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Abstract— In this paper, we study cooperative control design
strategies that only require local information exchange between
vehicles. In particular, we focus on how consensus algorithms or
their extensions can be applied in cooperative control of multi-
vehicle systems. Three types of coupling between vehicles are
distinguished and corresponding design strategies are proposed.
These design strategies are then applied to several cooperative
control applications including cooperative timing, formation
maintenance, rendezvous, altitude alignment, and synchronized
rotations as a proof of concept.

I. INTRODUCTION

Autonomous vehicle systems are expected to find potential
applications in military operations, search and rescue, envi-
ronment monitoring, commercial cleaning, material handling,
and homeland security. While single vehicles performing solo
missions will yield some benefits, greater benefits will come
from the cooperation of teams of vehicles. One motivation
for multiple vehicle systems is to achieve the same gains
for mechanically controlled systems as has been gained in
distributed computation. Rather than having a single mono-
lithic (and therefore expensive and complicated) machine
do everything, the hope is that many inexpensive, simple
machines, can achieve the same or enhanced functionality,
through coordination.

Cooperative control enables team objective satisfaction by
sharing specific information among team members. In some
cooperative control problems, there exists an identifiable
common reference state for each vehicle in the team, which
is called the coordination variable in [1]. If each vehicle
has access to the common reference state and responds
accordingly, cooperative objectives can be guaranteed for
the team. For example, if a team of vehicles are required
to form a rigid formation, the formation centroid trajectory
can be the common reference state for the whole team. In
some other cooperative control problems, there may not exist
an obvious common reference state for the team and each
vehicle may only have access to the state information of
its local neighbors. As a result, emergent group behaviors
occur through local intervehicle interactions. There are also
some cooperative control problems where the team has an
identifiable group goal but under certain circumstances some
vehicles may need to sacrifice the group goal during some
short time period to react to their environment or local
neighbors.

In cooperative control strategy design, decentralized
schemes are superior to centralized schemes in terms of
robustness and scalability. Information consensus focuses
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on guaranteeing that each vehicle in a team converges to
a consistent view of their information states through local
interactions. As an inherently distributed strategy, infor-
mation consensus has received significant attention in the
cooperative control community, see e.g., [2], [3], [4], [5],
[6], to name a few. A survey of information consensus in
cooperative control is given in [7].

In this paper we distinguish three types of coupling
between vehicles and provide a preliminary effort toward
general cooperative control design strategies for a class of
cooperative control problems. These design strategies have
the advantage that only local information exchange between
vehicles is required. In particular, we focus on how consensus
algorithms or their extensions can be applied in cooperative
control strategy design with local interactions.

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory

It is natural to model information exchange between
vehicles by directed/undirected graphs. A digraph (directed
graph) consists of a pair (N , E), where N is a finite
nonempty set of nodes and E ∈ N 2 is a set of ordered
pairs of nodes, called edges. As a comparison, the pairs of
nodes in an undirected graph are unordered. If there is a
directed edge from node vi to node vj , then vi is defined
as the parent node and vj is defined as the child node. A
directed path is a sequence of ordered edges of the form
(vi1 , vi2), (vi2 , vi3), · · · , where vij ∈ N , in a digraph. An
undirected path in an undirected graph is defined accordingly.
A digraph is called strongly connected if there is a directed
path from every node to every other node. An undirected
graph is called connected if there is a path between any
distinct pair of nodes. A directed tree is a digraph, where
every node, except the root, has exactly one parent. A
(directed) spanning tree of a digraph is a directed tree formed
by graph edges that connect all the nodes of the graph. We
say that a graph has (or contains) a (directed) spanning tree
if there exists a (directed) spanning tree being a subset of the
graph. Note that the condition that a digraph has a (directed)
spanning tree is equivalent to the case that there exists a
node having a directed path to all the other nodes. In the
case of undirected graphs, having an undirected spanning
tree is equivalent to being connected. However, in the case of
directed graphs, having a directed spanning is not equivalent
to being strongly connected. The union of a group of digraphs
is a digraph with nodes given by the union of the node sets
and edges given by the union of the edge sets of those
digraphs. Fig. 1 shows a directed graph with more than
one possible spanning trees. The double arrows denote one
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possible spanning tree with A5 as the parent. Spanning trees
with A1 and A4 as the parent, are also possible.
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Fig. 1. A directed graph that has more than one possible spanning trees,
but is not strongly connected. One possible spanning tree is denoted with
double arrows.

