωi → ωj → 0 asymptotically,

∀i 6= j.

Proof: Consider a Lyapunov function candidate V defined

in Lemma 3.1 with qℓ replaced by qℓqδℓ
, ℓ = 1, . . . , n. The

derivative of V is negative semi-definite from Lemma 3.1.

In Subcase A (kG > 2
∑n

j=1 gijaij), let S = {qd∗qiqδi
−

qI , ωi|V̇ = 0}. Note that V̇ ≡ 0 implies that ωi ≡ 0, i =
1, · · · , n. Because ωi ≡ 0, Eq. (4) with qℓ replaced by qℓqδℓ

holds from Eqs. (1) and (6). From Lemma 3.2, we know that

Eq. (4) with qℓ replaced by qℓqδℓ
can be written in matrix

form as Eq. (5) with qℓ replaced by qℓqδℓ
.

Noting that |qd∗qjqδj
| ≤ 1, j = 1, · · · , n, and kG >

2
∑n

j=1 gijaij , we see that P (t) is strictly diagonally dom-

inant and therefore has full rank, which in turn implies that

q̂s ≡ 0. Thus, we see that ̂qd∗qiqδi
≡ 0, i = 1, · · · , n, which

implies that qd∗qiqδi
− qI ≡ 0 if V̇ ≡ 0.

Therefore, by Lemma 3.3, it follows that qd∗qiqδi
−qI →

0 and ωi → ωj → 0 asymptotically. Equivalently, we know

that qi → qdq∗δi
, i = 1, · · · , n, and ωi → ωj → 0.

In Subcase B (kG = 0), let S = {(qjqδj
)∗qiqδi

−
qI , ωi|V̇ = 0}. Note that V̇ ≡ 0 implies that ωi ≡ 0,

i = 1, · · · , n. Because ωi ≡ 0, we know that

n∑

j=1

gijaij
̂(qjqδj

)∗qiqδi
= 0, i = 1, · · · , n (7)

from Eqs. (1) and (6).

Let ̂(qjqδj
)∗qiqδi

be a variable associated with an edge

(i, j) ∈ E , where i < j. Noting that the undirected com-

munication graph is connected and |E| ≤ n, we know that

|E| = n−1 or |E| = n, which implies that there are n−1 or n
variables associated with the edge set E . Let q̂u be a column

vector stack composed of all ̂(qjqδj
)∗qiqδi

, ∀(i, j) ∈ E ,

where i < j. By noting that ̂(qiqδi
)∗qjqδj

= − ̂(qjqδj
)∗qiqδi

,

Eq. (7) can be rewritten as

(Q ⊗ I3) q̂u = 0, (8)

where Q ∈ IRn×n−1 and q̂u ∈ IR3(n−1) if |E| = n − 1, and

Q ∈ IRn×n and q̂u ∈ IR3n if |E| = n.

Consider a system given by Qx̃ = 0, where x̃ is a column

vector stack composed of xij = xi − xj , ∀(i, j) ∈ E , where

i < j and xk ∈ IR, k = 1, · · · , n. Note that Qx̃ = 0
can be written as Lx = 0, where x = [x1, · · · , xn]T and

L is the graph Laplacian matrix. Noting that the undirected

1Note that (k, ℓ) and (ℓ, k) denote the same element in E in the case of
undirected graphs. In the following we assume that k < ℓ without loss of
generality.
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communication graph is connected, we know that x1 = · · · =
xn, which in turn implies that x̃ = 0. As a result, we know

that Q can be transformed to a row echelon form to show

that Qx̃ = 0 implies that xij = 0, ∀(i, j) ∈ E , where i < j.

The same transformation procedure can be applied to Eq. (8)

to show that (Q⊗ I3)q̂u = 0 implies that ̂(qjqδj
)∗qiqδi

= 0,

∀(i, j) ∈ E , where i < j. Thus, we see that (qjqδj
)∗qiqδi

−
qI ≡ 0, ∀i 6= j, if V̇ ≡ 0.

Therefore, by Lemma 3.3, it follows that (qjqδj
)∗qiqδi

−
qI → 0 and ωi → 0 asymptotically. Equivalently, we know

that q∗j qi → qδj
q∗δi

and ωi → ωj → 0 asymptotically, ∀i 6= j.

