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Abstract— When a team of networked mobile actuators
(sprayers) are used to control the diffusion process in a
region of interest with the help of the static mesh sensor
networks, the question on how to group the mobile actuators
into smaller subgroups is investigated in this paper to check
the performance change under various grouping strategies.
Our actuator path planning is based on the so-called Central
Voronoi Tessellations (CVT) technique. Via extensive simula-
tion studies, we found that, under the same total actuation
resources, it is not definite to tell if the larger number of
subgroups corresponds to a better performance.

Index Terms— Robot grouping, mobile actuator networks,
coordinated control, diffusion process, pollution neutralization,
Centroidal Voronoi Tessellation.

I. INTRODUCTION

The deployment of large groups of unmanned vehicles

is rapidly becoming possible because of the advances in

wireless networking and in miniaturization of electromecha-

tronic systems. In the future, large number of robots will

coordinate and perform challenging tasks including opera-

tion in dangerous environments, human health monitoring,

and habitat monitoring for pollution detection which mo-

tivates ”Mobile Actuator and Sensor Network (MAS-net)

project” in CSOIS, Utah State University [2]. This project

combines mobile robotics with the wireless sensor networks

to control and monitor the spatially distributed diffusion

process [4]. Each robot has limited sensing, computation

and communication ability. But they can coordinate with

each other to finish tasks like temporal-spatial feedback

closed-loop control of a diffusing process. The application

of this project can be in homeland security, where chemical,

biological, radiological or nuclear (CBRN) terrorism can

cause devastating damages. Some research challenges and

opportunities are presented in [6].

In this paper, we consider the distributed control of a

time-varying pollution diffusion process using groups of
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mobile actuators with an emphasis on how different group-

ing methods affect the control performance. The scenario is

described as follows: A toxic diffusion source is releasing

toxic gas/fog in a 2D domain. The diffusion process is

modeled as a partial differential equation (PDE) system and

we assume static mesh sensor networks are deployed in the

polluted area to measure chemical concentration. Then, a

few mobile robots equipped with controllable dispensers

of neutralizing chemicals are sent out to counteract the

pollution by properly releasing the neutralizing chemicals.

The technical approach proposed in this paper is related

to a number of technological areas including coverage

control [3], robot motion planning control [9] and the dy-

namic diffusion process control [8]. In [7], a gradient based

algorithm is developed for chemical tracing with swarms

of mobile robots and the diffusion process is assumed to

be focused and smoke-like with wind blowing. A mobile

robot equipped with sensing devices is used to estimate the

parameters of gas releasing process in [8]. The techniques

mentioned above could give us some ideas on how to

model a diffusion process and find the source of pollution.

However, the diffusion processes are not fully time-varying

and no further solutions on how to counteract the pollution

were investigated before. The motion planning of groups

of actuators in a time-varying PDE system for feedback

control still largely remains an open research question.

Motivated by the application of Centroidal Voronoi Tes-

sellation (CVT) in coverage control of mobile sensing

networks [3], we use a CVT-based algorithm to solve this

problem. An application of CVT in feedback control system

can be found in [14]. In [14], the sensor location problem

in feedback control of partial differential equation system

is solved by CVT. The functional gains are served as the

density functions in CVT. We also need to point out that

the CVT-based robot motion control is a distributed and

scalable control algorithm. In our experiment, the pollution

concentration is given by the sensors that cover the area and

form a mesh. A simulation platform called Diff-MAS2D
[18] has been developed for measurement scheduling and

controls in distributed parameter systems with moving sen-

sors and actuators. Simulation result shows the effectiveness

of our algorithm for different group sizes.
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The remaining part of this paper is organized as fol-

lows. In Sec. II, the problem formulation is presented. In

Sec. III, we give a brief introduction to Voronoi diagram and

Centroidal Voronoi Tessellation. Section IV is devoted to

introducing CVT-based optimal actuator location and path

planning algorithms. In Sec. V, we analyze the tradeoff

between group size and the efficiency in actuator control.

The simulation results and comparisons are presented in

Sec. VI. Finally, conclusions and future research directions

are presented in Sec. VII.

II. PROBLEM FORMULATION

In this section, the problem on how to control a diffusion

process like pollution neutralization is introduced.

Suppose that Ω is a convex polytope in R2. ρ(x, y) :
Ω → R+ is the concentration function that represents

the pollutant concentration over Ω. To control a diffusion

process, we assume using n actuators(robots). Let P =
(p1, · · · , pn) be the location of n actuators and let |·| denote

the Euclidean distance function. Every robot at pi will

move, sense the environment and release the neutralization

chemical according to our control law. The objectives are

to control the diffusion of the pollution to a confined area

and to minimize the total polluted area as fast as we can .