The adjacency matrix A = [aij ] of a weighted digraph is
defined as aii = 0 and aij > 0 if (j, i) ∈ E where i �= j. The
Laplacian matrix of the weighted digraph is defined as L =
[�ij ], where �ii =

∑
j �=i aij and �ij = −aij where i �= j.

For an undirected graph, the Laplacian matrix is symmetric
positive semi-definite.

B. Consensus Algorithms

In this section we review first-order and second-order
consensus algorithms.

Let ξi ∈ IRm and ζi ∈ IRm be the information states
of the ith vehicle. For example, ξi may take the role of
position, altitude, or heading angle while ζi may take the
role of velocity, climb rate, or angular velocity of the ith

vehicle.
For information states with first-order dynamics, we apply

the following first-order consensus algorithm:

ξ̇i = −
n∑

j=1

gijkij(ξi − ξj), i ∈ {1, · · · , n} (1)

where kij > 0, gii
�
= 0, and gij is 1 if information flows

from vehicle j to vehicle i and 0 otherwise, ∀i �= j.
For first-order consensus algorithm (1), consensus is said

to be reached asymptotically among multiple vehicles if
‖ξi − ξj‖ → 0, ∀i �= j, as t → ∞ for any ξi(0).

Under a fixed information exchange topology, algo-
rithm (1) achieves consensus asymptotically if and only if
the information exchange topology has a (directed) spanning
tree [8]. Under time-varying information exchange topolo-
gies, algorithm (1) reaches consensus asymptotically if there
exist infinitely many consecutive uniformly bounded time
intervals such that the union of the information exchange
graph across each interval has a (directed) spanning tree [6].

For information states with second-order dynamics, we
apply the following second-order consensus algorithm:

ξ̇i = ζi

ζ̇i = −
n∑

j=1

gijkij [(ξi − ξj) + γ(ζi − ζj)], i ∈ {1, · · · , n}

(2)

where kij > 0, γ > 0, gii
�
= 0, and gij is 1 if information

flows from vehicle j to vehicle i and 0 otherwise.
For second-order consensus algorithm (2), consensus is

said to be reached asymptotically among multiple vehicles
if ‖ξi(t) − ξj(t)‖ → 0 and ‖ζi(t) − ζj(t)‖ → 0, ∀i �= j, as
t → ∞ for any ξi(0) and ζi(0).

Let L = [�ij ] be the Laplacian matrix corresponding to
the information exchange topology for the team of vehicles,
where �ii =

∑
j �=i gijkij and �ij = −gijkij , ∀i �= j. Under a

fixed information exchange topology, algorithm (2) achieves
consensus asymptotically if the information exchange topol-
ogy has a (directed) spanning tree and

γ > max
i=2,··· ,n

√
2

|µi| cos(π
2 − tan−1 −Re(µi)

Im(µi)
)
, (3)

where µi, i = 2, · · · , n, are the non-zero eigenvalues of −L,
and Re(·) and Im(·) represent the real and imaginary parts
of a number respectively [9].

Let t0, t1, t2, · · · be the times when the information ex-
change topology switches. Also let τ be the dwell time such
that ti+1−ti > τ , ∀i = 0, 1, · · · . Algorithm (2) achieves con-
sensus asymptotically if the information exchange topology
has a (directed) spanning tree and γ satisfies inequality (3)
for each ti, and the dwell time is sufficiently large [9].

Note that Eqs. (1) and (2) represent the fundamental
forms of consensus algorithms. These algorithms can be
extended to achieve different convergence results. For exam-
ple, consensus algorithm (1) can be extended to guarantee
that (i) ξi → ξj → ξd and (ii) ξi − ξj → ∆ij , where
∆ij represent the desired separation between ξi and ξj .
Consensus algorithm (2) can be extended to guarantee that
(i) ξi → ξj and ζi → 0, (ii) ξi − ξj → ∆ij and ζi → ζj ,
and (iii) ξi → ξj → ξd and ζi → ζj → ζd, where ξd and ζd

represent the desired values for ξi and ζi respectively.

