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Abstract— In this paper, we study the consensus problem
in multi-vehicle systems where the information states of each
vehicle approach a common time-varying reference state. We
first analyze consensus algorithms with a constant reference
state using graph theoretical tools. We then propose consen-
sus algorithms with a time-varying reference state and show
necessary and sufficient conditions under which consensus is
reached on the time-varying reference state when only a portion
of the vehicles (e.g., the unique team leader) have access to
the reference state and those vehicles might not have directed
paths to the other vehicles in the team. The reference state may
be a time-varying exogenous signal or evolves according to a
nonlinear model. These consensus algorithms are also extended
to achieve relative state deviations between the vehicles.

I. INTRODUCTION

Future autonomous vehicles will have the capability to

improve significantly the operational effectiveness of both

civilian and military applications. While autonomous ve-

hicles performing solo missions will yield some benefits,

greater benefits will come from having teams of autonomous

vehicles operating in a coordinated fashion.

Consensus problems have recently received significant

attention in the area of cooperative control of multi-vehicle

systems due to their potential applications for designing

distributed multi-vehicle coordination strategies (see [1] for

an overview).

For most consensus algorithms studied in the literature, the

final consensus value to be reached is inherently constant.

For example, in [2]–[5], the final consensus value, which

depends on both the information-exchange topologies and the

weights, is a weighted average of the vehicles’ initial states.

In the leader following case of [2], the final consensus value

is the constant state of the group leader, where convergence

analysis is given under undirected switching information-

exchange topologies. In [6], [7], a constant setpoint is in-

troduced to the consensus algorithm in the case of a directed

fixed information-exchange topology. However, a constant

final consensus value might not be appropriate in the case

that the information states of each vehicle are dynamically

evolving in time according to some inherent dynamics, as

happens in some formation control problems where the

formation is moving through space. As a result, it is relevant

to study consensus problems where the final consensus value

evolves with time or as a function of vehicle/environmental

dynamics or sensor measurement, called the reference state

hereafter. In practice, it is also possible that only a portion
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of the vehicles in the team have access to the time-varying

reference state and those vehicles might not have directed

paths to the other vehicles in the team.

The main objective of this paper is to propose and analyze

consensus algorithms so that each vehicle in the team reaches

consensus on a time-varying reference state that evolves

with time or according to certain nonlinear dynamics in the

case that only a portion of the vehicles have access to the

reference state and those vehicles might not have directed

paths to the other vehicles in the team. All of the analysis

in this paper is based on directed information exchange. We

first analyze consensus algorithms with a constant reference

state using graph theoretical tools and show that the existing

algorithms for a constant reference state cannot guarantee

consensus on a time-varying reference state. We then propose

algorithms to deal with the time-varying case and show

conditions under which consensus is reached on the time-

varying reference state. Unlike the leader-follower topology

where information only flows from leaders to followers

(e.g., [8]), the proposed algorithms allow information to flow

from followers to leaders to introduce feedback. We show

that with the time-varying reference state complexity results

from the information feedback loops. Those results are also

extended to achieve relative state deviations between the

vehicles. It is worthwhile to mention that the extension of

consensus algorithms from a constant reference to a time-

varying reference is nontrivial. It is not straightforward how

the internal model principle of control can be directly applied

to consensus seeking with a time-varying reference state for

multiple vehicle systems involving only local information

exchange.

