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Abstract— This paper extends some existing results in consen-
sus algorithms for double-integrator dynamics. We propose con-
sensus algorithms for double-integrator dynamics in four cases:
(i) with a bounded control input, (ii) without relative velocity
measurement, (iii) without relative velocity measurement in the
presence of a group reference velocity, and (iv) with a bounded
control input and with partial access to a group reference
state. We show that consensus is reached asymptotically for the
first two cases if the undirected interaction graph is connected.
We further show that consensus is reached asymptotically for
the third case if the directed interaction graph has a directed
spanning tree and the gain for velocity matching with the group
reference velocity is above a certain bound. We also show that
consensus is reached asymptotically for the fourth case if and
only if the group reference state flows directly or indirectly to
all of the vehicles in the team.

I. INTRODUCTION

Consensus means that multiple vehicles reach an agree-
ment on a common value. Consensus algorithms have a
historical perspective in [1]–[4], to name a few, and have
recently been studied extensively in the context of cooper-
ative control of multiple autonomous vehicles (see [5] and
references therein). Some results in consensus algorithms can
be understood in the context of connective stability [6].

Consensus algorithms are primarily studied for vehicles
with single-integrator kinematics in the literature. For ve-
hicles with double-integrator dynamics, consensus related
problems have been studied in [7]–[17], to name a few.
In particular, formation keeping strategies are addressed
in [7], [9] for multi-vehicle formation maneuvers under
the assumption of a bidirectional ring interaction graph.
Refs. [12], [13] study flocking algorithms that guarantee
velocity matching, flock centering, and collision avoidance
for a group of vehicles under undirected information ex-
change. In [11] the problem of decentralized stabilization
of vehicle formations is studied under directed information
exchange. In [14], second-order consensus algorithms are
proposed and analyzed under directed information exchange,
where it is shown that both the interaction graph and the
coupling strength of relative velocities between neighboring
vehicles affect the convergence result in the general case
of directed information exchange. Refs. [16], [17] further
extend [14] to incorporate a group reference velocity. A
second-order consensus algorithm is also considered in [15]
under undirected information exchange.

The main purpose of the current paper is to extend some
existing results in consensus algorithms for double-integrator
dynamics in four aspects. First, we propose and analyze a
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consensus algorithm for double-integrator dynamics with a
bounded control input under an undirected interaction graph.
Second, we propose and analyze a consensus algorithm for
double-integrator dynamics without relative velocity mea-
surement under an undirected interaction graph. Third, we
propose and analyze a consensus algorithm for double-
integrator dynamics without relative velocity measurement,
where a group reference velocity is available to each team
member under a directed interaction graph. Finally, we pro-
pose and analyze a consensus algorithm for double-integrator
dynamics with a bounded control input that allows a group
reference velocity to be available to only a subgroup of the
team under a directed interaction graph.

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Notions

A weighted graph consists of a node set V = {1, . . . , p},
an edge set E ∈ V×V , and a weighted adjacency matrix A =
[aij ] ∈ R

p×p. An edge (i, j) in a weighted directed graph
denotes that vehicle j can obtain information from vehicle i,
but not necessarily vice versa. In contrast, the pairs of nodes
in a weighted undirected graph are unordered, where an edge
(i, j) denotes that vehicles i and j can obtain information
from one another. The weighted adjacency matrix A of a
weighted directed graph is defined such that aij is a positive
weight if (j, i) ∈ E , while aij = 0 if (j, i) �∈ E . The weighted
adjacency matrix A of a weighted undirected graph is defined
analogously except that aij = aji, ∀i �= j, since (j, i) ∈ E
implies (i, j) ∈ E . If the weights are not relevant, then aij

is set equal to 1 for all (j, i) ∈ E . In this paper, self edges
are not allowed, i.e. aii = 0.

For an edge (i, j) in a directed graph, i is the parent node
and j is the child node. A directed path is a sequence of
edges in a directed graph of the form (i1, i2), (i2, i3), . . .,
where ij ∈ V . A directed tree is a directed graph, where
every node has exactly one parent except for one node, called
the root, which has no parent, and the root has a directed path
to every other node. A directed spanning tree of a directed
graph is a directed tree that contains all nodes of the directed
graph. A directed graph has or contains a directed spanning
tree if there exists a directed spanning tree as a subset of the
directed graph, that is, there exists at least one node having
a directed path to all of the other nodes.