III. COOPERATIVE CONTROL DESIGN STRATEGIES VIA

INFORMATION CONSENSUS

In this section, we apply consensus algorithms to design
cooperative control strategies for multi-vehicle systems. We
argue that consensus based schemes are feasible for a class
of cooperative control problems. In particular, we consider
three types of cooperative control problems. In the first
type, there exists an identifiable common reference state
for each individual vehicle in the team. In [1], [8] the
common reference state is called the “coordination variable”.
The common reference state serves as a basis for each
vehicle to derive local control strategies. As a result, having
the knowledge of the common reference state facilitates
cooperation for the whole team. For example, in formation
control problems, the state of an actual or virtual team leader
or formation center serves as a reference for each vehicle.
In cooperative timing missions, the estimated team arrival
time at specified destinations serves as a reference for each
vehicle. In the second type, each vehicle adjusts its own state
according to the states of its local neighbors. For example,
in order to achieve a cooperative observation, altitude or
attitude alignment may be required for a team of vehicles
with only local interactions. The third type is a combination
of the previous two types. For example, each vehicle in the
team may have access to the state of the formation center
to achieve certain group behaviors as well as the states of
its local neighbors to achieve collision avoidance. In the



following, the terms “group-level coupling”, “vehicle-level
coupling”, and “mixed coupling” are used to represent the
coupling between vehicles in the first, second, and third type
respectively.

For group-level coupling, we let ξ denote the common
reference state for the whole team. Also let xi, yi, and ui

represent the local state, output, and control input of the
ith vehicle respectively. A centralized cooperative control
strategy can be designed as follows:

ξ̇ = f(t, ξ, y1, · · · , yn)
ẋi = gi(t, xi, ui)
yi = hi(t, xi)
ui = ki(t, yi, ξ), i ∈ {1, · · · , n},

where the ith control input depends on the common reference
state ξ and its own output yi.

In this centralized scheme, the common reference state
is implemented at a central location and broadcast to every
vehicle in the team. However, this implementation results in
a single point of failure and is not scalable well to a large
number of vehicles.

A natural remedy to these drawbacks is to instantiate a
local copy of the common reference state on each vehicle.
If each vehicle implements the same cooperation algorithm,
we expect that the decentralized scheme achieves the same
cooperation as the centralized scheme. However, due to
different local situation awareness of each vehicle, there
exist discrepancies among each instantiation of the common
reference state. For example, in multi-vehicle simultaneous
arrival missions, each vehicle’s time-over-target may be dy-
namically changing as the vehicle encounters pop-up threats.
As a result, consensus algorithms need to be applied to
guarantee that each instantiation of the common reference
state converges to a sufficiently common value.

Fig. 2 shows a decentralized design scheme for multi-
vehicle systems with group-level coupling. The hierarchical
architecture consists of four layers: mission planner, con-
sensus module, cooperation module, and physical vehicle.
Each vehicle instantiates a local copy of the mission planner,
consensus module, and cooperation module. Each mission
planner instantiation outputs a sequence of desired mission
goals ξ(p), p = 1, · · · , P , to the consensus module in-
stantiation. Each consensus module instantiation drives each
instantiation of the common reference state ξi to a consistent
value and also toward the desired mission goal through
communication with (possibly time-varying) local neighbors.
Based on each instantiation of the common reference state,
each cooperation module instantiation specifies local control
laws ui for each vehicle. Note that each lower layer has
feedback information describing the performance of that
layer to the upper layer as denoted by ϑi, zi, and yi.

We assume that the dynamics of each instantiation of the
common reference state are given by

ξ̇i = fi(t, ξi, {j ∈ Ni(t)|ξj}, yi),

Communication Network

Mission Planner #i

Consensus Module #i

Cooperation Module #i

Vehicle #i

Fig. 2. Decentralized design scheme with group-level coupling.

where Ni(t) denotes the set of vehicles whose instantiations
of the common reference state are available to vehicle i,
and yi introduces group feedback from vehicle i to its
instantiation of the common reference state. The goal is to
guarantee that ‖ξi − ξj‖ → 0, ∀i �= j, and ξi → ξ(p), ∀i.

The dynamics of each vehicle are given by

ẋi = gi(t, xi, ui)
yi = hi(t, xi)
ui = ki(t, yi, ξi),

where the ith control input depends on its own output and
the ith instantiation of the common reference state.

