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a b s t r a c t

This paper studies second-order consensus inmulti-agent dynamical systemswith sampled position data.
A distributed linear consensus protocol with second-order dynamics is designed, where both the current
and some sampled past position data are utilized. It is found that second-order consensus in such amulti-
agent system cannot be reached without any sampled position data under the given protocol while it
can be achieved by appropriately choosing the sampling period. A necessary and sufficient condition for
reaching consensus of the system in this setting is established, based on which consensus regions are
then characterized. It is shown that if all the eigenvalues of the Laplacian matrix are real, then second-
order consensus in themulti-agent system can be reached for any sampling period except at some critical
points depending on the spectrum of the Laplacianmatrix. However, if there exists at least one eigenvalue
of the Laplacian matrix with a nonzero imaginary part, second-order consensus cannot be reached for
sufficiently small or sufficiently large sampling periods. In such cases, one nevertheless may be able to
find some disconnected stable consensus regions determined by choosing appropriate sampling periods.
Finally, simulation examples are given to verify and illustrate the theoretical analysis.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Collective behaviors in networked systems with a group of
autonomous mobile agents, e.g., synchronization (Arenas, Diaz-
Guilera, Kurths, Moreno, & Zhou, 2008; Lü & Chen, 2005; Pecora
& Carroll, 1990; Wang & Chen, 2002; Yu, Cao, & Lü, 2008; Yu,
Chen, & Lü, 2009; Zhou, Lu, & Lü, 2006), consensus (Cao, Morse, &
Anderson, 2008; Cao, Ren, & Chen, 2008; Hong, Chen, & Bushnell,
2008; Hong, Hu, & Gao, 2006; Jadbabaie, Lin, & Morse, 2003;
Moreau, 2005; Olfati-Saber, 2004; Ren, 2008; Ren & Atkins, 2007;
Ren & Beard, 2005; Vicsek, Cziok, Jacob, Cohen, & Shochet, 1995;
Yu, Chen, & Cao, 2010; Yu, Chen, & Ren, 2010; Yu, Chen, Cao, &
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Kurths, 2010; Yu, Chen, Ren, Kurths, & Zheng, in press), swarming
(Gazi & Passino, 2003), and flocking (Olfati-Saber, 2006), have
received increasing interest recently due to broad applications
in biological systems, sensor networks (Yu, Chen, Wang, & Yang,
2009), Unmanned Air Vehicle (UAV) formations, robotic teams,
underwater vehicles, etc. The main idea is that each agent shares
information only with its nearest neighbors while the whole
network of agents can coordinate so as to achieve a certain global
criterion of common interest, which by nature is a local distributed
protocol. As one of themost typical collective behaviors, consensus
refers to reaching an agreement among a group of autonomous
agents, which serves as a foundation for the study of swarming and
flocking behaviors of multi-agent systems. The consensus problem
has a long history in the computer science especially for the field
of distributed computing. The idea for consensus originated from
statistical consensus theory by DeGroot (1974).

In the 1980s, various models of distributed asynchronous it-
erations were proposed and theoretically analyzed in Bertsekas
and Tsitsiklis (1989). Recently, there are extensive studies of the
conditions for reaching consensus among a group of autonomous
agents in a dynamical network. In Vicsek et al. (1995), Vicsek et al.
proposed a simple discrete-time model to study a group of au-
tonomous agents moving in the plane with the same speed but
different headings under noise perturbation, which in essence is
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the velocity consensus problem based on one of the heuristic rules
proposed earlier by Reynolds (1987). By using algebraic graph the-
ory (Fiedler, 1973) and similarly as some results in Bertsekas and
Tsitsiklis (1989), the linear Vicsek’s model was theoretically stud-
ied in Jadbabaie et al. (2003) and it was found that consensus in a
networkwith a switching topology can be reached if the network is
jointly connected frequently enough as the network evolves with
time. Lately, the study of the consensus problem was further ex-
tended to the case of directed networks (Cao, Morse et al., 2008;
Moreau, 2005;Olfati-Saber, 2004; Ren&Beard, 2005; Yu, Chen, and
Cao, 2010).