To minimize the heavily affected area, actuators(sprays)

should be sent to high polluted areas so that the pollution

can be neutralized timely with no further diffusion. But

they can be far from the lightly polluted areas and the

diffused pollutants far away from the source need also to be

neutralized timely. So putting all robots very close to the

pollution source is not a good strategy. Considering both

heavily and slightly polluted areas, we use the following

cost function for minimization

K(P,V) =
n∑

i=1

∫
Vi

ρ(q)|q − pi|2dq for q ∈ Ω. (1)

n robots will partition Ω into a collection of n polytopes

V = {V1, · · · , Vn}, pi ∈ Vi, Vi ∩ Vj = ∅ for i �=
j and ∪n

i=1 V̄i = Ω̄ (V̄i = Vi ∪ ∂Vi and Ω̄ = Ω ∪ ∂Ω). It

is obvious that to minimize K, the distance |q − pi| should

be small in highly polluted areas. It is the concentration

function ρ(q) that determines the optimal positions of the

robots. A necessary condition for K to be minimized is

that {pi, Vi}k
i=1 is a Centroidal Voronoi Tessellation of Ω .

Our algorithm is based on a discrete version of (1) and the

concentration information comes from the measurements of

the static mesh sensors.

III. INTRODUCTION TO VORONOI DIAGRAM AND

CENTROIDAL VORONOI TESSELLATION

Here we give a brief introduction to the Voronoi dia-

gram and Centroidal Voronoi Tessellation [19].The Voronoi

diagram is to partition a plane with n points into convex

polygons such that each polygon contains exactly one

generating point and every point in a given polygon is closer

to its generating point than to any other.

Given an open set Ω ⊂ RN and a set of points {zi}k
i=1

belonging to Ω̄, let | · | denote the Euclidean norm in RN

and let

Vi = {q ∈ Ω||q−zi| < |q−zj | for j = 1, · · · , k, j �= i} (2)

i = 1, · · · , k.

The set {Vi}k
i=1 is referred to as a Voronoi tessellation

or Voronoi diagram of Ω and each Vi is referred to as the

Voronoi region or Voronoi cell. The members of the set

{zi}k
i=1 are referred to as generators of each cell Vi.

A centroidal Voronoi tessellation (CVT) is a Voronoi

tessellation of a given set such that the associated generating

points are centroids (centers of mass with respect to a given

density function) of the corresponding Voronoi regions. It is

defined like this: given a density function ρ(q) ≥ 0 defined

on Ω̄, we define the mass centroid z∗i of Vi for each Voronoi

cell Vi by:

z∗i =

∫
Vi

rρ(q)dq∫
Vi

ρ(q)dq
for i = 1, · · · , k. (3)

We call the tessellation defined by (2) a Centroidal Voronoi

Tessellation if and only if

zi = z∗i for i = 1, · · · , k.

So, the points zi are not only the generators for the Voronoi

regions Vi but also the mass centroids of those regions.

Centroidal Voronoi Tessellation has broad applications in

many fields [5]. It is the solution to optimal placement of

resources, but in general, CVT can only be approximately

constructed.

IV. CVT-BASED OPTIMAL ACTUATOR MOTION

PLANNING ALGORITHM

Although the CVT is used to solve the static resource

location problem, if the diffusion process evolves slower

than the convergence rate of the motion planning algorithm

and the control efforts, CVT is still a valid solution to our

problem, as verified in our simulation results presented in

Sec. VI.

We use a modified Lloyd’s method for actuator motion

planning to get a CVT diagram. Lloyd’s method is an

iterative algorithm to generate a centroidal Voronoi diagram

from any set of generating points. It is described as below:

Given a region Ω, a density function ρ(x, y) defined for

all x ∈ Ω̄, and a positive integer k

1) Select an initial set of k points {zi}k
i=1 (Actuator

Starting Positions)as the generators.

2) Construct the Voronoi sets {Vi}k
i=1 associated with

generators {zi}k
i=1;

3) Determine the mass centroids of the Voronoi sets

{Vi}k
i=1; these centroids form the new set of points

{zi}k
i=1;



4) Give the actuators (sprayers) command to move to the

mass centroid points

5) If the new points meet some convergence criterion,

terminate; other wise, return to step 2.

The Lloyd’s method is iterative so that the motions of

the robots can be adaptive to the evolving of the diffusion

process.

We use the second-order dynamical equation to model

the mobile actuator robots:

p̈i = Fi = fi − kv ṗi (4)

with Fi the control input and fi a force input to control the

robot motion determined by the following control law:

fi = −k(pi − p̄i)

where p̄i is the computed mass centroid of the current

Voronoi cell.