Let the matrix L = [�ij ] ∈ R
p×p be defined as

�ii =

p
∑

j=1,j �=i

aij , �ij = −aij , i �= j. (1)

The matrix L satisfies the conditions

�ij ≤ 0, i �= j,

p
∑

j=1

�ij = 0, i = 1, . . . , p. (2)
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For an undirected graph, the Laplacian matrix L is symmetric
positive semi-definite. However, L for a directed graph does
not have this property. In both the undirected and directed
cases, 0 is an eigenvalue of L with the associated eigenvector
1p, where 1p is a p × 1 column vector of all ones. In the
case of undirected graphs, 0 is a simple eigenvalue of L and
all of the other eigenvalues are positive if and only if the
undirected graph is connected [18]. In the case of directed
graphs, 0 is a simple eigenvalue of L and all of the other
eigenvalues have positive real parts if and only if the directed
graph contains a directed spanning tree [19].

Given a matrix S = [sij ] ∈ R
p×p, the directed graph of

S, denoted by Γ(S), is the directed graph on p nodes i,
i ∈ {1, 2, . . . , p}, such that there is an edge in Γ(S) from
node j to node i if and only if sij �= 0 (cf. [20]). Again, we
assume that there is no self edge (i, i).

B. Existing Consensus Algorithms for Double-integrator Dy-
namics

Consider vehicles with double-integrator dynamics given
by

ṙi = vi, v̇i = ui, i ∈ In, (3)

where ri ∈ R
m and vi ∈ R

m are, respectively, the position
and velocity of the ith vehicle, ui ∈ R

m is the control input,

and In
�
= {1, . . . , n}.

A consensus algorithm for (3) is proposed in [14] as

ui = −
n

∑

j=1

aij [(ri − rj) + γ(vi − vj)], i ∈ In, (4)

where aij is the (i, j)th entry of the weighted adjacency
matrix A characterizing the interaction graph for ri and vi,
and γ is a positive gain.

In the presence of a group reference velocity vd ∈ R
m, a

consensus algorithm for (3) is proposed in [16] as

ui = v̇d−α(vi−vd)−
n

∑

j=1

aij [(ri−rj)+γ(vi−vj)], i ∈ In,

(5)
where aij is defined as in (4), and α and γ are positive gains.

Consensus is reached for (4) if for all ri(0) and vi(0),
ri(t) → rj(t) and vi(t) → vj(t) asymptotically as t →
∞. Consensus is reached for (5) if for all ri(0) and vi(0),
ri(t) → rj(t) and vi(t) → vd(t) asymptotically as t→ ∞.

III. CONSENSUS WITH A BOUNDED CONTROL
INPUT

Note that (4) does not explicitly take into account actuator
saturation. We propose a consensus algorithm for (3) with a
bounded control input as

ui = −
n

∑

j=1

(aij tanh[Kr(ri − rj)] + bij tanh[Kv(vi − vj)]) ,

i ∈ In, (6)

where Kr ∈ R
m×m and Kv ∈ R

m×m are positive-
definite diagonal matrices, aij and bij are, respectively, the
(i, j)th entry of the weighted adjacency matrix A and B

characterizing, respectively, the interaction graphs for ri
and vi, and tanh(·) is defined component-wise. That is,
tanh([x1, . . . , xm]T ) = [tanh(x1), . . . , tanh(xm)]T , where
xi ∈ R. Note that A and B can be chosen differently. Also
note that with (6) ui is bounded because tanh(·) is bounded.

