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Abstract—This paper studies general higher order distributed
consensus protocols in multiagent dynamical systems. First, net-
work synchronization is investigated, with some necessary and suf-
ficient conditions derived for higher order consensus. It is found
that consensus can be reached if and only if all subsystems are
asymptotically stable. Based on this result, consensus regions are
characterized. It is proved that for the th-order consensus, there
are at most � � �� � disconnected stable and unstable con-
sensus regions. It is shown that consensus can be achieved if and
only if all the nonzero eigenvalues of the Laplacian matrix lie in
the stable consensus regions. Moreover, the ratio of the largest to
the smallest nonzero eigenvalues of the Laplacian matrix plays a
key role in reaching consensus and a scheme for choosing the cou-
pling strength is derived. Furthermore, a leader-follower control
problem in multiagent dynamical systems is considered, which re-
veals that to reach consensus the agents with very small degrees
must be informed. Finally, simulation examples are given to illus-
trate the theoretical analysis.

Index Terms—Algebraic graph theory, consensus region, higher
order consensus, leader-follower control, multiagent system.

I. INTRODUCTION

C OLLECTIVE behaviors in groups of autonomous mobile
agents are commonly concerned issues for study due to

the observation of animal group behaviors, such as flocking and
swarming, and their wide applications in biological systems,
sensor networks [36], unmanned air vehicle (UAV) formations,
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robotic teams, etc. The study of collective behaviors aims to
understand how cooperative group behaviors arise as a result
of distributed local interactions among mobile individuals who
only share information with their neighbors and simultaneously
try to agree on certain global criteria of common interest.

Recently, much progress has been achieved in the study of
collective behaviors of multiagent dynamical systems, such as
consensus [4], [9], [10], [13], [18], [21]–[24], [33], [34], [36],
synchronization [1], [5], [6], [14], [16], [17], [20], [27], [29],
[31], [32], [35], [37], [38], and swarming and flocking [19], [25],
[26]. Many investigations have been devoted to constructing
conditions under which an agreement can be reached among a
group of autonomous agents in a dynamically changing envi-
ronment. In [26], Vicsek et al. proposed a simple discrete-time
model to study a group of autonomous agents moving in the
plane with the same speed but different headings, which by na-
ture is a simplified version of the model introduced earlier by
Reynolds to animate flocking behaviors [25]. Based on the al-
gebraic graph theory [8], the study of Vicsek’s model and its
continuous-time counterpart has shown that consensus in a net-
work with a dynamically changing topology can be reached if
and only if the time-varying network topology contains a span-
ning tree frequently enough as the network evolves in time [4],
[13], [18], [23].

Most existing reports on the consensus problem focus on the
case where agents are governed by first-order dynamics [4],
[13], [18], [23], [24] or second-order dynamics [9], [10], [21].
[22], [33], [34]. First-order consensus can be achieved if and
only if the fixed network structure contains a directed span-
ning tree [13], [23]. In [22], it was shown that second-order
consensus in linear multiagent systems can be reached if and
only if the linear multiagent dynamical system has exactly two
zero eigenvalues and all the other eigenvalues have negative real
parts. However, for a general directed network, second-order
consensus may fail even if the network contains a directed span-
ning tree [22]. In [33], some necessary and sufficient condi-
tions for second-order consensus in multiagent dynamical sys-
tems with directed topologies were established. It was shown
that both the real and imaginary parts of the eigenvalues of the
Laplacian matrix of the corresponding network topology play
key roles in reaching consensus.

Very recently, some higher order consensus algorithms in co-
operative control of multiagent systems were studied in [24]
based on the results derived in [22]. However, only third-order
consensus was discussed there. In this paper, a general higher
order consensus protocol is considered based on the transverse
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stability to the consensus manifold, which is originated from
the study of synchronization in complex networks [27]. In [15],
the notion of consensus region was first proposed to address the
consensus problem in multiagent systems with general higher
order dynamics based on observers design. However, in this
paper, consensus in multiagent systems with classical higher
order dynamics is considered and more detailed analysis about
computing consensus regions is explicitly given for this partic-
ular consensus protocol. A detailed analysis of the higher order
consensus algorithms is a prerequisite step to introduce more
realistic dynamics into the model of each individual agent for
future studies.