The second term of (4) on the right hand side is the

viscous friction artificially introduced [16]. kv is the friction

coefficient and ṗi denotes the velocity of the robot i. This

term is used to eliminate the oscillatory behavior of robots

described in [11] when the robot is close to its destination.

The viscous term assures that in the absence of the external

force, the robot will come to a standstill state eventually.

We can also use proportional control for the neutralizing

chemical releasing. The amount of chemicals each robot re-

leases is proportional to the average pollutant concentration

in the Voronoi cell belonging to that robot. Although our

simulation is model-based, our control algorithms for each

robot are not relying on the exact model information. They

are based only on the sensor information that the robots can

access.

V. GROUPING EFFECT ON DIFFUSION CONTROL

PERFORMANCE

In this section, we discuss in detail if CVT-based algo-

rithm could be used to large numbers of actuator groups and

how to decide the appropriate grouping size according to

the final performance requirements. In [1], we have shown

that the CVT algorithm works well for 4 mobile actuators.

It is obvious that we can achieve better control result for

the pollution neutralization by using more mobile actuators.

But a big group size also have tradeoffs like much more

computation and communication requirements which will

lower the efficiency and robustness of control system.

With the increasing of actuator numbers, we need to use

the computational complexity theory to test if the CVT will

bring big computation burden. There are many practical

methods for constructing Voronoi Diagrams including the

naive method [19], the flip method and the incremental

method. Specifically, we chose the Delaunay triangulation

method based on Qhull. According to [13], the computa-

tional complexity is

fr = O

(
rd/2

(d/2)!

)
,

where d is the dimension; n the number of input points,

r the number of processed points, and fr the maximum

number of facets of r vertices. For our problem, d = 2.

fr = O (r) ,

.

For simulation purpose, we use delaunay() and

voronoi() functions in MATLAB to get the CVT dia-

grams. We found that there is no big burden on computation.

Next, we will show how the CVT algorithm can be

implemented in a distributed way. That is, the algorithm can

be executed on a group of robots instead of a centralized

one. In fact, we need only get pi and pi = CVi
for

every time step. To get a distributed implementation, each

actuator needs to know the relative location of each Voronoi

neighbor for computing its own Voronoi cell. We can use

the method in [15] to get the Voronoi diagrams.

Given the above discussion on computational cost, it is

feasible to consider more actuators for pollution neutralizing

problem. However, we are interested in how many actuators

in a subgroup or what the best grouping size is. In real

circumstances, for a fair comparison, we must use the same

amount of neutralizing chemicals for various numbers of

groups. There should be an optimal group size given a

specific performance metric.

VI. SIMULATION RESULTS

Diff-MAS2D is used as the simulation platform for

our implementation. The area concerned is given by Ω =
{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The system with control

input is modeled as

∂ρ(x, y, t)
∂t

= k(
∂2ρ(x, y, t)

∂x2
+

∂2ρ(x, y, t)
∂y2

) + fc(x, y, t)

+fd(x, y, t), (5)

where k = 0.01 and the Neumann boundary condition is

given by
∂u

∂n
= 0.

where n is the outward direction normal to the boundary.

The stationary pollution source is modeled as a point

disturbance fd to the the PDE system (5) with its position

at (0.75, 0.35) and

fd(t) = 20e−t|(x=0.75,y=0.35).

In our simulation, we assume that once deployed, the

mesh sensors remain static. There are 29×29 sensors evenly

distributed in a square area (0, 1)2 and they form a mesh

over the area. There are 4 mobile robots that can release

the neutralizing chemicals. For the robot motion control,

the viscous coefficient is given by kv = 1 and the control

input is given by

Fi = −3(pi − p̄i) − ṗi.

The pollution source begins to diffuse at t = 0 to



the area Ω and initially the mobile actuator robots are

evenly distributed within the domain Ω (one by one

square) at the following specific positions: (0.5, 0.5)
for 1 ∗ 1 grouping case; for 2 ∗ 2 grouping case,

(0.33, 0.33), (0.33, 0.66), (0.66, 0.33), (0.66, 0.66), respec-

tively, and so on and so forth. Figure 1 shows the initial

positions of the robot groups (2*2 grouping), the positions

of the sensors and the position of the pollution source as a

reference. Figure 2 shows the typical trajectories of the 2*2

actuator group.

Fig. 1. Initial layout of actuators and sensors (2*2 grouping).

Fig. 2. 2*2 robot group trajectories for controlling the diffusion process.