II. BACKGROUND AND PRELIMINARIES

It is natural to model information exchange between vehi-

cles by directed or undirected graphs. A digraph (directed

graph) consists of a pair (N , E), where N is a finite

nonempty set of nodes, and E ∈ N ×N is a set of ordered

pairs of nodes, called edges. An edge (i, j) in a digraph

denotes that vehicle j can obtain information from vehicle i,
but not necessarily vice versa. As a comparison, the pairs of

nodes in an undirected graph are unordered, where an edge

(i, j) denotes that vehicles i and j can obtain information

from one another. Note that an undirected graph can be

considered a special case of a digraph, where an edge (i, j) in

the undirected graph corresponds to edges (i, j) and (j, i) in

the directed graph. If there is a directed edge from node i to

node j, then i is defined as the parent node, and j is defined

as the child node. A directed path is a sequence of ordered
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edges of the form (vi1 , vi2), (vi2 , vi3), · · · , where vij
∈ N ,

in a digraph. An undirected path in an undirected graph is

defined accordingly. In a digraph, a cycle is a path that starts

and ends at the same node. A digraph is called strongly

connected if there is a directed path from every node to every

other nodes. An undirected graph is called connected if there

is a path between any distinct pair of nodes. A directed tree is

a digraph, where every node has exactly one parent except for

one node, called root, which has no parent, and the root has

a directed path to every other node. Note that in a directed

tree, each edge has a natural orientation away from the root,

and no cycle exists. In the case of undirected graphs, a tree is

a graph in which every pair of nodes is connected by exactly

one path. A directed spanning tree of a digraph is a directed

tree formed by graph edges that connect all of the nodes of

the graph. A graph has (or contains) a directed spanning tree

if there exists a directed spanning tree being a subset of the

graph. Note that the condition that a digraph has a directed

spanning tree is equivalent to the case that there exists at least

one node having a directed path to all of the other nodes. In

the case of undirected graphs, having an undirected spanning

tree is equivalent to being connected. However, in the case of

directed graphs, having a directed spanning tree is a weaker

condition than being strongly connected.

The adjacency matrix A = [aij ] ∈ IRn×n of a weighted

digraph is defined as aii = 0 and aij > 0 if (j, i) ∈ E where

i 6= j. The adjacency matrix of a weighted undirected graph

is defined accordingly except that aij = aji, ∀i 6= j, since

(j, i) ∈ E implies (i, j) ∈ E . Let matrix L = [ℓij ] ∈ IRn×n

be defined as ℓii =
∑

j 6=i aij and ℓij = −aij , where i 6= j.

The matrix L satisfies the following conditions:

ℓij ≤ 0, i 6= j
n∑

j=1

ℓij = 0, i = 1, · · · , n. (1)

For an undirected graph, L is called the Laplacian matrix,

which has the property that it is symmetric positive semi-

definite. However, L for a digraph does not have this

property.

Let 1 and 0 denote the n×1 column vector of all ones and

all zeros respectively. Let In denote the n×n identity matrix.

Let Mn(IR) represent the set of all n×n real matrices. Given

a matrix S = [sij ] ∈ Mn(IR), the digraph of S, denoted by

Γ(S), is the digraph on n nodes vi, i ∈ {1, 2, · · · , n}, such

that there is a directed edge in Γ(S) from vj to vi if and

only if sij 6= 0 (c.f. [9]).

III. CONSENSUS WITH A REFERENCE STATE

In this section we investigate consensus algorithms with a

time-varying reference state for vehicles modeled by single-

integrator dynamics. Consider vehicles with dynamics given

by

ξ̇i = ui, i = 1, . . . , n, (2)

where ξi ∈ IRm is the state of the ith vehicle, and ui ∈ IRm is

the control input. A consensus algorithm is proposed in [2],

[3], [10] as

ui = −
n∑

j=1

gijkij(ξi − ξj), i = 1, . . . , n, (3)

where kij > 0, gii
△
= 0, and gij is 1 if information flows

from vehicle j to vehicle i and 0 otherwise, ∀i 6= j.

With the consensus algorithm (3), consensus is reached

among the n vehicles if ξi(t) → ξj(t), ∀i 6= j, as t →
∞. The final consensus value, which depends on both the

information-exchange topologies and the weights kij , is a

weighted average of the vehicles’ initial states. However, in

some applications, it might be desirable that each state ξi(t)
approaches a (time-varying) reference state ξr(t) while the

reference state might be available to only a portion of the

vehicles in the team.