The main contribution of this paper is that some necessary
and sufficient conditions are obtained for ensuring higher order
consensus in multiagent dynamical systems and it is found
that consensus can be reached if and only if all subsystems
are asymptotically stable. Another contribution is a charac-
terization of the stable consensus regions, and that consensus
can be achieved if and only if all the nonzero eigenvalues of
the Laplacian matrix lie in the stable consensus regions. It
is also found that for the th-order consensus, there are at
most disconnected stable and unstable consensus
regions. Moreover, it is shown that the ratio of the largest to
the smallest nonzero eigenvalues of the Laplacian matrix plays
a key role in reaching consensus and a scheme for choosing
a corresponding coupling strength is derived. Furthermore,
a leader-follower control problem in multiagent dynamical
systems is considered, which reveals that to reach consensus
the agents with very small degrees must be informed.

The rest of the paper is organized as follows. In Section II,
some preliminaries on graph theory and model formulation are
given. Some higher order consensus algorithms for multiagent
dynamical systems are proposed in Section III. In Section IV,
leader-follower control of multiagent systems is discussed,
where each agent is governed by higher order dynamics. In
Section V, numerical examples are simulated to illustrate
the theoretical analysis. Conclusions are finally drawn in
Section VI.

II. PRELIMINARIES

In this section, some basic concepts and results about alge-
braic graph theory and model formulation are briefly introduced.

Let be a weighted undirected network of
order , with a set of nodes , a set of
undirected edges , and a weighted adjacency ma-
trix . An edge in the network is de-
noted by the unordered pair of nodes . By the defini-
tion of adjacency matrices for weighted graphs [11], weights

are all positive if and only if there is an edge
in . In this paper, only positively weighted networks

are considered. A path between nodes and is a sequence
of edges, , in the network with
distinct nodes , . An undirected network is
connected if there is a path between any pair of distinct nodes

and in , , .

Consider the following th-order dynamics in a multiagent
system:

...

(1)

where are the states of the th node, which denotes
the st derivative of , , and is the con-
trol input. For notational simplicity, only is considered
throughout the paper. One can easily generate the results to the
case of by using Kronecker products [12].

Definition 1: The multiagent system (1) is said to achieve the
th-order consensus if, for any well-defined initial conditions,

In order to achieve the th-order consensus, the following
control input protocol is designed [24]:

(2)

where is the outer coupling strength, are the inner
coupling strengths, is the coupling configura-
tion matrix representing the topological structure of the network
and thus is the weighted adjacency matrix of the network, and
the Laplacian matrix is defined by

(3)

which ensures the diffusion property that .
Lemma 1: [11] The Lapacian matrix in an undirected net-

work is symmetric and positive semi-definite. Moreover, has
a simple eigenvalue 0 and all the other eigenvalues are positive
if and only if the undirected network is connected.

Note that when , the consensus algorithm (1), (2)
reduces to the well-known first-order consensus protocol [13],
[17], [18], [23], [27], [29], [31]–[33], [35], [37], [38]

(4)

Note also that, the control input (2) can be rewritten in a simpler
equivalent form

(5)

Throughout the paper, let be
the eigenvalues of the Laplacian matrix , and

be a vector with all entries being 1 (0).
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III. THE TH-ORDER CONSENSUS IN A GENERAL FORM

A. Synchronization in Complex Networks

Consider a complex dynamical network consisting of iden-
tical nodes with linearly diffusive coupling [17], [27], [29], [31],
[32], [35], [37], [38]

(6)

where is the state vector of the th node,
with being a matrix describing the dynamics of
each single node, is the inner coupling matrix, and

is the adjacency matrix, , .
Note that a solution of an isolated node satisfies

(7)

where is the state vector. Here, only a
linear model is considered. For a general form
of , can be an equilibrium point, a periodic orbit, or
even a chaotic orbit. For more details about synchronization in
complex networks with nonlinear dynamics, see [17], [27], [29],
[31], [32], [35], [37], [38]. The goal of synchronization in com-
plex networks is to achieve