In the literature, most existing studies address the simple case
where agents are governed by first-order dynamics (Cao, Morse
et al., 2008; Cao, Ren et al., 2008; Jadbabaie et al., 2003; Olfati-
Saber, 2004; Ren & Beard, 2005; Vicsek et al., 1995). However,
second-order dynamics (Hong et al., 2008, 2006; Ren, 2008; Ren &
Atkins, 2007; Yu, Chen, and Cao, 2010; Yu, Chen, Cao, and Kurths,
2010) have recently received increasing attention due to many
real-world applications wheremobile agents are governed by both
position and velocity states. In Yu, Chen, and Cao (2010), some
necessary and sufficient conditions for second-order consensus
in linear multi-agent dynamical systems with directed topologies
and time delays were established. It was found that both the real
and imaginary parts of the eigenvalues of the Laplacian matrix
associatedwith the corresponding network topology play key roles
in reaching second-consensus. However, as shown in Hong et al.
(2006), Hong et al. (2008) and Ren (2008), the velocity states
of agents are often unavailable, therefore, some observers were
designed with additional variables involved, which led to the
investigation of higher-order dynamical systems.

In Cao, Ren et al. (2008) and Yu, Chen and Ren (2010), consensus
in first-order and second-order multi-agent systems was studied,
where information of both the current and delayed position states
was utilized. In Cao, Ren et al. (2008), it was shown that the delay-
involved algorithm converges faster than the standard consensus
protocol without time delays. It was surprisingly found in Yu, Chen
and Ren (2010) that consensus in a multi-agent system cannot
be reached without delayed position information under the given
protocol but it can be achieved with an even relatively small time
delay by appropriately choosing the coupling strengths, which
implies that delay can induce second-order consensus in some
multi-agent dynamical systems. In the existing delay-involved
consensus algorithms (Cao, Ren et al., 2008; Yu, Chen and Ren,
2010), however, all the position states in a certain time interval
have to be kept in memory, which requires more information and
induces higher energy cost.

On the other hand, hybrid systems are complex systems with
both continuous-time and discrete-time event dynamics, which
have beenwidely investigated recently in the literature. For exam-
ple, continuous-time systems with impulsive responses, sampled
data, quantization, to name just a few. Some real-world applica-
tions can be modeled by continuous-time systems together with
some discrete-time events. For example, an A/C unit containing
some discrete modes with on or off states, changes the tempera-
ture continuously over time. In this paper, sampled position data
will be used instead, which is memoryless since only position in-
formation at some particular time instants is needed. Therefore,
in order to utilize less information and to save energy, it is desir-
able to use only sampled data instead of the whole spectrum of
delayed information. By using only sampled position data in this
paper and without requiring the velocity information of agents in
second-order dynamics as in Hong et al. (2006), Hong et al. (2008)
and Ren (2008), it is found in this paper that second-order consen-
sus in multi-agent system can be reached by appropriately choos-
ing the sampling period. At this point, it should be noted that the
current paper relying on sampled position data allows for study-
ing a general directed network topology, while (Hong et al., 2008,
2006; Ren, 2008) relying on observers design typically deals with
an undirected network topology.

The main contributions of this paper include some neces-
sary and sufficient conditions derived for reaching second-order
consensus in multi-agent systems using sampled position data,
specifically showing that second-order consensus in a multi-agent
system using both current and sampled past position data can be
reached if and only if the sampling period is chosen from some par-
ticular time intervals depending on the coupling strengths and the
spectrum of the Laplacian matrix of the network.

The rest of the paper is organized as follows. In Section 2, some
preliminaries on graph theory and model formulation are given.
The main results about second-order consensus in multi-agent
dynamical systems with sampled position data are presented in
Section 3. In Section 4, numerical examples are given to illustrate
the theoretical analysis. Conclusions are finally drawn in Section 5.

2. Preliminaries

In this section, some basic concepts and results about algebraic
graph theory (Godsil & Royle, 2001) are first introduced.

LetG = (V, E,G) be aweighted directed graph of orderN , with
the set of nodes V = {v1, v2, . . . , vN}, the set of directed edges
E ⊆ V × V , and a weighted adjacency matrix G = (Gij)N×N . A
directed edge eij in network G is denoted by the ordered pair of
nodes (vi, vj), where vi and vj are called the parent and child nodes,
respectively, meaning that node vj can receive information from
node vi. In this paper, only positively weighted directed graphs are
considered, thus, Gij > 0 if and only if there is a directed edge
(vj, vi) in G; otherwise, Gij = 0.

A directed path from node vi to node vj in G is a sequence of
edges (vi, vi1), (vi1 , vi2), . . . , (vil , vj) in the directed network with
distinct nodes vik , k = 1, 2, . . . , l (Godsil & Royle, 2001; Horn &
Johnson, 1985).A root r is a node such that for each node v different
from r , there is a directed path from r to v. A directed tree is a
directed graph, in which there is exactly one root and every node
except for this root itself has exactly one parent.A directed spanning
tree is a directed tree consisting of all the nodes and some edges in
G. A directed graph contains a directed spanning tree if one of its
subgraphs is a directed spanning tree.