Theorem 3.1: With (6), ri(t) → rj(t) and vi(t) → vj(t)
asymptotically as t→ ∞ if the graphs of A and B are both
undirected connected.
Proof: Note that with (6), (3) can be written as

ṙij = vi − vj

v̇i = −
n

∑

j=1

(aij tanh(Krrij) + bij tanh[Kv(vi − vj)]) ,

(7)

where rij
�
= ri−rj . Consider a Lyapunov function candidate

for (7) as

V =
1

2

n
∑

i=1

n
∑

j=1

aij1T
mK

−1
r log(cosh(Krrij)) +

1

2

n
∑

i=1

vT
i vi,

(8)
where cosh(·) and log(·) are defined component-wise. Note
that V is positive definite and radially unbounded with
respect to rij , where (j, i) ∈ E , and vi if the graph of A
is undirected connected. Differentiating V , gives

V̇ =
1

2

n
∑

i=1

n
∑

j=1

aij(vi − vj)
T tanh[Kr(ri − rj)] +

n
∑

i=1

vT
i ui

=
1

2

n
∑

i=1

vT
i





n
∑

j=1

aij tanh[Kr(ri − rj)]





− 1

2

n
∑

i=1

n
∑

j=1

aijv
T
j tanh[Kr(ri − rj)] +

n
∑

i=1

vT
i ui

=
1

2

n
∑

i=1

vT
i





n
∑

j=1

aij tanh[Kr(ri − rj)]





+
1

2

n
∑

j=1

n
∑

i=1

ajiv
T
j tanh[Kr(rj − ri)] +

n
∑

i=1

vT
i ui

=
1

2

n
∑

i=1

vT
i





n
∑

j=1

aij tanh[Kr(ri − rj)]





+
1

2

n
∑

j=1

vT
j

(

n
∑

i=1

aji tanh[Kr(rj − ri)]

)

+

n
∑

i=1

vT
i ui

=
n

∑

i=1

vT
i





n
∑

j=1

aij tanh[Kr(ri − rj)]



 +
n

∑

i=1

vT
i ui

= −
n

∑

i=1

vT
i





n
∑

j=1

bij tanh[Kv(vi − vj)]





= −1

2

n
∑

i=1

n
∑

j=1

bij(vi − vj)
T tanh[Kv(vi − vj)] ≤ 0,

where we have used the fact that d log(cosh(x))
dt = ẋ tanh(x)

with x ∈ R to obtain the first equality, have used the fact that
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aij = aji and tanh[Kr(rj − ri)] = − tanh[Kr(ri − rj)] and
have switched the order of the summation signs to obtain
the third equality, have replaced ui by (6) to obtain the sixth
equality, have used the fact that bij = bji to obtain the last
equality, and have used the fact that x and tanh(Kx) have
the same sign when x is a vector and K is a positive-definite
diagonal matrix to obtain the last inequality.

Let S = {rij , vi|V̇ = 0}. Note that V̇ ≡ 0 implies that
vi ≡ vj when the graph of B is undirected connected, which
in turn implies that v̇i ≡ v̇j . Therefore, it follows that v̇ ∈
span(1n ⊗ η), where v = [vT

1 , . . . , v
T
n ]T and η ∈ R

m, when
the graph of B is undirected connected. Because vi ≡ vj , it
follows from (3) and (6) that

v̇i = −
n

∑

j=1

aij tanh[Kr(ri − rj)], i ∈ In. (9)

Note that (1n ⊗ η)T v̇ ≡ 0 from (9), where we have
used the fact that aij = aji and tanh[Kr(ri − rj)] =
− tanh[Kr(rj − ri)]. Thus it follows that v̇ is orthogonal
to 1n ⊗ η. Therefore, we conclude that v̇ ≡ 0, which in turn
implies that −

∑n
j=1 aij tanh[Kr(ri−rj)] ≡ 0 from (9). Let

ri = [ri(1), . . . , ri(m)]
T and Kr = diag{kr(1), . . . , kr(m)}.

Noting that tanh(x + y) = tanh(x)+tanh(y)
1+tanh(x) tanh(y) , where x, y ∈

R, it follows that −
∑n

j=1 aij tanh[Kr(ri − rj)] ≡ 0 is

equivalent to −
∑n

j=1 aij
tanh(kr(κ)ri(κ))−tanh(kr(κ)rj(κ))

1−tanh(kr(κ)ri(κ)) tanh(kr(κ)rj(κ))
≡

0, i = 1, . . . , n, κ = 1, . . . ,m, which can be writ-
ten as −L(κ) tanh(r̂(κ)) ≡ 0, κ = 1, . . . ,m, where
r̂(κ) = [kr(κ)r1(κ), . . . , kr(κ)rn(κ)]