.
Let and rewrite system (6) into a matrix

form

(8)

Let be the diagonal matrix associated
with , i.e., there exists a unitary matrix such that

. Then, one has

Let . Then, the above
complex network model can be written as

or

(9)

Theorem 1: Suppose that the network is connected. Syn-
chronization in network (8) can be reached if and only if the
following linear systems are asymptotically stable:

(10)

Proof: (Sufficiency). Since the network is connected,
is the unit eigenvector of the Laplacian matrix

associated with the simple zero eigenvalue. From (9), one has
, where and .

It is easy to verify that is the unit eigenvector of
the Laplacian matrix associated with the eigenvalue 0, i.e.,

. Since the systems in (10) are asymptotically
stable, one has for . Therefore,

where .
(Necessity). If synchronization in network (8) can be

reached, then there exists a vector such that
. Since

, one has for .
Therefore, ,
as for all . This completes the proof.

B. The th-Order Consensus in a General Form

If one chooses ,

...
. . .

. . .
...

. . .
, and

...
. . . , then the th

protocol in multiagent systems (1) with the control input (5)
is a special model of the complex network (6). Thus, the

th-order consensus problem in system (1) with the control
input (5) can be transformed to the synchronization problem

, in a network,

which has just been discussed above.
Remark 1: In [22] and [24], second-order and third-order

consensus in multiagent systems were studied by solving linear
systems (8). It has been shown that second-order (third-order)
consensus can be reached if and only if
has exactly two (three) zero eigenvalues and all the other eigen-
values have negative real parts. Theorem 1 above generates the
results in [22] and [24] to any positive integer by using a dif-
ferent method originated from synchronization in complex net-
works, i.e., employing the transverse stability to the synchro-
nization manifold. In [7], the stability in cooperative networks
with identical linear subsystems was considered where the equa-
tion with , which is not in condition (10) of Theorem 1
here, also needs to be checked.

Corollary 1: Suppose that the network is connected. The
th-order consensus in the multiagent system (1) with protocol

(5) can be reached if and only if the real parts of the roots in the
following equations are all negative:

(11)

i.e., polynomial (11) is stable.
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Proof: Let be an eigenvalue of matrix . Then,
one has . Note that

...
. . .

. . .
...

. . .

where the last equation is obtained by determinantal expansion
in the last row. Equation (10) is asymptotically stable if and only
if the real parts of the roots in (11) are all negative. The proof is
completed.

Remark 2: If and , then first-order con-
sensus can be achieved if and only if the network is connected
[13], [23]. If , then the real parts of the roots in

are all negative if the network is connected
and thus second-order consensus can be reached. However, for a
general directed network, second-order consensus may fail even
if the network contains a directed spanning tree [22]. In [33],
some necessary and sufficient conditions for second-order con-
sensus in multiagent dynamical systems with directed topolo-
gies were derived. Similarly, consensus in multiagent systems
with specific higher order dynamics was discussed in [28]. How-
ever, in this paper, the results are based on a general frame-
work, i.e., synchronization in complex networks, and consensus
in multiagent systems with general identical linear subsystems
(8) are studied. It should also be noted that the necessary and
sufficient conditions in Theorem 1 and Corollary 1 can be used
to study consensus in general directed networks where are
complex values, , as discussed in [28].

C. Consensus Region in the th-Order Consensus

It is intuitively to see that Routh-Hurwitz criterion [3] can be
applied to obtain a necessary and sufficient condition by solving
the stability of (11) in Corollary 1. However, this approach could
result in the calculation of many high-order polynomial inequal-
ities, which are very complicated and cannot be implemented for
a general system.