For vehicle-level coupling, the control input to each
vehicle depends on information from its local neighbors.
Fig. 3 shows a design scheme for multi-vehicle systems
with vehicle-level coupling, where each vehicle instantiates
different modules such as goal seeking, consensus building,
formation keeping, and collision avoidance to characterize
different group behaviors. Through local communication or
sensing, each vehicle specifies its local control law based on
these combined modules. The functionality of the consensus
module is to guarantee the alignment of velocities, attitude,
altitude, and so on among multiple vehicles.

The dynamics of each vehicle are given by

ẋi = gi(t, xi, ui)
yi = hi(t, xi)
zi = ηi(t, yi, {� ∈ Ji(t)|y�})
ui = ki(t, zi),

where Ji(t) denotes the set of vehicles whose information
is available to vehicle i through either communication or
sensing, and zi denotes the information sensed by and/or
communicated to vehicle i. One example is that zi is com-
posed of a set of vehicle positions yj , where j ∈ Ji(t)

⋃{i}.
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Fig. 3. Decentralized design scheme with vehicle-level coupling.

Another is that zi is composed of a set of relative position
measurements yi − yj , where j ∈ Ji(t).

The case of mixed coupling is a combination of those cases
of group-level coupling and vehicle-level coupling.

In the centralized scheme, the dynamics of the common
reference state are given by

ξ̇ = f(t, ξ, zi).

The dynamics of each vehicle are given by

ẋi = gi(t, xi, ui)
yi = hi(t, xi)
zi = ηi(t, yi, {� ∈ Ji(t)|y�})
ui = ki(t, yi, zi, ξ).

In the decentralized scheme, the dynamics of each instan-
tiation of the common reference state are given by

ξ̇i = fi(t, ξi, {j ∈ Ni(t)|ξj}, zi).

The dynamics of each vehicle are given by

ẋi = gi(t, xi, ui)
yi = hi(t, xi)
zi = ηi(t, yi, {� ∈ Ji(t)|y�})
ui = ki(t, yi, zi, ξi, {j ∈ Ni(t)|ξj}).

IV. APPLICATION EXAMPLES

In this section, we apply the decentralized design schemes
with group-level coupling and vehicle-level coupling to sev-
eral cooperative control problems.

In the following we assume that the cooperative team
consists of six vehicles. Without loss of generality, we
assume that the information flow topology for the six vehicles
is given by Fig. 4. Note that Fig. 4 has a (directed) spanning

tree. It is worthwhile to mention that the design schemes are
applicable to a class of problems although we only focus on
several applications here.
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Fig. 4. Information flow topology for six vehicles.

A. Cooperative Timing

In the first example, we apply the design scheme denoted
by Fig. 2 to a cooperative timing problem. The cooperative
timing problem requires that a team of UAVs arrive at their
destinations simultaneously (simultaneous arrival) or in a
specified sequence with the time increments between arrival
times specified exactly (tight sequencing) [1].

Let ξi be the estimated arrival time of the ith UAV. Also
let δi be constants. We update ξi according to the following
strategy:

ξ̇i = −
n∑

j=1

gijkij [(ξi − δi) − (ξj − δj)].

As a result, ξi − δi → ξj − δj , that is, ξi − ξj → δi − δj . By
appropriately choosing δ�, � ∈ {1, · · · , n}, we can guarantee
either simultaneous arrival or tight sequencing. At the vehicle
level, each UAV adjusts its velocity and path to guarantee that
it arrives at the target according to its estimated arrival time.

Let δj = 3 ∗ (j − 1), j = 1, · · · , 6. As a result, ξj+1 →
ξj + 3, j = 1, · · · , 5. Fig. 5 shows the estimated arrival
times of six UAVs. Note that the time increment between the
estimated arrival times approaches three minutes as desired
even if each vehicle has arbitrary initial estimates.

B. Mobile Robot Formation Maneuvering

In the second example, we apply the design scheme de-
noted by Fig. 2 to guarantee accurate formation maintenance
of multiple mobile robots during their maneuvers.

Consider the mobile robot kinematic equation given by

q̇i = ui, (4)

where qi is the position of the ith robot and ui is the control
input.