T and L(κ) = [�ij(κ)] is
defined as �ij(κ) = − aij

1−tanh(kr(κ)ri(κ)) tanh(kr(κ)rj(κ))
and

�ii(κ) =
∑

j �=i
aij

1−tanh(kr(κ)ri(κ)) tanh(kr(κ)rj(κ))
. Noting that

1 − tanh(kr(κ)ri(κ)) tanh(kr(κ)rj(κ)) > 0, it follows that
L(κ) satisfies the property (2) with p = n. When the graph of
A is undirected connected, it follows that tanh(kr(κ)ri(κ)) ≡
tanh(kr(κ)rj(κ)), which implies that ri ≡ rj (i.e. rij ≡ 0),
∀i �= j. By LaSalle’s invariance principle, it follows that
ri(t) → rj(t) and vi(t) → vj(t), ∀i �= j, asymptotically as
t→ ∞.

Note that (6) guarantees that ri(t) → rj(t) and vi(t) →
vj(t) asymptotically as t → ∞. When it is desirable that
ri(t) → rj(t) and vi(t) → 0 asymptotically as t → ∞,
we propose a consensus algorithm for (3) with a bounded
control input as

ui = −
n

∑

j=1

aij tanh[Kr(ri − rj)] − tanh(Kvivi),

i ∈ In, (10)

where Kr ∈ R
m×m and Kvi ∈ R

m×m are positive-definite
diagonal matrices.

Theorem 3.2: With (10), ri(t) → rj(t) and vi(t) → 0
asymptotically as t → ∞ if the graph of A is undirected
connected.
Proof: Following the proof to Theorem 3.1, consider a
Lyapunov function candidate given by (8). Differentiating
V , gives

V̇ = −
n

∑

i=1

vT
i tanh(Kvivi) ≤ 0,

Let S = {rij , vi|V̇ = 0}. Note that V̇ ≡ 0 implies that
vi ≡ 0, which in turn implies that v̇i ≡ 0. It thus follows
that −

∑n
j=1 aij tanh[Kr(ri − rj)] ≡ 0. Therefore, a similar

argument to that in the proof of Theorem 3.1 shows that
ri(t) → rj(t) and vi(t) → 0, ∀i �= j, asymptotically as
t→ ∞ if the graph of A is undirected connected.

Note that the results in [7] are restricted to a bidirectional
ring graph for convergence analysis. The algorithms (6)
and (10) guarantee consensus convergence under any undi-
rected connected interaction graph.

IV. CONSENSUS WITHOUT RELATIVE VELOCITY
MEASUREMENT

Note that (4) requires measurement of relative velocities
between neighboring vehicles. Motivated by [7], [21], we
propose a consensus algorithm without relative velocity
measurement based on a passivity approach as

˙̂xi = Γx̂i +

n
∑

j=1

aij(ri − rj)

yi = PΓx̂i + P

n
∑

j=1

aij(ri − rj)

ui = −
n

∑

j=1

aij(ri − rj) − yi, i ∈ In, (11)

where Γ ∈ R
m×m is Hurwitz, aij is defined as in (6),

P ∈ R
m×m is a symmetric positive-definite matrix and is the

solution to the Lyapunov equation ΓTP + PΓ = −Q with
Q ∈ R

m×m being a symmetric positive-definite matrix. The
algorithm (11) extends the results in [7] to consensus con-
vergence under any undirected connected interaction graph.

Theorem 4.1: With (11), ri(t) → rj(t) and vi(t) → vj(t)
asymptotically as t → ∞ if the graph of A is undirected
connected.
Proof: Let r = [rT

1 , . . . , r
T
n ]T , v = [vT

1 , . . . , v
T
n ]T , y =

[yT
1 , . . . , y

T
n ]T , x̂ = [x̂T

1 , . . . , x̂
T
n ]T , and u = [uT

1 , . . . , u
T
n ]T .

With (11), (3) can be written as

˙̂x = (In ⊗ Γ)x̂+ (L ⊗ Im)r (12)

y = (In ⊗ P ) ˙̂x (13)

u = −(L⊗ Im)r − y, (14)

where ⊗ denotes the Kronecker product, In is the n × n
identity matrix and L is defined in (1) with p = n.