Notice that it is generally difficult to check if (11) is stable
for a large-scale network. As an alternative, let be a vari-
able and

be the stable consensus region. Then, the problem
is transformed to find if all the nonzero eigenvalues of the Lapla-
cian matrix scaled by a factor lie in the stable consensus region

. Consequently, the following criterion can be easily verified.
Corollary 2: Suppose that the network is connected. The
th-order consensus in the multiagent system (1) with protocol

(5) can be reached if and only if

(12)

Let ,
where . Therefore, if the polynomial
is robustly stable for all , the stability of all

the polynomials in (11) can be obtained. Consequently, the fol-
lowing well-known Kharitonov’s Theorem in robust control can
be applied.

Proposition 1: (Kharitonov’s Theorem [3]) Suppose that
the network is connected. The th-order consensus in the
multiagent system (1) with protocol (5) can be reached if
the four Kharitonov polynomials of with parameters

are stable.
The computation of stability of four Kharitonov polynomials

is very simple. However, the obtained condition in Proposition
1 is only sufficient since one needs to check if the polynomial

is robustly stable for all . Note that in
Corollary 1, in order to reach th-order consensus in the mul-
tiagent system (1), one only needs to check the stability of the
polynomial at some discrete points .
In some particular cases, if the stable consensus regions are dis-
connected, the four Kharitonov polynomials may be unstable;
however, all the nonzero eigenvalues of the Laplacian matrix
scaled by a factor can still lie in these disconnected stable con-
sensus regions.

In order to obtain a necessary and sufficient condition for
reaching th-order consensus in the multiagent system (1), the
objective next is to find the structure of the stable consensus
region . In [6], [16], disconnected synchronization regions of
complex networks were discussed. It was shown that there exist
some disconnected synchronization regions in several particular
complex networks when the synchronous state is an equilibrium
point. In the following, a general th-order dynamical multia-
gent system (6) is considered, with corresponding criteria de-
rived.

Lemma 2: Consider the polynomial

where are constants. As is varied, the
sum of the orders of the zeros of on the open right-half
plane can change only if a zero appears on or crosses the imag-
inary axis.

Proof: The zeros of continuously depend on the pa-
rameter . The result thus follows.

Lemma 3:
has a purely imaginary root if and only if

is even,

is odd,

(13)

where and
.

Proof: It is easy to see that has zero roots if
and only if . Let . Then, one can show
that has a purely imaginary root if and only if

(14)
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If , where is a positive integer, then by separating the
real and imaginary parts of (14), one obtains

(15)
Let . Then,
has at most elements. Thus, from (15), one obtains

.
If , where is a positive integer, one can similarly

get

(16)
The proof is thus completed.

From Lemma 3, one can see that there exist at most
different positive values of such that has a

purely imaginary root, where represents the integer
part of the real number . Without loss of generality,
suppose that there are different positive values,

, such that has a
purely imaginary root if and only if for some

. Let , .
Lemma 4: Suppose that the network is connected. If there

exists a positive value such that
is stable (unstable), then, for any

, is stable
(unstable), where
has a purely imaginary root when , .

Proof: If is stable
(unstable), then all the roots of the polynomial have negative
real parts (at least one root has a positive real part). By Lemma
3, one knows that when or , has a purely
imaginary root. In view of Lemma 2, the sum of the orders of
the zeros of on the open right-half plane cannot change if

. This completes the proof.
The positive real axis is now partitioned into inter-

vals and points: .
is not stable when , . From

Lemma 4, in each interval , the sum of the orders of the zeros
of on the open right-half plane or left-half plane remains
the same for all , .

Definition 2: is called a stable consensus region if, for any
, is stable;

otherwise, is called an unstable consensus region.

From Lemma 4, it is easy to see that the positive real axis is
partitioned into several stable and unstable consensus regions. In
[14], [16], the synchronization regions of complex networks are
classified into three types: unbounded region, bounded region,
and empty region. Here, in the th-order consensus problem,
the stable consensus region can be any of these three types or
even a union of them which may be composed of several dis-
connected stable consensus regions, as pointed out in [6].