B. Time-varying Relative Attitudes and Angular Velocities

In the case that multiple spacecraft are required to maintain

time-varying relative attitudes and angular velocities, we

propose the control torque to the ith spacecraft as

τi = −Jiω̇δi
+ ωi × (Jiωi) − Ji

n∑

j=1

gij{aij
̂(q∗δj
q∗j qiqδi

)

+ bij [(ωi − ωj) + (ωδi
− ωδj

)]}, (9)

where aij , bij , and gij are defined as in Eq. (3), and the

unit quaternion and angular velocity pair (qδi
, ωδi

) satisfies

the quaternion kinematics and defines the desired relative

attitudes and angular velocities between the spacecraft.

Theorem 3.2: With the control torque (9), if the undi-

rected communication graph is connected and |E| ≤ n, where

E is defined as in Theorem 3.1, then q∗j qi → qδj
q∗δi

and

ωi → ωj + ωδj
− ωδi

asymptotically, ∀i 6= j.

Proof: Consider a Lyapunov function candidate: V =
1
2

∑n

i=1

∑n

j=1 gijaij

∥∥q̃∗j q̃i − qI

∥∥2
+ 1

2

∑n

i=1 ω̃T
i ω̃i, where

q̃i = qiqδi
and ω̃i = ωi + ωδi

. Following Lemma 2.1, we

obtain V̇ = − 1
2

∑n

i=1

∑n

j=1 gijbij ‖ω̃i − ω̃j‖
2 ≤ 0.

Let S = {(q̃∗j q̃i−qI , ω̃i|V̇ = 0}. Note that V̇ ≡ 0 implies

that ω̃i ≡ ω̃j , ∀i 6= j, since the undirected communication

graph is connected. Following the proof to Theorem 4.2

in [8], we can show that
∑n

j=1 gijaij
̂̃q∗j q̃i = 0, i = 1, · · · , n.

Then following the proof to Subcase B in Theorem 3.1, we

know that q̃i → q̃j and ω̃i → ω̃j asymptotically, ∀i 6= j.

Therefore, we see that q∗j qi → qδj
q∗δi

and ωi → ωj+ωδj
−ωδi

asymptotically, ∀i 6= j.

Note that in the case of qδi
= qI and ωδi

= 0, the control

torque (9) guarantees that qi → qj and ωi → ωj , ∀i 6= j.

Also note that the convergence results of the control laws

in this paper do not rely on the assumption that the scalar

parts of the unit quaternions are non-negative for all time as

in [8], where no conditions are given to guarantee that this

assumption is always valid.

IV. REFERENCE ATTITUDE TRACKING

In this section, we consider the case that multiple space-

craft are required to track a (time-varying) reference attitude.

Let qd(t) ∈ IR4 and ωd(t) ∈ IR3 denote, respectively, the

(time-varying) reference attitude and angular velocity, which

satisfy rotational dynamics (1). The goal is to guarantee that

qi → qj → qd(t) and ωi → ωj → ωd(t), ∀i 6= j.

A. Time-varying Reference Attitude: Full Access

In the case that the reference attitude and angular velocity

are available to each spacecraft, we propose the control

torque to the ith spacecraft as

τi = ωi × (Jiωi) + Jiω̇
d − kGq̂d∗qi − DGi(ωi − ωd)

−
n∑

j=1

gij [aij q̂∗j qi + bij(ωi − ωj)], (10)

where kG, DGi, aij , bij , gij are defined as in Eq. (3).

Corollary 4.1: Assume that the control torque is given

by Eq. (10) and the undirected communication graph is

connected. Also assume that qd(t) and ωd(t) satisfy the

quaternion kinematics. Let E be defined as in Theorem 3.1.

If kG > 2
∑n

j=1 gijaij , then qi → qj → qd(t) and ωi →

ωj → ωd(t) asymptotically, ∀i 6= j. If kG = 0 and |E| ≤ n,

then qi → qj and ωi → ωj → ωd(t) asymptotically, ∀i 6= j.

Proof: If kG > 2
∑n

j=1 gijaij , we let q̃i = qd∗qi and ω̃i =

ωi − ωd. Note that q̃i and ω̃i also satisfy the quaternion

kinematics. Following the proof to Theorem 3.1 with qi, ωi,

qd, and qδi
replaced, respectively, by q̃i, ω̃i, qI , and qI ,

we see that q̃i → q̃j → qI and ω̃i → ω̃j → 0, that is,

qi → qj → qd(t) and ωi → ωj → ωd(t) asymptotically,

∀i 6= j. If kG = 0 and |E| ≤ n, we see that q̃i → q̃j and

ω̃i → ω̃j → 0, that is, qi → qj and ωi → ωj → ωd(t)
asymptotically, ∀i 6= j.