Note that with (11), (3) can be written as a system with

states rij , vij , and ˙̂xi, where rij
�
= ri−rj and vij

�
= vi−vj .

Consider a Lyapunov function candidate

V =
1

2
rT (L⊗ Im)2r +

1

2
vT (L⊗ Im)v +

1

2
˙̂xT (In ⊗ P ) ˙̂x.

Note that from the property of the Laplacian matrix L, V is
positive definite and radially unbounded with respect to rij ,
vij , and ˙̂xi when the graph of A is undirected connected.
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Differentiating V , gives

V̇ = vT (L⊗ Im)2r + vT (L⊗ Im)u

+
1

2
¨̂xT (In ⊗ P ) ˙̂x+

1

2
˙̂xT (In ⊗ P )¨̂x

= vT [(L⊗ Im)2r + (L⊗ Im)u]

+
1

2
˙̂xT (In ⊗ ΓT )(In ⊗ P ) ˙̂x+

1

2
vT (L⊗ Im)(In ⊗ P ) ˙̂x

+
1

2
˙̂xT (In ⊗ P )(In ⊗ Γ) ˙̂x+

1

2
˙̂xT (In ⊗ P )(L ⊗ Im)v

= vT [(L⊗ Im)2r + (L⊗ Im)u]

− 1

2
˙̂xT (In ⊗Q) ˙̂x+ vT (L ⊗ Im)(In ⊗ P ) ˙̂x

= −1

2
˙̂xT (In ⊗Q) ˙̂x ≤ 0,

where we have used (12)-(13), L = LT when the graph of
A is undirected, and properties of the Kronecker product. In
particular, (E ⊗ F )T = ET ⊗ FT and (E ⊗ F )(G ⊗H) =
EF ⊗GH .

Let S = {rij , vij , ˙̂xi|V̇ = 0}. Note that V̇ ≡ 0 implies
that ˙̂x ≡ 0, which in turn implies that ¨̂x ≡ 0, (L ⊗ Im)v ≡
0 by differentiating (12), and y ≡ 0 from (13). Because
(L⊗Im)v ≡ 0, it follows that (L⊗Im)v̇ ≡ 0, which implies
that v̇ ∈ span(1n ⊗ η), where η ∈ R

m, when the graph of A
is undirected connected. From (3) and (14), it follows that

v̇ ≡ −(L⊗ Im)r. (15)

Note that (1n ⊗ η)T v̇ ≡ −(1n ⊗ η)T (L⊗ Im)r ≡ −(1T
nL⊗

ηT Im) ≡ 0 because 1T
nL = 0 when the graph of A is undi-

rected. Thus v̇ is orthogonal to 1n⊗η. We then conclude that
v̇ ≡ 0, which in turn implies that (L⊗ Im)r ≡ 0 from (15).
If the graph of A is undirected connected, (L ⊗ Im)r ≡ 0
implies that ri ≡ rj , ∀i �= j. By LaSalle’s invariance
principle, it follows that ri(t) → rj(t) and vi(t) → vj(t),
∀i �= j, as t→ ∞.

When it is desirable that ri(t) → rj(t) and vi(t) → 0
asymptotically as t→ ∞, we propose an algorithm as

˙̂xi = Γxi + ri

yi = PΓx̂i + Pri

ui = −
n

∑

j=1

aij(ri − rj) − yi, i ∈ In, (16)

where Γ, P , and aij are defined as in (11).
Theorem 4.2: With (16), ri(t) → rj(t) and vi(t) → 0

asymptotically as t → ∞ if the graph of A is undirected
connected.
Proof: With (16), (3) can be written as

˙̂x = (In ⊗ Γ)x̂+ r (17)

y = (In ⊗ P ) ˙̂x (18)

u = −(L⊗ Im)r − y. (19)

Consider a Lyapunov function candidate

V =
1

2
rT (L⊗ Im)r +

1

2
vT v +

1

2
˙̂xT (In ⊗ P ) ˙̂x,

which is positive definite and radially unbounded with re-

spect to rij
�
= ri − rj , vi, and ˙̂xi. Following the proof of

Theorem 4.1, the derivative of V is given as

V̇ = vT [(L⊗ Im)r + u] − 1

2
˙̂xT (In ×Q) ˙̂x+ vT (In ⊗ P ) ˙̂x

= −1

2
˙̂xT (In ×Q) ˙̂x ≤ 0.