The second-order consensus protocol inmulti-agent dynamical
systems is described by Ren (2008), Ren and Atkins (2007) and Yu,
Chen, and Cao (2010)

ẋi(t) = vi,

v̇i(t) = α N−
j=1,j≠i

Gij(xj(t) − xi(t))

+β N−
j=1,j≠i

Gij(vj(t) − vi(t)), i = 1, 2, . . . ,N, (1)

where xi ∈ Rn and vi ∈ Rn are the position and velocity states of the
ith agent (node), respectively,α > 0 andβ > 0 are the coupling
strengths, and G = (Gij)N×N is the coupling configuration matrix
representing the topological structure of the network and thus
is the weighted adjacency matrix of the network. The Laplacian
matrix L = (Lij)N×N is defined by

Lii = −

N−
j=1,j≠i

Lij, Lij = −Gij, i ≠ j, (2)

which ensures the diffusion property that
∑N

j=1 Lij = 0. For
notational simplicity, n = 1 is considered throughout the paper,
but all the results obtained can be easily generalized to the case
with n > 1 by using the Kronecker product operations (Horn &
Johnson, 1991).
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In many cases, it is literally difficult to measure the relative
velocity difference between two neighboring agents. In Hong et al.
(2006), Hong et al. (2008) and Ren (2008), distributed observers
were designed for second-order multi-agent systems, where the
velocity states were assumed to be unavailable, i.e., β = 0,
and some slack variables were introduced and a higher-order
controller was designed. In this paper, only sampled position
data is used. It will be shown that second-order consensus can
be reached in the multi-agent dynamical systems under some
conditions even if the velocity states are unavailable. To do so,
the following consensus protocol with both current and sampled
position data is considered

ẋi(t) = vi,

v̇i(t) = α

N−
j=1,j≠i

Gij(xj(t) − xi(t)) − β

N−
j=1,j≠i

Gij

× (xj(tk) − xi(tk)), t ∈ [tk, tk+1), i = 1, . . . ,N, (3)

where tk are the sampling instants satisfying 0 = t0 < t1 < · · · <
tk < · · ·, and α and β are the coupling strengths. For simplicity,
assume that tk+1 − tk = T , where T > 0 is the sampling period.

In Cao, Ren et al. (2008) and Yu, Chen and Ren (2010), consensus
inmulti-agent systemswas studied, where information of both the
current and delayed position states data was used. In the existing
delay-involved consensus algorithms (Cao, Ren et al., 2008; Yu,
Chen and Ren, 2010), all the position states in the time interval
[t − τ , t] have to be kept in memory, where τ is the time delay
constant. In order to utilize less information and save energy, it is
desirable to use only sampled data instead of delayed information
in a spectrum of a time interval.

Definition 1. Second-order consensus inmulti-agent system (3) is
said to be achieved if, for any initial conditions,

lim
t→∞

‖xi(t) − xj(t)‖ = 0, lim
t→∞

‖vi(t) − vj(t)‖ = 0,

∀i, j = 1, 2, . . . ,N.

Because of (2), system (3) can be equivalently rewritten as
follows:

ẋi(t) = vi,

v̇i(t) = −α

N−
j=1

Lijxj(t) + β

N−
j=1

Lijxj(tk),

t ∈ [tk, tk+1), i = 1, 2, . . . ,N. (4)

The following notations will be used throughout the paper. Let
R(u) and I(u) be the real and imaginary parts of a complex
number u, 0 = µ1 ≤ R(µ2) ≤ · · · ≤ R(µN) be the N eigenvalues
of the Laplacian matrix L, Im ∈ Rm×m (ON ∈ Rm×m) be the m-
dimensional identity (zero) matrix, 1m ∈ Rm (0N ∈ Rm) be the

vector with all entries being 1 (0), and ‖a1 + ia2‖ =


a21 + a22 be

the norm of a complex number a1 + ia2 where i =
√

−1.

Lemma 1 (Ren & Beard, 2005). The Laplacian matrix L has a simple
eigenvalue 0 and all the other eigenvalues have positive real parts if
and only if the directed network has a directed spanning tree.