B. Time-varying Reference Attitude: Partial Access

Note that the control law (10) assumes that the reference

attitude is available to each spacecraft in the team, which

might be restrictive under certain circumstances. In the case

that the reference attitude is only available to a part of the

team members, we propose the control torque to the ith

spacecraft as

τi = ωi × (Jiωi) +
1

|Ni| + 1
Ji(ω̇

d +
∑

j∈Ni

ω̇j)

−
1

|Ni| + 1
{kqip̂πi

+ Kωi[(ωi − ωd) +
∑

j∈Ni

(ωi − ωj)]},

i ∈ L (11)

τi = ωi × (Jiωi) +
1

|Ni|
Ji

∑

j∈Ni

ω̇j

−
1

|Ni|
[kqiq̂πi

+
∑

j∈Ni

Kωi(ωi − ωj)], i /∈ L (12)

where Ni denotes the set of spacecraft whose information

is available to spacecraft i, |Ni| denotes the cardinality of

Ni, L denotes the set of vehicles to which qd, ωd and ω̇d

are available, kqi ∈ IR > 0, Kωi ∈ IR3×3 > 0, pπi
=

[
∏

j∈Ni
(q∗j qi)]q

d∗qi, and qπi
=

∏
j∈Ni

(q∗j qi). Note that i /∈
Ni. Also note that j ∈ Ni does not imply that i ∈ Nj in the

case of directed information exchange.

Theorem 4.2: Let G = [gij ] ∈ IR(n+1)×(n+1), where gij ,

i, j ∈ {1, · · · , n}, is 1 if information flows from spacecraft

j to spacecraft i and 0 otherwise, gi(n+1), i = 1, · · · , n,
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is 1 if qd, ωd and ω̇d are available to spacecraft i and 0

otherwise, and g(n+1)j = 0, j = 1, · · · , n + 1. With the

control torques (11) and (12), if the graph of G has a directed

spanning tree2, then p̂πi
→ 0, i ∈ L, q̂πi

→ 0, i /∈ L, and

ωi → ωd, i = 1, · · · , n, asymptotically.3

Proof: Let qn+1 ≡ qd and ωn+1 ≡ ωd. Also let Ji = Ni if

gi(n+1) = 0 and Ji = Ni ∪ {n + 1} if gi(n+1) = 1. Then

Eqs. (11) and (12) can be rewritten as

τi = ωi × (Jiωi) +
1

|Ji|
Ji

∑

j∈Ji

ω̇j

−
1

|Ji|
[kqiŝπi

+ Kωi

∑

j∈Ji

(ωi − ωj)], i = 1, · · · , n,

(13)

where sπi
=

∏
j∈Ji

(q∗j qi). Combining Eqs. (1) and (13), we

get that

Jiω̇σi
= −kqiŝπi

− Kωiωσi
, i = 1, · · · , n, (14)

where ωσi
=

∑
j∈Ji

(ωi − ωj). Note that the quaternion

and angular velocity pair (sπi
, ωσi

) satisfies the quaternion

kinematics. Then Eq. (14) implies that ŝπi
→ 0 and ωσi

→ 0,

i = 1, · · · , n [9]. Let Lω = [ℓij ] be an (n + 1) × (n + 1)
matrix, where ℓii =

∑n+1
j=1 gij and ℓij = −gij , i 6= j. Note

that Lω satisfies the property (2) and all entries of the n+1th

row of Lω are zero. Also note that ωσi
→ 0, i = 1, · · · , n,

can be written in matrix form as (Lω⊗I3)ω → 0, where ω =
[ωT

1 , · · · , ωT
n+1]

T . Noting that the graph of G has a directed

spanning tree, we know that ωi → ωj , i, j ∈ {1, · · · , n+1},

which in turn implies that ωi → ωd, since ωn+1 ≡ ωd.

Note that in the leader-follower approach (e.g., [4], [5])

information only flows from leaders to followers and each

spacecraft except the team leader has exactly one parent

(e.g., no information loops allowed). As a comparison, the

control laws (11) and (12) allow information to flow from any

spacecraft to any other spacecraft (e.g., followers to leaders),

which introduces information feedback between neighboring

spacecraft and increases redundancy and robustness to the

whole system in the case of failures of certain information-

exchange links.