In the following, we derive algorithms to achieve this ob-

jective. We say that the consensus problem with a reference

state is solved if ξi(t) → ξj(t) → ξr(t), ∀i 6= j, as t → ∞.

Before moving on, we need the following lemmas

from [10].

Lemma 3.1: [10] Suppose that z = [z1, · · · , zp]
T with

zi ∈ IR and L ∈ IRp×p satisfies the property (1). Then the

following four conditions are equivalent: (i) L has a simple

zero eigenvalue with an associated eigenvector 1 and all of

the other eigenvalues have positive real parts; (ii) Lz = 0
implies that z1 = · · · = zp; (iii) Consensus is reached

asymptotically for a system ż = −Lz; (iv) The directed

graph of L has a directed spanning tree.

Lemma 3.2: [10] Suppose that z and L are defined in

Lemma 3.1. Then the following four conditions are equiva-

lent: (i) The directed graph of L has a directed spanning tree

and vehicle k has no incoming links1; (ii) The directed graph

of L has a directed spanning tree and every entry of the kth

row of L is zero; (iii) Consensus is reached asymptotically

for a system ż = −Lz with ξi(t) → ξk(0), ∀i, as t → ∞;

(iv) Vehicle k is the only node that has a directed path to all

of the other vehicles in the team.

A. Constant Reference State

In this subsection, we consider the case that the reference

state ξr is constant, where the consensus algorithm can be

summarized as

ui = −
n∑

j=1

gijkij(ξi − ξj) − gi(n+1)αi(ξi − ξr), (4)

where kij > 0, αi > 0, gii
△
= 0, gij is 1 if information flows

from vehicle j to vehicle i and 0 otherwise, and gi(n+1) is 1

if vehicle i has access to ξr and 0 otherwise. Note that in [2]

ξr corresponds to the constant state of the group leader. Also

note that [6] deals with the case that only one vehicle has

access to the reference state. The vehicle, denoted as vehicle

ℓ without loss of generality, must be the root of a directed

1At most one such vehicle can exist in the case that the directed graph
has a directed spanning tree.
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spanning tree. As a result, gℓ(n+1) = 1, and gi(n+1) = 0,

∀i 6= ℓ.

Next, we consider the case that a portion of the vehicles

in the team, denoted as a vehicle set L, have access to the

reference state under directed information exchange, that is,

gi(n+1) = 1, ∀i ∈ L, and gi(n+1) = 0, ∀i /∈ L. We have the

following theorem on consensus with a constant reference

state over a directed information-exchange topology.

Theorem 3.1: Let G = [gij ] ∈ IR(n+1)×(n+1) be the

adjacency matrix, where gij and gi(n+1), ∀i, j ∈ {1, . . . , n},

are defined in Eq. (4) and g(n+1)k = 0, ∀k ∈ {1, . . . , n+1}.

The algorithm (4) solves the consensus problem with a

constant reference state ξr if and only if the directed graph

of G has a directed spanning tree.2

Proof: Let ki(n+1)
△
= αi. Also let Ln+1 = [ℓij ] ∈

IR(n+1)×(n+1) be defined as ℓij = −gijkij , ℓii =∑
j 6=i gijkij , ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , n + 1}, and

ℓ(n+1)j = 0, ∀j. Letting ξn+1
△
= ξr, gives ξ̇n+1 = 0.

With (4), Eq. (2) can be written in matrix form as

ξ̇ = −(Ln+1 ⊗ Im)ξ,

where ξ = [ξT
1 , . . . , ξT

n+1]
T , and ⊗ denotes the Kronecker

product. Note that Ln+1 satisfies the property (1), and the

directed graph of Ln+1 is equivalent to that of G. Then

from arguments (ii) and (iii) of Lemma 3.2 with Ln+1 and

ξ playing the roles of L and z respectively, it follows that

ξi → ξn+1(0), ∀i, if and only if the directed graph of G has a

directed spanning tree. Equivalently, it follows that ξi → ξr,

∀i, since ξn+1 ≡ ξr.