Lemma 2 (Horn & Johnson, 1985). The Kronecker product ⊗ has
the following properties: For matrices A, B, C and D of appropriate
dimensions,

(1) (A + B) ⊗ C = A ⊗ C + B ⊗ C;
(2) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

Lemma 3 (Parks & Hahn, 1993). Given a complex coefficient polyno-
mial of order two as follows:
g(s) = s2 + (ξ1 + iγ1)s + ξ0 + iγ0,

where ξ1, γ1, ξ0, and γ0 are real constants. Then, g(s) is stable if and
only if ξ1 > 0 and ξ1γ1γ0 + ξ 2

1 ξ0 − γ 2
0 > 0.

3. Second-order consensus in multi-agent dynamical systems
with sampled position data

Let ηi = (xi, vi)
T , A =


0 1
0 0


, and B =


0 0
1 0


. Then, system

(4) can be rewritten as

η̇i(t) = Aηi(t) − α

N−
j=1

LijBηj(t) + β

N−
j=1

LijBηj(tk),

t ∈ [tk, tk+1), i = 1, 2, . . . ,N. (5)

Note that a solution of an isolated node of system (5) satisfies

ṡ(t) = As(t), t ∈ [tk, tk+1), (6)

where s(t) = (s1, s2)T is the state vector. Let η = (ηT
1 , . . . , η

T
N)T

and rewrite system (5) in a matrix form:

η̇(t) = [(IN ⊗ A) − α(L ⊗ B)]η(t) + β(L ⊗ B)η(tk),

t ∈ [tk, tk+1), (7)

where ⊗ is the Kronecker product (Horn & Johnson, 1991). Let
J be the Jordan form associated with the Laplacian matrix L, i.e.,
L = PJP−1, where P is a nonsingular matrix. By Lemma 2, one has

ẏ(t) = (P−1
⊗ I2)[(IN ⊗ A) − α(L ⊗ B)]η(t)

+ β(P−1
⊗ I2)(L ⊗ B)η(tk)

= [(P−1
⊗ A) − α(JP−1

⊗ B)]η(t) + β(JP−1
⊗ B)η(tk)

= [(IN ⊗ A) − α(J ⊗ B)]y(t) + β(J ⊗ B)y(tk),

t ∈ [tk, tk+1), (8)

where y(t) = (P−1
⊗ I2)η(t). If the graph G is undirected, then

L is symmetric and J is a diagonal matrix with real eigenvalues.
However, when G is directed, some eigenvalues of L may be
complex, and J = diag(J1, J2, . . . , Jr), where

Jl =


µl 0 0 0

1
. . . 0 0

0
. . .

. . . 0
0 0 1 µl


Nl×Nl

, (9)

in which µl are the eigenvalues of the Laplacian matrix L, with
multiplicity Nl, l = 1, 2, . . . , r,N1 + N2 + · · · + Nr = N .

Let P = (p1, . . . , pN), P−1
= (q1, . . . , qN)T , y(t) = (P−1

⊗

I2)η(t) = (yT1, . . . , y
T
N)T , and yi = (yi1, yi2)T . Note that if the

network G contains a directed spanning tree, then by Lemma 1, 0
is a simple eigenvalue of the Laplacian matrix L, so

ẏ1(t) = Ay1(t), t ∈ [tk, tk+1). (10)

Theorem 1. Suppose that the networkG contains a directed spanning
tree. Then, second-order consensus in system (3) can be reached if and
only if, in (8),

lim
t→∞

‖yi‖ → 0, i = 2, . . . ,N. (11)

Proof. (Sufficiency). Since the network G contains a directed
spanning tree, p1 = 1N/

√
N is the unit right eigenvector of the

Laplacian matrix L associated with the simple zero eigenvalue
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µ1 = 0, where LP = PJ and P = (p1, . . . , pN). From limt→∞

‖yi‖ → 0 for i = 2, . . . ,N , one has

lim
t→∞

η(t) −
1

√
N

(y1(t)T , . . . , y1(t)T )T


= lim
t→∞

(P ⊗ I2)y(t) −
1

√
N

(y1(t)T , . . . , y1(t)T )T
 = 0,

where y1(t) satisfies (10). Therefore, second-order consensus in
system (3) is reached.