Let ξ = [x0(s), y0(s), θ0(s)]T represent the state of the
formation center, where (x0(s), y0(s)) and θ0(s) are the
position and orientation of a coordinate frame located at
the formation center parameterized by a parameter s. We
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Fig. 5. Tight sequencing of six UAVs.

instantiate a local copy of si on each robot and apply the
following consensus algorithm to drive si → sj and ṡi → ν:

ṡi = −
n∑

j=1

gijkij(si − sj) + ν,

where ν is a feedforward signal.
We simulate a scenario where the formation center follows

a trajectory of a circle while the whole group preserves
the desired hexagon formation shape during the maneuver.
Fig. 6 shows the formation maneuvers of the six robots at
t = 0, 25, 50, 75, and 100 (s) respectively. The green circle
represents the desired trajectory of the formation center, the
actual formation at each time is represented by polygons with
square vertices denoting the actual location of each robot, and
the desired formation at each time is represented by polygons
with star vertices denoting the desired location of each robot.
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Fig. 6. Formation maneuvering of six mobile robots.

C. Rendezvous

In the third example, we apply the design scheme denoted
by Fig. 3 to a rendezvous problem where multiple vehicles

are required to arrive at a target location simultaneously. Note
that the rendezvous problem can be thought of as a special
case of cooperative timing where each vehicle has a common
destination.

Consider vehicle dynamics given by

r̈i = ui,

where ri is the position and ui is the control input. Let

ui = −αṙi −
n∑

j=1

gijkij [(ri − rj) + γ(ṙi − ṙj)],

where α > 0 and γ satisfies inequality (3). As a result, ri →
rj and vi → 0.

Fig. 7 shows a scenario where six vehicles start from
different locations denoted by circles but arrive at a ren-
dezvous destination denoted by a square through only local
information exchange.
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Fig. 7. Six vehicle rendezvous.

D. UAV Altitude Alignment

In the fourth example, we apply the design scheme denoted
by Fig. 3 to align the altitudes of multiple UAVs.

Consider the UAV altitude dynamics given by

ḧi = −αḣi
ḣi + αhi(hc

i − hi),

where we assume that each UAV is equipped with efficient
low level autopilots with αḣi > 0 and αhi > 0.

We propose the following control law for hc
i as

hc
i =

1
αhi

(µhi + αḣi
ḣi) + hi,

where

µhi = −αḣi −
n∑

j=1

gijkij [(hi − hj) + γ(ḣi − ḣj), (5)

where α > 0, kij > 0, and γ satisfied inequality (3). In
Eq. (5) the first term is used to guarantee that ḣi → 0, and the
second term is used to guarantee that hi → hj and ḣi → ḣj .



Fig. 8 shows the altitudes and climb rates of six UAVs.
Note that each UAV aligns its altitude with its local neighbors
in a distributed manner.
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Fig. 8. Altitude alignment among six UAVs.

E. Synchronized Spacecraft Rotations

In the last example, we apply the design scheme denoted
by Fig. 3 to synchronize rotations of multiple spacecraft.

Consider spacecraft dynamics given by

˙̂qi = −1
2
ωi × q̂i +

1
2
q̄iωi, ˙̄qi = −1

2
ωi · q̂i

Jiω̇i = −ωi × (Jiωi) + τi,

where qi = [q̂i
T , q̄i]T is the unit quaternion of the ith

spacecraft, ωi is the angular velocity, and Ji and τi are inertia
tensor and control torque.

The control torque τi can then be designed as

τi = −kGq̂d∗qi−dGωi−
n∑

j=1

gij [aij q̂∗j qi+bij(ωi−ωj)], (6)

where kG, dG, aij , and bij are positive scalars, and p̂
represents the vector part of quaternion p. In Eq. (6), the
first term is used to guarantee that qi → qd, the second term
is used to guarantee that ωi → 0, and the last term is used
to guarantee that qi → qj and ωi → ωj . Note that Eq. (6) is
more general than the control law in [10].

With the above control law, a group of spacecraft can
reach their desired attitude qd and maintain the same attitudes
during the transition. Fig. 9 shows the quaternion attitudes
of spacecraft #1, #3, and #5, where q

(j)
i denotes the jth

component of quaternion qi.

V. CONCLUSION

We have proposed cooperative control design strategies
based on the concept of information consensus. These
strategies only require local information exchange between
vehicles. We have also applied these strategies to several
cooperative control problems including cooperative timing,
formation maintenance, rendezvous, altitude alignment, and
synchronized rotations.
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Fig. 9. Synchronized rotations among six spacecraft.
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