To illustrate, consider a team of n = 4 vehicles. Four

subcases will be considered in this subsection, where ξr △
= 1

for each subcase. In Subcase (a), we let g15 = 1 and gj5 = 0,

∀j 6= 1, which corresponds to the case that only vehicle 1
has access to ξr. In Subcase (b), we let gj5 = 1, ∀j, which

corresponds to the case that all of the vehicles have access

to ξr. In Subcase (c), we let g35 = g45 = 1 and gj5 = 0,

∀j /∈ {3, 4}, which corresponds to the case that only vehicles

3 and 4 have access to ξr. In Subcase (d), we let g45 = 1 and

gj5 = 0, ∀j 6= 4, which corresponds to the case that only

vehicle 4 has access to ξr. Fig. 1 shows the information-

exchange topologies corresponding to each subcase.

Fig. 2 shows the states of each vehicle using (4). Note that

ξi converges to ξr in each subcase except Subcase (d). Also

note that node ξr has a directed path to all of the vehicles

in Subcases (a), (b), and (c) in Fig. 1. However, there does

not exist a directed path from node ξr to all of the vehicles

in Subcase (d) in Fig. 1. Note that Subcase (a) corresponds

to the case discussed in [6]. Also note that in Subcase (c)

in Fig. 1, node 4 is not the root of a directed spanning tree,

which implies that the results in [6] do not apply. However,

as shown above, ξi still approaches ξr in this case.

2Treat ξr as a virtual vehicle with index n+1. This condition is equivalent
to the condition that ξr is the only node that has a directed path to all of
the vehicles in the team from Lemma 3.2.
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Fig. 1. Information-exchange topologies between the four vehicles, where
one or more vehicles might have access to the constant reference state.
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Fig. 2. Consensus seeking with a constant reference state using (4).

B. Time-varying Reference State

In this subsection, we assume that the reference state might

be a time-varying exogenous signal or evolve according

to certain nonlinear dynamics. Without loss of generality,

suppose that ξr satisfies the dynamics given by

ξ̇r = f(t, ξr), (5)

where f(·, ·) is piecewise continuous in t and locally Lip-

schitz in ξr.

We first show that the algorithm (4) is not sufficient for

consensus on a time-varying reference state. As an example,

let ξr = cos(t) and consider the four subcases as in

Subsection III-A. As shown in Fig. 3, the states of each

vehicle do not converge to ξr in each subcase.

One might be tempted to apply the following algorithm in

the case of a time-varying reference state

ui = gi(n+1)f(t, ξr) −
n∑

j=1

gijkij(ξi − ξj) − gi(n+1)αi(ξi − ξr),

i = 1, . . . , n, (6)

where kij , αi, gij , and gi(n+1) are defined as in Eq. (4).
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Fig. 3. Consensus seeking with a time-varying reference state using (4).

As an example, similarly let ξr = cos(t) and consider the

four subcases as in Subsection III-A. As shown in Fig. 4, the

states of each vehicle do not converge to ξr in each subcase

except Subcase (b).
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Fig. 4. Consensus seeking with a time-varying reference state using (6).

We have the following theorem for consensus on a time-

varying reference state using the algorithm (6).

Theorem 3.2: If gi(n+1) = 1, i = 1, . . . , n, then the

consensus algorithm (6) solves the consensus problem with

a time-varying reference state.

Proof: With (6), Eq. (2) can be written in matrix form as
˙̃
ξ = −[(Ln + Γ) ⊗ Im]ξ̃, where Γ ∈ IRn×n is a diagonal

matrix with αi being the diagonal entries, Ln = [ℓij ] ∈
IRn×n is defined as ℓij = −gijkij and ℓii =

∑
j 6=i gijkij ,

∀i, j ∈ {1, . . . , n}, and ξ̃ = [ξ̃T
1 , . . . , ξ̃T

n ]T with ξ̃i = ξi−ξr.