(Necessity). If second-order consensus in system (3) can be
reached, then there exists a vector η∗(t) ∈ R2 such that limt→∞

‖η(t)−1N ⊗η∗(t)‖ = 0. Then, one has 0N = P−1L1N = JP−11N =

J(qT11N , . . . , qTN1N)T . From the Jordan form (9) and 0 = µ1 <

R(µ2) ≤ · · · ≤ R(µN), one obtains qTi 1N = 0 for i = 2, . . . ,N .
Therefore, ‖yi(t)‖ = ‖(qTi ⊗ I2)η(t)‖ → ‖(qTi 1N) ⊗ η∗(t)‖ = 0, as
t → ∞, for all i = 2, . . . ,N . �

Corollary 1. Suppose that the network G contains a directed span-
ning tree. Then, second-order consensus in system (3) can be reached
if and only if the following N − 1 systems are asymptotically stable:

żi(t) = (A − αµiB)zi(t) + βµiBzi(tk),

t ∈ [tk, tk+1), i = 2, . . . ,N. (12)

Proof. (Necessity). If limt→∞ ‖yi‖ → 0 for i = 2, . . . ,N , then the
N − 1 systems (12) are asymptotically stable since the variables in
(12) are the first term of each Jordan block in system (8).

(Sufficiency). It suffices to prove that if the N − 1 systems
(12) are asymptotically stable, then limt→∞ ‖yi‖ → 0 for
i = 2, . . . ,N . From the properties of the Jordan form (9), the
asymptotical behavior in system (8) is dominated by the diagonal
terms, therefore the conclusion follows. �

Until now, it is still very hard to check the conditions (11)
and (12) in Theorem 1 and Corollary 1 which do not reveal how
network structure affects the consensus behavior. Next, a theorem
is derived to ensure consensus depending on the control gains,
spectra of the Laplacian matrix, and the sampling period.

Theorem 2. Suppose that the networkG contains a directed spanning
tree. Then, second-order consensus in system (3) can be reached if and
only if

0 <
β

α
< 1, (13)

and

f (α, β, µi, T ) =
(β/α)2

1 − (β/α)


sin2(diT ) − sinh2(ciT )


×

cosh(ciT ) − cos(diT )

2
− 4 sin2(diT ) sinh2(ciT ) > 0, i = 2, . . . ,N,

(14)

where ci =


|α|(‖µi‖−sign(α)R(µi))

2 and di =


|α|(‖µi‖+sign(α)R(µi))

2 .

Proof. It suffices to prove that system (12) is asymptotically stable
if and only if the conditions (13) and (14) are satisfied.

From (12), it follows that
e−(A−αµiB)tzi(t)

′

= e−(A−αµiB)tβµiBzi(tk), t ∈ [tk, tk+1). (15)

Let zi = (zi1zi2)T in (12). If α = 0, then system (12) is z̈i1 =

βµizi1(tk) for t ∈ [tk, tk+1), which is unstable. Thus, α ≠ 0.
Since µi ≠ 0 for i = 2, . . . ,N, (A − αµiB) =


0 1

−αµi 0


is

nonsingular and (A − αµiB)−1
=


0 −1/αµi
1 0


. Integrating both

sides of (15) from tk to t , one has

zi(t) = e(A−αµiB)(t−tk)

I2 + (A − αµiB)−1βµiB


zi(tk)

− (A − αµiB)−1βµiBzi(tk)

= e(A−αµiB)(t−tk)

1 − β/α 0

0 1


zi(tk)

+


β/α 0
0 0


zi(tk), t ∈ [tk, tk+1). (16)

If the sampled data is missing, i.e., β = 0, it is easy to see that
A − αµiB has at least one eigenvalue with a nonnegative real part
and it thus follows from (16) that zi(t) = e(A−αµiB)(t−tk)zi(tk), which
is unstable.

Next, it is to show that by introducing sampled position data,
the state in (16) is asymptotically stable.

Let aj + ibj be the eigenvalues of (A − αµiB), j = 1, 2. Then,
one has

a2j − b2j = −αR(µi),

2ajbj = −αI(µi).

The solutions of aj + ibj can be classified according to two cases,
i.e., α > 0 and α < 0.

Case I (α > 0). By simple calculation, one obtains

a1 + ib1 = ci − idi, a2 + ib2 = −ci + idi, if I(µi) ≥ 0,
a1 + ib1 = ci + idi, a2 + ib2 = −ci − idi, if I(µi) < 0,

(17)

where ci =


α(‖µi‖−R(µi))

2 and di =


α(‖µi‖+R(µi))

2 . Without loss
of generality, assume that I(µi) ≥ 0. For the case of I(µi) < 0, the
derived conditions in (13) and (14) of the asymptotical stability of
system (16) for both I(µi) ≥ 0 and I(µi) < 0 are the same, since
f (α, β, µi, T ) is an even function on ci and di.