Let S = {rij , vi, x̂i|V̇ = 0}. Note that V̇ ≡ 0 implies
that ˙̂x ≡ 0, which in turn implies that ¨̂x ≡ 0, v ≡ 0 by
differentiating (17), and y ≡ 0 from (18). Because v ≡ 0,
it follows that v̇ ≡ 0, which implies that −(L ⊗ Im)r ≡ 0
from (3) and (19). If the graph of A is undirected connected,
(L ⊗ Im)r ≡ 0 implies that ri ≡ rj , ∀i �= j. By LaSalle’s
invariance principle, it follows that ri(t) → rj(t) and
vi(t) → 0, ∀i �= j, as t→ ∞.

V. CONSENSUS WITHOUT RELATIVE VELOCITY
MEASUREMENT IN THE PRESENCE OF A GROUP

REFERENCE VELOCITY

Note that (5) introduces a group reference velocity but
requires measurement of relative velocities between neigh-
boring vehicles. Next, we consider a consensus algorithm
removing this requirement as

ui = v̇d − α(vi − vd) −
n

∑

j=1

aij(ri − rj), i ∈ In, (20)

where α is positive gain, aij is defined as in (6), and vd ∈
R

m denotes the (time-varying) group reference velocity.
The following theorem considers the general case of

directed information exchange among vehicles, which gen-
eralizes existing results in [15], [16].

Theorem 5.1: Let µi denotes the ith eigenvalue of −L
with L given by (1), where p = n, and Re(·) and Im(·)
represent, respectively, the real and imaginary parts of a
number. With (20), ri(t) → rj(t) and vi(t) → vd(t)
asymptotically as t → ∞ if the directed graph of A has
a directed spanning tree and

α > ᾱ, (21)

where ᾱ
�
= 0 if all of the n− 1 nonzero eigenvalues of −L

are negative and

ᾱ
�
= max

∀Re(µi)<0 and Im(µi)>0
|µi|

√

2

−Re(µi)

otherwise.
Proof: Let r = [rT

1 , . . . , r
T
n ]T , r̃ = r − 1n ⊗

∫ t

0 v
d(τ)dτ ,

v = [vT
1 , . . . , v

T
n ]T , and ṽ = v−1n ⊗ vd. With (20), (3) can

be written in matrix form as
[

˙̃r
˙̃v

]

= (Γ ⊗ Im)

[

r̃
ṽ

]

,

where Γ
�
=

[

0 In
−L −αIn

]

with L given by (1), where p = n.

Noting that L1n = 0, it follows that [1T
n ,0

T
n ]T , where 0n

denotes the n×1 column vector of all zeros, is an eigenvector
for Γ associated with an eigenvalue 0. If Γ has a simple zero
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eigenvalue and all of the other eigenvalues have negative real

parts, then

[

r̃(t)
ṽ(t)

]

→ span

([

1n

0n

]

⊗ η

)

asymptotically as

t→ ∞, where η is an m× 1 vector, which is equivalent to
r̃i(t) → r̃j(t) and ṽi → 0 asymptotically as t→ ∞.

Next, we show that if the directed graph of A has a
directed spanning tree and the inequality (21) is satisfied,
then Γ has a simple zero eigenvalue and all of the other
eigenvalues have negative real parts.

Let λ be an eigenvalue of Γ and s = [pT , qT ]T be its
associated eigenvector, where p and q are n × 1 column
vectors. Note that

Γs = λs

⇐⇒
[

0 In
−L −αIn

] [

p
q

]

= λ

[

p
q

]

⇐⇒q = λp

− Lp− αq = λq

⇐⇒− Lp = (λ2 + αλ)p,

which implies that λ2 + αλ is an eigenvalue of −L with

an associated eigenvector p. Letting µ
�
= λ2 + αλ, gives

λ2 + αλ − µ = 0, which implies that given each µ, there

are two roots for λ, denoted by λ± =
−α±

√
α2+4µ

2 . As a
result, each eigenvalue of −L, denoted by µi, i = 1, . . . , n,
corresponds to two eigenvalues of Γ, denoted by λ2i−1 and
λ2i.