Theorem 2: Suppose that the network is connected. The
th-order consensus in the multiagent system (1) with protocol

(5) can be reached if and only if

(17)

where and is a stable consensus
region,

Remark 3: For , 2, one can easily check that all the
roots of have negative real parts, thus the stable con-
sensus region is . However, this may not be true for

. By computing , where
has a purely imaginary root as in Lemma 3,

one can easily get disconnected regions, ,
. In view of Lemma 4, stable and unstable con-

sensus regions can be derived.
Corollary 3: Suppose that the network is connected and

is a stable region for some , . If
, then there exists a value , such that

for all . Thus, the th-order consensus
in the multiagent system (1) with protocol (5) can be reached.

Proof: It suffices to prove that there exits a such
that and . Let ,
where is a positive constant. One can choose such that

, where is a sufficiently small positive value.
From the condition , one has

. Letting be sufficiently small
completes the proof.

Remark 4: If or , then the condition
is satisfied. The eigen-ratio

can be considered as the consensus ability of the network. The
smaller the , the easier the network reaches consensus
by choosing an appropriate value of .

IV. LEADER-FOLLOWER CONTROL IN MULTIAGENT SYSTEMS

In this section, the leader-follower control problem in multi-
agent systems is discussed. Assume that the leader evolves ac-
cording to the following dynamics:

...

(18)

where are the states of the leader and is a control
input.
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In this subsection, the dynamics of all the followers, labeled
, are governed by the multiagent system (1) with the

control input

(19)

where are the coupling strengths, . If
, then the follower can get the leader’s information; if
, the leader’s states are not available for the follower .

Therefore, only a small fraction of agents can sense the leader’s
information.

Let denote the relative error states to the

leader, , and . Then,
the error dynamics can be written as

(20)

where and .
Lemma 5: [5] If the network is connected,

for , and , for all , then all
eigenvalues of the matrix

...
...

. . .
...

are positive for any constant .
From Lemma 5, one knows that is positive definite

if the network is connected and there is at least one positive
diagonal element in . Let be the
eigenvalues of .

Corollary 4: Suppose that the network is connected. All
agents in the multiagent system (1) with the control input (19)
can follow the leader in (18) asymptotically if and only if the real
parts of the roots in the following equations are all negative:

(21)

Proof: By following the same arguments as in Theorem 1
and Corollary 1, the result can be easily proved.

Similar to Lemmas 3 and 4, one can compute , where
has a purely imaginary

root when , .
Theorem 3: Suppose that the network is connected. All

agents in the multiagent system (1) with the control input (19)
can follow the leader in (18) asymptotically if and only if

(22)

where and is a stable consensus
region, .

From Theorems 2 and 3, it is easy to see that the computation
of stable consensus regions in Lemma 2 plays a key role in the

th-order consensus and leader-follower control of multiagent

systems. The eigenvalues of may lie in different stable re-
gions. Since all the eigenvalues of can be changed by choosing
different followers, i.e., with different where , it is de-
sirable if all these eigenvalues lie in a particular stable region.

Corollary 5: Suppose that the network is connected and
is a stable region for some , .

If

(23)

then all agents in the multiagent system (1) with the control
input (19) can follow the leader in (18) asymptotically.

Proof: If is a stable region, then under condition (23),
one has and , which indicates that

for all . This completes the proof.
Note that it is impossible for all agents to sense the leader in

reality. To reduce the number of informed agents, some local
feedback injections may be applied to a fraction of network
nodes, which is known as pinning control [5], [35], [38]. It is
still a challenging problem nowadays as how to choose the min-
imum number of informed agents such that (23) can be satisfied.

Corollary 6: Suppose that the network is connected and
is a stable region for some , .

Under condition (23), it is necessary that

(24)

holds for uninformed agents and

(25)

is satisfied for all agents, .
Proof: Under condition (23), one has

since every diagonal element of a positive definite
matrix is positive. For uninformed agents with , condi-
tion (24) is satisfied. For all agents,
hold. This completes the proof.