Let ϱ1(t) = cosh((ci − idi)(t)) and ϱ2(t) = sinh((ci − idi)(t)).
By calculation, one obtains

e(A−αµiB)(t−tk) =


ϱ1(t − tk) ϱ2(t − tk)/(ci − idi)

(ci − idi)ϱ2(t − tk) ϱ1(t − tk)


.

(18)

Substituting (18) into (16), one has

zi(t) =


ϱ1(t − tk)(1 − β/α) + β/α ϱ2(t − tk)/(ci − idi)
(ci − idi)ϱ2(t − tk)(1 − β/α) ϱ1(t − tk)


× zi(tk), t ∈ [tk, tk+1). (19)

Let C(t) =


ϱ1(t)(1 − β/α) + β/α ϱ2(t)/(ci − idi)

(ci − idi)ϱ2(t)(1 − β/α) ϱ1(t)


. It is easy to see

that C(t) is bounded on [0, T ]. So, for 0 = t0 < t1 < · · · < tk < · · ·

and tk+1 − tk = T , one has

zi(t) = C(t − tk)Ck(T )zi(t0), t ∈ [tk, tk+1). (20)

Since C(t − tk) is bounded when t ∈ [tk, tk+1), zi(t) → 0 if and
only if all eigenvalues λ of C(T ) satisfy ‖λ‖ < 1.

Let |λI2 − C(T )| = 0, one has

λ2
−


2 cosh((ci − idi)T ) +

β

α


1 − cosh((ci − id)iT )


λ

+


1 −

β

α


+

β

α
cosh((ci − idi)T ) = 0. (21)
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Let λ =
s+1
s−1 . Then, (21) can be transformed to

0 = (1 − cosh((ci − idi)T ))


1 −

β

α


s2 +

β

α
(1

− cosh((ci − idi)T ))s + (1 + cosh((ci − idi)T )). (22)

It is well known that ‖λ‖ < 1 in (21) if and only if R(s) < 0 in
(22). Therefore, zi(t) → 0 if and only if all the roots in (22) have
negative real parts.

If cosh((ci − idi)T ) = 1 or β

α
= 1, then C(T ) has an eigenvalue

λ = 1. Therefore, (1 − cosh((ci − idi)T ))

1 −

β

α


≠ 0 and (22)

can be simplified to

s2 +
β/α

1 − β/α
s +

(1 + cosh((ci − idi)T ))

(1 − β/α) (1 − cosh((ci − idi)T ))
= 0. (23)

Let Di =
1+cosh((ci−idi)T )

1−cosh((ci−idi)T )
. By Lemma 3, (23) is stable if and only if

β

α


β

α
− 1


< 0 (24)

and

(β/α)2

1 − (β/α)
R(Di) > I2(Di). (25)

By solving (25), one obtains the condition (14). Therefore, zi(t) →

0 if and only if both (13) and (14) are satisfied. By Corollary 1,
second-order consensus in system (3) is reached if and only if both
(13) and (14) are satisfied.

Case II (α < 0). By simple calculation, one obtains

a1 + ib1 = ci − idi, a2 + ib2 = −ci + idi, if I(µi) ≥ 0,
a1 + ib1 = ci + idi, a2 + ib2 = −ci − idi, if I(µi) < 0,

(26)

where ci =


−α(‖µi‖+R(µi))

2 and di =


−α(‖µi‖−R(µi))

2 . The rest of
the proof is similar to that of Case I. �

Remark 1. In Theorem 2, a necessary and sufficient condition for
second-order consensus in the multi-agent dynamical system (3)
is established. For a given network, one can design appropriate
α, β , and T such that the conditions (13) and (14) in Theorem 2 are
satisfied. It is interesting to see that f increases as the parameter
β/α increases. Thus, one can choose a large value of β/α such that
(14) holds. Since the condition (14) holds for all i = 2, . . . ,N ,
one can find a stable consensus region as follows: S = {c +

id | f (α, β, c + id, T ) > 0}, where c and d are real. Then, the
problem is transformed to finding if all the nonzero eigenvalues
of the Laplacian matrix lie in the stable consensus region S, i.e.,
µi ∈ S for all i = 2, . . . ,N . In Duan, Chen, and Huang (2009) and
Liu, Duan, Chen, and Huang (2007), disconnected synchronization
regions of complex networks were discussed. It was shown that
there indeed exist some disconnected synchronization regions for
several particular complex networks when the synchronous state
is an equilibrium point. In this paper, by introducing sampled
position data in the consensus algorithm, it will be shown in the
simulation that there exist somedisconnected regions for choosing
appropriate sampling periods.