If the directed graph of A has a directed spanning tree,
then L has a simple zero eigenvalue and all of the other
eigenvalues have positive real parts, which implies that −L
has a simple zero eigenvalue and all of the other eigenvalues
have negative real parts. Without loss of generality, let
µ1 = 0 and Re(µi) < 0, i = 2, . . . , n. Then it follows
that λ1 = 0 and λ2 = −α. Note that if µi < 0, then

Re(
−α±

√
α2+4µi

2 ) < 0 for any α > 0. It is left to show
that the inequality (21) guarantees that all of the eigenvalues
of Γ corresponding to µi that satisfies Re(µi) < 0 and
Im(µi) �= 0 have negative real parts. Motivated by [10],
[14], we use Fig. 1 to show the notations used in the proof.
We only need to consider µi that satisfies Re(µi) < 0 and
Im(µi) > 0 since any µi that satisfies Re(µi) < 0 and
Im(µi) < 0 is a complex conjugate of some µi that satisfies
Re(µi) < 0 and Im(µi) > 0. Consider the triangle formed by
vectors α2, 4µi, and α2 +4µi. According to law of cosines,
∣

∣α2 + 4µi

∣

∣

2
= (α2)2 + (4 |µi|)2 − 8α2 |µi| cos(φi), where

cos(φi) = −Re(µi)
|µi| . Note that if α > |µi|

√

2
−Reµi

, then
∣

∣α2 + 4µi

∣

∣

2
< α4, which implies that

∣

∣

∣

√

α2 + 4µi

∣

∣

∣ < α.

Therefore, it follows that
∣

∣

∣Re(
√

α2 + 4µi)
∣

∣

∣ < α, which in

turn implies that Re(λ2i−1,2i) = Re(
−α±

√
α2+4µi

2 ) < 0.
Combing the above arguments, it follows that if the

directed graph of A has a directed spanning tree and the
inequality (21) is valid, then r̃i(t) → r̃j(t) and ṽi(t) → 0
asymptotically as t→ ∞, which in turn implies that ri(t) →
rj(t) and vi(t) → vd(t) asymptotically as t→ ∞.

Corollary 5.2: With (20), ri(t) → rj(t) and vi(t) →

Re

Im

Fig. 1. Graphical view of notations used in the proof.

vd(t) asymptotically as t → ∞ if the graph of A is
undirected connected.

VI. CONSENSUS WITH A BOUNDED CONTROL
INPUT AND WITH PARTIAL ACCESS TO A GROUP

REFERENCE VELOCITY

Note that (5) and (20) require that the group reference
velocity be available to each vehicle in the team. Next, we
propose a consensus algorithm with a bounded control input
that allows the group reference position rd, velocity vd, and
acceleration v̇d to be available to only a subgroup of the
team as

ui =
1

κi
(

n
∑

j=1

aij v̇j + ai(n+1)v̇
d)

− 1

κi
Kri tanh[

n
∑

j=1

aij(ri − rj) + ai(n+1)(ri − rd)]

− 1

κi
Kvi tanh[

n
∑

j=1

aij(vi − vj) + ai(n+1)(vi − vd)],

i ∈ In, (22)

where aij , i, j ∈ In, is the (i, j)th entry of the weighted
adjacency matrix A, ai(n+1) = 1, i ∈ In, if vehicle i has

access to rd, vd, and v̇d, κi
�
=

∑n+1
j=1 aij , v̇d is bounded, and

Kri and Kvi are m×m positive-definite diagonal matrices.
Note that each control input not only depends on its local
neighbors’ positions and velocities but also depends on their
accelerations. When the algorithm (22) is implemented, the
term v̇j can be approximated by numerical differentiation.
The algorithm (22) extends the result in [17] to explicitly
account for actuator saturation.

Theorem 6.1: Let An+1 = [aij ] ∈ R
(n+1)×(n+1), where

aij , i ∈ In, j ∈ In+1, is defined in (22) and a(n+1)j = 0,
j ∈ In+1. With (22), there exists a unique bounded solution
for ui and ri(t) → rd(t) and vi(t) → vd(t) asymptotically
as t → ∞ if and only if the directed graph of An+1 has a
directed spanning tree.
Proof: We first show that (22) has a unique solution if and
only if the directed graph of An+1 has a directed spanning
tree and the solution is bounded.