Remark 5: If one aims to choose some informed agents such
that all the eigenvalues of lie in a stable consensus region

, (24) must hold for the uninformed agents,
which shows that the agents with very small degrees must
be informed. For all agents, the maximum degree must be lower
than ; otherwise, some eigenvalues of can not lie in . If

is a stable consensus region, then by Corollary
5, the condition (23) can be written as . If

is sufficiently large, the th-order consensus can be reached
by informing only one agent [5]. Some interesting schemes for
choosing informed agents have been discussed in [35]. It was
found that the nodes with low degrees should be informed first,
which is contrary to the common view that the most-highly-con-
nected nodes should be informed first. Furthermore, it has been
shown that the derived pinning condition with leader’s infor-
mation given in a high-dimensional setting can be reduced to a
low-dimensional condition without pinning controllers involved
[35].

Remark 6: In many cases, it is impossible for an agent to
measure all the states of its neighbors and the leader,

; . For some order , , which
means that may be unavailable. In the second-order

leader-follower control problem of multiagent systems [9],
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Fig. 1. Locations of �� , � � �� � � � � � .

[10], some observers were designed under the condition that the
velocity states can not be measured by the agents. Here, a
general higher order leader-follower control problem is consid-
ered. One natural question is whether Corollary 4 can still hold.
Then, by designing an appropriate control input, similar results
can also be obtained in [30, Sec. 4.3.2], which are omitted due
to the limited page length.

V. SIMULATION EXAMPLES

In this section, some simulation examples are given to illus-
trate the theoretical results.

A. Consensus Regions

Consider the multiagent system (8) with , ,
, , , and . From Lemma

3, one has and . By simple cal-
culations, it is easy to verify that is
a stable consensus region. On regions and

, ,
there are two eigenvalues with positive real parts and thus are
unstable. It follows from Theorem 2 that the th-order
consensus can be reached in system (8) if and only if

for all .
A scale-free network is performed in the simulation, where

, the number of initial nodes is 5, and at each time step
a new node is introduced and connected to 5 existing nodes in
the network [2]. By computation, one obtains that
and . From Corollary 3, one knows that

. Therefore, by choosing
, one has

, . Thus, the th-order con-
sensus of this network example in the form of the multiagent
system (8) can be reached. The locations of are illustrated
in Fig. 1.

B. Leader-Follower Control With Full-State Feedback

Consider the multiagent system (19) with , ,
, , , , and .

Fig. 2. Locations of �� , � � �� � � � � � .

From Lemma 3, one has . It is easy to verify that
is a stable consensus region while

is unstable, where
has two eigenvalues with positive real parts. The

same scale-free network is simulated as above, assuming that
there are 50 informed agents with the largest degrees, which
can measure the information of the leader. In this case, one has

. Therefore, for all
. Thus, all agents in the multiagent system (19)

can follow the leader in (18) asymptotically. The locations of
are illustrated in Fig. 2.

VI. CONCLUSIONS

In this paper, general higher order distributed consensus
protocols in multiagent dynamical systems have been studied.
Some necessary and sufficient conditions have been derived
for ensuring higher order consensus and it has been found
that consensus can be reached if and only if all subsystems
are asymptotically stable. Based on this result, consensus
regions have been characterized, showing that consensus can
be achieved if and only if all the nonzero eigenvalues of the
Laplacian matrix lie in the stable consensus regions. It has also
been found that the ratio of the largest to the smallest nonzero
eigenvalues of the Laplacian matrix plays a key role in reaching
consensus and a scheme for choosing an appropriate coupling
strength has been derived. Finally, a leader-follower control
problem in multiagent dynamical systems, has been studied,
which reveals that the agents with very small degrees must be
informed.

The distributed consensus protocols developed in this paper
are very helpful for the design of cooperative control in mul-
tiagent dynamical systems, which could involve more compli-
cated and realistic dynamics of autonomous mobile agents, for
such as swarming and flocking of agents with higher order dy-
namics, time-varying and switching topologies, and noniden-
tical dynamics, leaving an interesting topic for future research.
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