Corollary 2. Suppose that the network G contains a directed spa-
nning tree and all the eigenvalues of its Laplacianmatrix are real. Then,
second-order consensus in system (3) can be reached if and only if

0 < β < α (27)
and
√

αµiT ≠ kπ, i = 2, . . . ,N, k = 0, 1, . . . . (28)

Proof. If α > 0, then ci = 0 and di =
√

αµi. Therefore,
sinh(ciT ) = 0 and cosh(ciT ) = 1. The condition in (14) can be
simplified to

(β/α)2

1 − (β/α)
sin2(diT )


1 − cos(diT )

2

> 0, i = 2, . . . ,N, (29)

which is equivalent to the conditions (27) and (28).
If α < 0, then ci =

√
−αµi and di = 0. The condition in (14) is

(β/α)2

1 − (β/α)


− sinh2(ciT )


(cosh(ciT ) − 1)2 > 0,

i = 2, . . . ,N, (30)

which cannot be satisfied sinceβ/α < 1 according to the condition
(13). �

Remark 2. If all the eigenvalues of the Laplacian matrix are real,
which includes the undirected network as a special case, then the
condition (28), i.e., T ≠

kπ
√

αµi
, is very easy to be verified and

applied. It is quite interesting to see that second-order consensus in
themulti-agent system (3) can be reached if and only if 0 < β < α
and the sampling period T is not of some particular value.

Usually, the convergence rate around the critical points T =
kπ

√
αµi

is very slow. Therefore, it is hard to achieve better perfor-
mance for a large T in a very large-scale network. A corollary is
given below to simplify the theoretical analysis.

Corollary 3. Suppose that the network G contains a directed span-
ning tree and all the eigenvalues of its Laplacian matrix are real. Then,
second-order consensus in system (3) can be reached if (27) is satis-
fied and

0 < T <
π

√
αµN

. (31)

Corollary 3 implies that if the network G contains a directed
spanning tree and all the eigenvalues of the Laplacian matrix are
real, then second-order consensus in system (3) can be reached
provided that the sampling period is less than the critical value

π
√

αµN
depending on the largest eigenvalue of the Laplacian matrix.

However, to our surprise, second-order consensus in system (3)
cannot be reached in a general directed network with complex
Laplacian eigenvalues for a sufficiently small or a sufficiently large
sampling period T .

Corollary 4. Suppose that the network G contains a directed span-
ning tree and there is at least one eigenvalue of its Laplacian matrix
with a nonzero imaginary part. Then, second-order consensus in the
system (3) cannot be reached for a sufficiently small or a sufficiently
large sampling period T .

Proof. Without loss of generality, suppose that I(µk) ≠ 0, 2 ≤

k ≤ N . Then, from the condition (14), one has ck ≠ 0 and dk ≠ 0.
Consider the following Taylor Series for a sufficiently small T :

sinh(ckT ) = ckT +
(ckT )3

3!
+ o(T 3)

cosh(ckT ) = 1 +
(ckT )2

2!
+ o(T 3)
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sin(dkT ) = dkT −
(dkT )3

3!
+ o(T 3)

cos(dkT ) = 1 −
(dkT )2

2!
+ o(T 3). (32)

Substituting (32) into (14), one has

f (α, β, µk, T ) =
(β/α)2

1 − (β/α)


sin2(dkT ) − sinh2(ckT )


×


cosh(ckT ) − cos(dkT )

2

− 4 sin2(dkT ) sinh2(ckT )

=
(β/α)2

4(1 − (β/α))
(c2k − d2k)

3T 6
+ o(T 6)

− 4c2k d
2
kT

2
− o(T 2) > 0 (33)

which cannot be satisfied for a sufficiently small sampling period
T since ck ≠ 0 and dk ≠ 0.

If the sampling period T is sufficiently large, then sin2(dkT ) −

sinh2(ckT ) < 0 for ck ≠ 0 and dk ≠ 0, and thus the condition (14)
is not satisfied. �

Remark 3. If the network G contains a directed spanning tree
and all the eigenvalues of the Laplacian matrix are real, then
second-order consensus in system (3) can be reached for a
sufficiently small sampling period T as stated in Corollary 2.
However, if there is at least one eigenvalue of the Laplacian matrix
having a nonzero imaginary part, then second-order consensus
cannot be reached for a sufficiently small sampling period T as
shown in Corollary 4, which is inconsistent with the common
intuition that the consensus protocol (3) should be better if the
sampled information is more accurate for a small sampling period.
Interestingly, the nonzero imaginary part of the eigenvalue of the
Laplacian matrix leads to possible instability of consensus.