In the information-exchange topology, if a node k has

exactly one parent, node ℓ, then ŝπk
= q̂∗ℓ qk → 0 implies

that qk → qℓ. That is, spacecraft k approaches the reference

attitude qd
0 if ℓ = n + 1, or spacecraft k and ℓ approach the

same attitude if ℓ 6= n + 1. As a result, edge (ℓ, k) can be

deleted in the information-exchange topology, and nodes k
and ℓ can be combined as one single node whose incoming

and outgoing edges are the union of the incoming and

outgoing edges of nodes k and ℓ. By repeating this procedure,

we can simplify the information-exchange topology. If the

2Define a virtual node n + 1 whose states are qd, ωd and ω̇d. With
G defined in Theorem 4.2, where g(n+1)j = 0, j = 1, · · · , n + 1, the
condition that the graph of G has a directed spanning tree implies that node
n + 1 is the root, which is also equivalent to the condition that node n + 1
has a directed path to all the spacecraft in the team.

3Note that in Theorem 4.2 we consider the general case of directed
information exchange.

information-exchange topology can be simplified to a graph

with only one node, then p̂πi
→ 0, i ∈ L, and q̂πi

→ 0,

i /∈ L, directly imply that qi → qj → qd
0 . The leader-

follower approach for attitude alignment (e.g., [4], [5]) can be

considered a special case of the control laws (11) and (12),

where each spacecraft has at most one neighbor (i.e., its

leader).

As an illustrative example, Fig. 1 shows the information-

exchange topologies between four spacecraft, where node

qd denotes the reference attitude and node Ai, i = 1, · · · , 4,

denote the ith spacecraft. Note that in Fig. 1 a link from

node qd to node Aj denotes that the reference attitude is

available to spacecraft j. In particular, the leader-follower

approach (e.g., [4], [5]) corresponds to Subplots (a) and (b)

in Fig. 1, where each spacecraft has only one parent node.

As a comparison, control laws (11) and (12) correspond

to Subplots (c) and (d) in Fig. 1, which are more general

than Subplots (a) and (b) in the sense that information

can flow between any neighboring spacecraft to introduce

feedback between neighbors and the reference attitude might

be available to one or more spacecraft in the team. Note that

node qd has a directed path to all the spacecraft in the team

in Fig. 1.
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Fig. 1. Information-exchange topologies between four spacecraft where
Subplots (a) and (b) correspond to the leader-follower approach and Subplots
(c) and (d) correspond to control laws (11) and (12).

V. SIMULATION

In this section, we apply the control laws (11) and (12)

to guarantee that four spacecraft follow a time-varying ref-

erence attitude qd(t) and angular velocity ωd(t) that satisfy

the rotational dynamics given by

˙̂q
d

= −
1

2
ωd × q̂d +

1

2
qdωd, q̇

d
= −

1

2
ωd · q̂d

Jdω̇d = −ωd × (Jdωd) + τd.

In the simulation, we let τd = [0, 0, 0]T , Jd =
diag{1, 2, 1}, qd(0) = [0, 0, 0, 1]T , and ωd(0) =
[0.1, 0.3, 0.5]T . We also choose qi(0) and ωi(0), i =
1, · · · , 4, randomly. Also let kqi = 1 and Kωi = 2I3,

i = 1, · · · , 4, in Eqs. (11) and (12). The information flow

between the four spacecraft is given by Subplot (c) in Fig. 1,

where the reference attitude is available to spacecraft 3
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and 4. We also assume that the control torque of each

spacecraft satisfies |τ
(j)
i | ≤ 1 Nm, where j = 1, 2, 3 denotes

each component of the control torque. In the following, a

superscript (j) denotes the jth component of a quaternion or

vector.

Figs. 2 shows the actual attitudes of each spacecraft and

the reference attitude. Fig. 3 shows the actual angular veloc-

ities of each spacecraft and the reference angular velocity.

Note that the actual attitudes and angular velocities of each

spacecraft converge to their reference values. Fig. 4 shows

the control torques of each spacecraft, which satisfy the

saturation constraint.
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Fig. 2. Actual attitudes of each spacecraft and the reference attitude qd.
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Fig. 3. Actual angular velocities of each spacecraft and the reference
angular velocity ωd.

VI. CONCLUSION AND FUTURE WORK

We have revisited the problem of synchronized multiple

spacecraft rotations in the context of consensus building.

Control laws have been proposed for relative attitude main-

tenance between the spacecraft during formation maneuvers.

Reference attitude tracking in the presence of information
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Fig. 4. Spacecraft control torques.

loops or feedback between neighbors has also been stud-

ied. Simulation results on reference attitude tracking for

multiple spacecraft have demonstrated the effectiveness of

our approach. Future work will address attitude alignment

under switching directed information-exchange topologies.

In addition, the extension of the current work to an orbital

environment will also be a topic of future research.
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