From Gershgorin disc theorem [9], it is straightforward to

see that all of the eigenvalues of −(Ln + Γ) have negative

real parts. Therefore, we know that ξ̃ → 0 asymptotically,

that is, ξi → ξr, ∀i, asymptotically.

Note that the argument of Theorem 3.2 does not rely on the

information-exchange topology between the vehicles. Even

if there is no information exchange between the vehicles (i.e.

L = 0), the algorithm (6) still solves the consensus problem

with a time-varying reference state as long as each vehicle

has access to ξr. However, this argument is rather restricted

in the sense that each vehicle must have access to the time-

varying reference state.

When only a portion of the vehicles have access to ξr, we

propose the following consensus algorithm

ui =
1

ηi

n∑

j=1

gijkij [ξ̇j − γi(ξi − ξj)]

+
1

ηi

gi(n+1)αi[f(t, ξr) − γi(ξi − ξr)], i = 1, . . . , n,

(7)

where kij > 0, αi > 0, γi > 0, gij and gi(n+1) are defined

as in Eq. (4), and ηi = gi(n+1)αi +
∑n

j=1 gijkij . Note that

information feedback is introduced to each vehicle through

its local neighbors’ information states and their derivatives.

In the special case that only one vehicle has access to ξr,

the following consensus algorithm is also valid

ui = f(t, ξr) −
n∑

j=1

gijkij(ξi − ξj) − αi(ξi − ξr), i = ℓ

ui =
1∑n

j=1 gijkij

n∑

j=1

gijkij [ξ̇j − γi(ξi − ξj)], ∀i 6= ℓ,

(8)

where αi > 0, γi > 0, ℓ denotes the index of the only vehicle

that has access to ξr, and gij is defined as in Eq. (3).

Theorem 3.3: Let G = [gij ] ∈ IR(n+1)×(n+1) be defined

in Theorem 3.1. The algorithms (7) and (8) solve the

consensus problem with a time-varying reference state if and

only if the directed graph of G has a directed spanning tree.

Proof: For (7), let ξn+1
△
= ξr and ki(n+1)

△
= αi. Noting that

ξ̇i = ui, we rewrite Eq. (7) as

ξ̇i =
1

∑n+1
j=1 gijkij

n+1∑

j=1

gijkij [ξ̇j−γi(ξi−ξj)], i = 1, . . . , n.

After some manipulation, we get that

n+1∑

j=1

gijkij(ξ̇i − ξ̇j) = −γi

n+1∑

j=1

gijkij(ξi − ξj) i = 1, . . . , n,

which implies that

n+1∑

j=1

gijkij(ξi − ξj) → 0, i = 1, . . . , n. (9)

By adding a dummy equation 0 = 0, i = n + 1, to Eq. (9),

we can rewrite Eq. (9) in matrix form as (Ln+1⊗Im)ξ → 0,

where ξ = [ξT
1 , . . . , ξT

n+1]
T , Ln+1 = [ℓij ] ∈ IR(n+1)×(n+1)

is defined as ℓii =
∑

j 6=i gijkij , ℓij = −gijkij , ∀i ∈
{1, . . . , n}, ∀j ∈ {1, . . . , n + 1}, and ℓ(n+1)i = 0, ∀i.
Note that all of the entries of the n + 1th row of L are

zero. Also note that Ln+1 satisfies the property (1) and
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the directed graph of L is equivalent to that of G, which

has a directed spanning tree. Therefore, from the arguments

(ii) and (iv) of Lemma 3.1 with Ln+1 and ξ playing the

roles of L and z respectively, we know that ξi → ξj ,

∀i, j ∈ {1, . . . , n + 1}, if and only if the directed graph

of G has a directed spanning tree. Equivalently, it follows

that ξi → ξr, ∀i, since ξn+1 ≡ ξr.