4. Simulation examples

4.1. Second-order consensus in a multi-agent system with an undi-
rected topology

Consider the multi-agent system (3) with an undirected topol-

ogy, where L =

 3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1


, α = 1, and β = 0.8. By

simple calculation, one has µ1 = 0, µ2 = 1, µ3 = 3, and µ4 = 4.
From Corollary 2, the system can reach second-order consensus if
and only T ≠

kπ
√

αµi
, for i = 2, 3, 4 and k = 0, 1, . . . . It is easy to

obtain kπ
√

αµ4
≈ 1.5708, kπ

√
αµ3

≈ 1.8138, and kπ
√

αµ2
≈ 3.1416. Con-

sider the sampling period T as a variable of f (α, β, µi, ·). The states
of T vs. f are shown in Fig. 1. It is easy to see that second-order
consensus in the system can be reached if T = 1.0, T = 1.57, or
T = 2.5, while the convergence is not goodwhen T = 1.57 around
the critical point kπ

√
αµ4

. The position and velocity states of all the
agents are shown in Fig. 2.

4.2. Second-order consensus in a multi-agent system with a directed
topology

Consider the multi-agent system (3) with a directed topology,

where L =

 2 0 −2 0
−1 1 0 0
0 −5 5 0
0 −1 0 1


, α = 1, and β = 0.8. By simple
Fig. 1. States of f (α, β, µi, ·) vs. the sampling period T , i = 2, 3, 4.

a b c

Fig. 2. Position and velocity states of agents, where T = 1.0 (a), T = 1.57 (b), and
T = 2.5 (c).

Fig. 3. States of f (α, β, µi, ·) vs. the sampling period T , i = 1, 2, 3, 4.
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a b c d

Fig. 4. Position and velocity states of agents, where T = 0.1 (a), T = 1.0 (b),
T = 1.5 (c), and T = 2.0 (d).

calculation, one has µ1 = 0, µ2 = 1, µ3 = 4 + i, and µ4 =

4 − i. From Theorem 2, the multi-agent system can reach second-
order consensus if and only if f (α, β, µi, T ) > 0, for i = 2, 3, 4.
Consider the sampling period T as a variable of f (α, β, µi, ·). The
states of T vs. f are shown in Fig. 3. It is easy to see that second-
order consensus in the system can be reached if T = 1.0, or
T = 2.0, while it cannot be reached for a sufficiently small T = 0.1
according to Corollary 4 or T = 1.5 where f (α, β, µ3, T ) < 0.
Moreover, when Fig. 3 is amplified around the origin as in the inner
fig (a), there are two same lines with complex eigenvalues, i.e.,
f (α, β, µ3, ·) and f (α, β, µ4, ·) under the zero. If Fig. 3 is further
amplified around the origin as in the inner fig (b), there is one line
with a real eigenvalue, i.e., f (α, β, µ2, ·), above zero. The position
and velocity states of all the agents are shown in Fig. 4.

From Figs. 1 and 3, one can see that if the eigenvalue µi of
the Laplacian matrix is real, then f (α, β, µi, T ) > 0 except
at some critical points T =

kπ
√

αµi
where f = 0. However,

if the eigenvalue µi of the Laplacian matrix is complex with a
nonzero imaginary part, then f (α, β, µi, T ) ≤ 0 for a sufficiently
small T or a sufficiently large T . In this case, still, there may
be some disconnected stable consensus regions by choosing an
appropriate sampling period T as shown in Fig. 4. Therefore,
the design of an appropriate sampling period T plays a key role
in reaching consensus. In addition, one can design appropriate
coupling strengths α and β such that second-order consensus
in the multi-agent system (3) can be reached, as guaranteed by
theory. Details are omitted due to space limitations.

5. Conclusions

In this paper, second-order consensus inmulti-agent dynamical
systems with sampled position data is investigated. A distributed
linear consensus protocol in the second-order dynamics is
designed based on both current and sampled position data. It
is found that second-order consensus in a multi-agent system
cannot be reached without sampled position data under the given
protocol but it can be achieved by appropriately choosing the
sampling period. A necessary and sufficient condition for reaching
consensus in multi-agent dynamical systems is established and
demonstrated.

There are still a number of related interesting problems de-
serving further investigation. For example, it is desirable to study
multi-agent systems with nonuniform sampling intervals, non-
linear dynamics with time-varying velocities (Yu, Chen, Cao, and
Kurths, 2010), more general consensus protocols, and so on, some
of which will be investigated in the near future.
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