We choose the simulation time to t = 5 sec. and the

time step as ∆t = 0.002 sec. The robot recomputes its

desired position every 0.2s. To show how the robots can

control the diffusion of the pollutants, the robots begin to

react at t = 0.4s. The system evolves under the effects

of diffusion of pollutants and diffusion of neutralizing

chemicals released by robots. To show the scalability of the

CVT algorithm for bigger groups, the control results are

shown by using 5*5 and 9*9 mobile actuators respectively.

Table I shows the time to do simulations on the PC (P4-

2.6G, 256M RAM) and the remaining pollutants at the end

of the simulation. It can be seen that the computational load

does not increase much with the increase of the number of

actuator groups. In Fig. 3, the y axis is the sum of the mesh

sensor measurements.

TABLE I

COMPUTATIONAL TIME FOR SIMULATION AND CONTROL RESULTS

Grouping Time for simulation Remaining pollutants

2*2 510 s 3.3994

3*3 582 s 0.7046

4*4 615 s 0.3372

Fig. 3. Evolution of the amount of pollutants (2*2, 3*3 and 4*4 robots).

To compare the performance of different groupings of

actuators, we compare our CVT-based algorithm with the

uniformly distributed case. The control laws for chemical

releasing are the same. But Table II shows the different

output parameter for neutralizing chemical releasing so that

each actuator group has the similar total control input.

In Fig. 4, the y axis represents the total pollution all

the mesh sensors could detect. Detailed results including

Pollutionmax, Tmax (when the pollution has a peak),

and Pollutionfinal are shown in Table III. The case with

exactly one static actuator and one pollution source is

provided as a baseline for comparison.

TABLE II

RUN TIME FOR SIMULATION AND CONTROL RESULTS

Grouping Actuator Numbers Neutralizing parameter

1*1 Actuator 1 320

2*2 Actuator 4 81

3*3 Actuator 9 36

4*4 Actuator 16 20.25

9*9 Actuator 81 4

From the above results, we can find out our CVT algo-

rithm is distributed, scalable and with high performance.



(a) Group 1*1 Initial Layout (b) Group 1*1 Static

(c) Group 2*2 Initial Layout (d) Group 2*2 CVT/Static

(e) Group 3*3 Initial Layout (f) Group 3*3 CVT/Static

(g) Group 4*4 Initial Layout (h) Group 4*4 CVT/Static

(i) Group 9*9 Initial Layout (j) Group 9*9 CVT/Static

Fig. 4. Grouping Performance for mobile CVT/Static algorithm

All the mobile CVT methods achieve better results than

those of the static evenly distributed ones. However, the

optimal grouping size for diffusion control is not always

corresponding to the largest size. In other words, under

the same total actuation resources, it is not definite to

tell if the larger number of subgroups corresponds to a

better performance. A mathematical model is needed for

quantitative analysis of the effect of the grouping size on
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Fig. 5. Trajectories of 2*2 robots using CVT algorithm.
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Fig. 6. Trajectory of 3*3 robots using CVT algorithm and the final
Voronoi diagram.

the efficiency in diffusion control.

VII. CONCLUSION

In this paper, we extended the application of Centroidal

Voronoi Tessellation to the case of large number of mobile

actuators for diffusion control. Computational complexity

and distributed algorithm are discussed for scalability test-

ing. Through our extensive simulation studies, we demon-

strated the effect of the grouping size on the efficiency

in diffusion control. Unfortunately, under the same total

actuation resources, it is not definite to tell if the larger

number of subgroups corresponds to a better performance.
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Fig. 7. Trajectory of 4*4 robots using CVT algorithm and the final
Voronoi diagram.

TABLE III

COMPARISON OF PERFORMANCE FOR DIFFERENT GROUP SIZE

Grouping Pmax tmax Pfinal Pinteg

1*1 Static 100% 100% 100% 100%

2*2 (Static) 77.4% 74.9% 44.4% 68.5%

2*2 (Mobile) 71.0% 59.8% 32.0% 57.4%

3*3 (Static) 77.8% 74.3% 44.3% 68.5%

3*3 (Mobile) 71.1% 58.4% 23.5% 50.1%

4*4 (Static) 75.3% 72.3% 41.6% 65.9%

4*4 (Mobile) 68.2% 57.6% 16.7% 46.3%

9*9 (Static) 74.8% 73.1% 41.2% 65.5%

9*9 (Mobile) 72.3% 63.7% 30.2% 58.7%

In the future, we will investigate how to perform quan-

titative analysis of the effect of the grouping size on the

efficiency in diffusion control. Furthermore, we will extend

our research for pollution feedback control by using mobile

sensors and take into account the sensor noise and unreliable

communication induced uncertainties.
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