For (8), noting that ξ̇i = ui, we rewrite the second

equation in Eq. (8) as

ξ̇i =
1∑n

j=1 gijkij

n∑

j=1

gijkij [ξ̇j − γi(ξi − ξj)], ∀i 6= ℓ.

After some manipulation, we get that

n∑

j=1

gijkij(ξ̇i − ξ̇j) = −γi

n∑

j=1

gijkij(ξi − ξj), ∀i 6= ℓ,

which implies that
∑n

j=1 gijkij(ξi − ξj) → 0, ∀i 6= ℓ.

Similarly, from the arguments (ii) and (iv) of Lemma 3.1,

we know that ξi → ξj , i, j ∈ {1, . . . , n}, if and only if the

directed graph of G has a directed spanning tree (with vehicle

ℓ being the root). Noting that ξi → ξj , ∀i 6= j, we know that

ξℓ → ξr from the first equation in Eq. (8). Therefore, it

follows that ξi → ξr, ∀i, asymptotically.

Compared to the algorithm (6), which requires that each

vehicle have access to the time-varying reference state to

reach consensus, the algorithms (7) and (8) allow only a

portion of the vehicles to have access to the time-varying

reference state.

To illustrate, consider two subcases in this subsection

using (7), where g35 = g45 = 1 and gj5 = 0, ∀j /∈ {3, 4}
(Fig. 1c), and (8), where ℓ = 1 (Fig. 1a), respectively.

In Subcase (a), let ξr = cos(t). In Subcase (b), assume

that ξr satisfies the nonlinear dynamics given by ξ̇r =
sin(t) sin(2ξr), where ξr(0) = 0.5. As shown in Figs. 5

and 6, the states of each vehicle converge to the exogenous

signal cos(t) in Subcase (a) and to the solution of the

nonlinear model ξ̇r = sin(t) sin(2ξr) in Subcase (b) using

both (7) and (8).
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Fig. 5. Consensus seeking with a time-varying reference state using (7).
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Fig. 6. Consensus seeking with a time-varying reference state using (8).

Compared to the leader-follower strategy where informa-

tion only flows from leaders to followers3, the algorithm (8)

takes into account the general case that information might

also flow from every vehicle to every other vehicle.

C. Extensions to Relative State Deviations

The consensus algorithm (3) can be extended to guarantee

that the differences of the vehicle states converge to desired

values, i.e., ξi − ξj → ∆ij(t), where ∆ij(t) denotes the

desired (time-varying) separation between ξi and ξj . We

propose the following algorithm for relative state deviations

ui = δ̇i −
n∑

j=1

gijkij [(ξi − ξj) − (δi − δj)], i = 1, . . . , n,

(10)

where δi−δj , ∀i 6= j, denotes the desired separation between

the states. Note that the consensus algorithm (3) corresponds

to the case that ∆ij = 0, ∀i 6= j.

We have the following theorem for relative state devia-

tions.

Theorem 3.4: With (10), ξi − ξj → δi − δj asymptotically

if and only if the information-exchange topology has a

directed spanning tree.

Proof: With (10), Eq. (2) can be written in matrix form as

˙̂
ξ = −(Ln ⊗ Im)ξ̂,

where ξ̂ = [ξ̂T
1 , . . . , ξ̂T

n ]T with ξ̂i = ξi − δi and Ln = [ℓij ] ∈
IRn×n with ℓij = −gijkij and ℓii =

∑
j 6=i gijkij . Note that

Ln satisfies the property (1). From Lemma 3.1, we know

that ξ̂i → ξ̂j asymptotically if and only if the information-

exchange topology has a directed spanning tree. The rest of

the proof then follows the fact that ξ̂i → ξ̂j is equivalent to

ξi − ξj → δi − δj .