Noting that all entries of the last row of An+1 are zero,
it follows that κi =

∑n+1
j=1 aij �= 0, i = 1, . . . , n, if

the directed graph of An+1 has a directed spanning tree.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI19.5

2299



Define W = [wij ] ∈ R
n×n as wij = −aij , i �= j, and

wii =
∑n+1

j=1,j �=i aij . Also define b = [b1, . . . , bn]T ∈ R
n×1

with bi = −ai(n+1), and d = [dT
1 , . . . , d

T
n ]T ∈ R

mn×1

with di = −Kri tanh[
∑n

j=1 aij(ri − rj) + ai(n+1)(ri −
rd)] − Kvi tanh[

∑n
j=1 aij(vi − vj) + ai(n+1)(vi − vd)].

With (22), (3) can be written as (W⊗Im)u = (−b⊗Im)v̇d+
d, where u = [uT

1 , . . . , u
T
n ]T . Note that b, v̇d, and d are

all bounded. If W has full rank, then it is straightforward
to show that there is a unique solution for u and the

solution is bounded. Let Ln+1 =

[

W |b
01×n|0

]

∈ R
(n+1)×(n+1),

which satisfies the property (2) with p = n + 1. Note that
Rank(Ln+1) = Rank(W |b) and W1n + b = 0n (i.e. b is
a linear combination of the n columns of W ). It follows
that Rank(W ) = Rank(W |b) = Rank(Ln+1). Also note that
Rank(Ln+1) = n if and only if the directed graph of An+1

has a directed spanning tree. Therefore, Rank(W ) = n (i.e.
full rank) if and only if the directed graph of An+1 has a
directed spanning tree. This proves the first argument of the
theorem.

Note that with (22), (3) can be written as

ëi = −Kri tanh(ei) −Kvi tanh(ėi), (23)

where ei =
∑n

j=1 aij(ri − rj) + ai(n+1)(ri − rd).
Consider a Lyapunov function candidate

V =

n
∑

i=1

[1T
mKri log(cosh(ei)) +

1

2
ėT

i ėi],

which is positive definite and radially unbounded with re-
spect to ei and ėi.

Differentiating V , gives

V̇ =

n
∑

i=1

(ėT
i Kri tanh(ei)

+ ėT
i [−Kri tanh(ei) −Kvi tanh(ėi)])

= −
n

∑

i=1

ėT
i Kvi tanh(ėi) ≤ 0.

Let S = {ei, ėi|V̇ = 0}. Note that V̇ ≡ 0 implies that
ėi ≡ 0, which in turn implies that ëi ≡ 0. Because ėi ≡ 0
and ëi ≡ 0, it follows that ei ≡ 0 from (23). By LaSalle’s
invariance principle, it follows that ei(t) → 0 and ėi(t) → 0
asymptotically as t→ ∞. Note that e = (W ⊗ Im)r + (b⊗
Im)rd, where e = [eT

1 , . . . , e
T
n ]T and r = [rT

1 , . . . , r
T
n ]T .

Because W1 + b = 0n and Rank(W ) = n (i.e. W−1b =
−1n) if and only if the directed graph of An+1 has a directed
spanning tree, it follows that e(t) → 0 asymptotically as
t → ∞ is equivalent to ri(t) → rd(t) asymptotically as
t → ∞ under the same assumption. Similarly, it follows
that ė(t) → 0 asymptotically as t → ∞ is equivalent to
vi(t) → vd(t) asymptotically as t → ∞ under the same
assumption.

VII. CONCLUSION AND FUTURE WORK

We have extended some existing consensus algorithms for
double-integrator dynamics to account for actuator satura-
tion, remove the requirement for relative velocity measure-
ment, introduce a group reference velocity to each vehicle

without relative velocity measurement, and incorporate a
group reference state to a subgroup of the team and account
for actuator saturation. We have shown convergence condi-
tions for consensus in each case. Future work will consider
the effect of time delay in those algorithms.
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