3The leader-follower topology corresponds to an information-exchange
graph that is itself a directed spanning tree. Note that the condition that a
directed graph has a directed spanning tree is not equivalent to the condition
that a directed graph is itself a directed spanning tree. The latter condition
is a special case of the former one.
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When a portion of the vehicles have access to ξr, we

propose the following consensus algorithm for relative state

deviations with a time-varying reference state

ui = δ̇i +
1

ηi

n∑

j=1

gijkij{ξ̇j − δ̇j − γi[(ξi − ξj) − (δi − δj)]}

+
1

ηi

gi(n+1)αi[f(t, ξr) − γi(ξi − δi − ξr)]. (11)

In the special case that only one vehicle has access to ξr,

we propose the following consensus algorithm for relative

state deviations with a time-varying reference state

ui = δ̇i + f(t, ξr) −
n∑

j=1

gijkij [(ξi − ξj) − (δi − δj)]

− αi(ξi − δi − ξr), i = ℓ

ui = δ̇i +
1∑n

j=1 gijkij

n∑

j=1

gijkij{ξ̇j − δ̇j

− γi[(ξi − ξj) − (δi − δj)]}, i 6= ℓ, (12)

where ℓ denotes the index of the vehicle that has access to

ξr.

Theorem 3.5: Let G = [gij ] ∈ IR(n+1)×(n+1) be defined

as in Theorem 3.1. With the algorithms (11) and (12), ξi →
ξr + δi and ξi − ξj → δi − δj if and only if the directed

graph of G has a directed spanning tree.

Proof: Define ξ̃i = ξi − δi and ũi = ui − δ̇i. Note that
˙̃
ξi = ũi. Also note that Eqs. (11) and (12) can be rewritten in

the same form as Eqs. (7) and (8) with ξ̃i and ũi playing the

roles of ξi and ui respectively. As a result, from Theorem 3.3,

ξ̃i → ξ̃j → ξr, which implies that ξi → ξr+δi and ξi−ξj →
δi − δj .

To illustrate, consider two subcases in this subsection

using (11), where g35 = g45 = 1, gj5 = 0, ∀j /∈ {3, 4}
(Fig. 1c), and δi = 1 − i, i = 1, . . . , 4. In Subcase (a), let

ξr = cos(t). In Subcase (b), assume that ξr satisfies the

nonlinear dynamics given by ξ̇r = sin(t) sin(2ξr), where

ξr(0) = 0.5. As shown in Fig. 7, ξ1 → ξr, ξ2 → ξr − 1,

ξ3 → ξr − 2, and ξ4 → ξr − 3, where ξr is the exogenous

signal cos(t) in Subcase (a) and is the solution of the

nonlinear model ξ̇r = sin(t) sin(2ξr) in Subcase (b).

Note that by appropriately defining δi(t), a desired forma-

tion geometry can be preserved between the vehicles using

the algorithms (11) and (12).

IV. CONCLUSION AND FUTURE WORK

The consensus problem with a time-varying reference state

has been studied. We have analyzed consensus algorithms

with a constant reference state using graph theoretical tools.

We have also proposed and analyzed algorithms so that

consensus is reached on a time-varying reference state when

only a portion of the vehicles have access to the reference

state and those vehicles might not have directed paths to

the other vehicles in the team. The consensus algorithms

have also been extended to achieve relative state deviations

between the vehicles. An expanded version of the paper
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Fig. 7. Consensus seeking with a time-varying reference state using (11).

is available in [11]. An experimental demonstration of the

proposed algorithms on a team of four Amigobots can be

found at http://www.engineering.usu.edu/ece/

faculty/wren/research.php. Note that although we

focus on a directed fixed information-exchange topology in

this paper, the analysis of the proposed algorithms can be

extended to directed switching information-exchange topolo-

gies via similar techniques in [5]. This will be a topic of

future research.
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