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Collective Motion From Consensus With
Cartesian Coordinate Coupling

Wei Ren, Member, IEEE

Abstract—Collective motions including rendezvous, circular patterns,
and logarithmic spiral patterns can be achieved by introducing Cartesian
coordinate coupling to existing consensus algorithms. We study the collec-
tive motions of a team of vehicles in 3-D by introducing a rotation matrix
to an existing consensus algorithm for double-integrator dynamics. It is
shown that the network topology, the damping gain, and the value of the
Euler angle all affect the resulting collective motions. We show that when
the nonsymmetric Laplacian matrix has certain properties, the damping
gain is above a certain bound, and the Euler angle is below, equal, or above
a critical value, the vehicles will eventually rendezvous, move on circular
orbits, or follow logarithmic spiral curves lying on a plane perpendicular
to the Euler axis. In particular, when the vehicles eventually move on
circular orbits, the relative radii of the orbits (respectively, the relative
phases of the vehicles on their orbits) are equal to the relative magnitudes
(respectively, the relative phases) of the components of a right eigenvector
associated with a critical eigenvalue of the nonsymmetric Laplacian
matrix. Simulation results are presented to demonstrate the theoretical
results.

Index Terms—Collective motion, consensus, cooperative control, dis-
tributed algorithms, multi-vehicle systems.

I. INTRODUCTION

Coordination of robotic networks has received significant attention
in recent years due to its potential impact in numerous civilian, home-
land security, and military applications. Consensus plays an important
role in achieving distributed coordination. The basic idea of consensus
is that a team of vehicles reaches an agreement on a common value
by negotiating with their neighbors. Consensus algorithms are studied
for both single-integrator kinematics [1]–[3] and double-integrator dy-
namics [4]–[9], to name a few.

Related to consensus is the cyclic pursuit strategy, where each
vehicle pursues only one other vehicle with the network topology
forming a unidirectional ring. Cyclic pursuit is studied for single-in-
tegrator kinematics in [10], [11] while for wheeled vehicles subject
to nonholonomic constraints in [12]. Ref. [13] generalizes the cyclic
pursuit strategy by letting each vehicle pursue one other vehicle along
the line of sight rotated by a common offset angle. It is shown that de-
pending on the common offset angle, the vehicles can achieve different
symmetric formations, namely, convergence to a single point, a circle,
or a logarithmic spiral pattern. Other researchers also study symmetric
formations by adopting models based on the Frenet-Serret equations
of motion [14] or by exploring the connections between phase models
of coupled oscillators and kinematic models of self-propelled particle
groups [15].

While the strategy proposed in [13] generates interesting symmetric
formation patterns, there are limitations. First, the results in [13] are
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limited to 2-D. However, for applications involving unmanned aerial
vehicles, it will be more natural to study motions in 3-D. Second, the
results in [13] primarily focus on single-integrator kinematics. While
an extension to double-integrator dynamics is proposed to deal with
a formation control problem, the extension relies not only on relative
positions but also on relative velocities between neighbors. However,
the requirement for the knowledge of relative velocities might be too
restrictive for some applications. Third, the results in [13] rely on a
unidirectional ring topology and the resulting circular and logarithmic
spiral patterns are evenly spaced. However, for a team consisting of het-
erogenous vehicles with different sensing/communciation capabilities,
it might not always be desirable that the vehicles are evenly spaced and
move along the same orbit with an identical radius. It will also be in-
teresting to study the motions resulting from a general (not necessarily
unidirectional ring) network topology. To address these limitations, the
strategy proposed in [13] needs to be extended.

In this note, we extend the results in [13] threefold, namely, i) ex-
tension from 2-D to 3-D, ii) extension from single-integrator kine-
matics to double-integrator dynamics without the knowledge of rela-
tive velocities, and iii) extension from a unidirectional ring topology
to a general network topology to generate possibly non-evenly-spaced
circular and logarithmic spiral patterns on concentric orbits with pos-
sibly nonidentical radii. In particular, we introduce Cartesian coordi-
nate coupling to an existing consensus algorithm for double-integrator
dynamics through a rotation matrix in 3-D, analyze the convergence
properties, and quantitatively characterize the resulting collective mo-
tions in 3-D, namely, convergence to a point, circular patterns with con-
centric orbits, and logarithmic spiral curves lying on a plane perpendic-
ular to the Euler axis, over a general network topology. The resulting
collective motions are expected to have applications in rendezvous, per-
sistent surveillance, and coverage control with teams of heterogeneous
vehicles. It is shown that the network topology, the damping gain, and
the value of the Euler angle all affect the resulting collective motions.
Our analysis relies on algebraic graph theory, matrix theory, and prop-
erties of the Kronecker product. In particular, we will show that the
convergence result in [13] is a special case of the results in this note
and the convergence result in [13] can be recovered by exploiting the
properties of circulant matrices and the Kronecker product. A prelimi-
nary version of the work has appeared in [16].

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Notions

It is natural to model interaction among vehicles by directed graphs.
Suppose that a team consists of � vehicles. A weighted directed graph
� consists of a node set � � ��� � � � � ��, an edge set � � ��� , and a
weighted adjacency matrix� � ���� � 	

���. An edge ��� �� denotes
that vehicle � can obtain information from vehicle �, but not necessarily
vice versa. Weighted adjacency matrix � associated with � is defined
such that ��� is a positive weight if ��� �� 	 � , while ��� � � if ��� �� 
	
� . A directed path is a sequence of edges in a directed graph of the form
���� ���� ���� ���� � � �, where �� 	 � . A directed graph has a directed
spanning tree if there exists at least one node having a directed path to
all other nodes. Let nonsymmetric Laplacian matrix� � ���� � 	

���

associated with � be defined as ��� � �

����� ���
��� and ��� � ���� ,

� 
� � [17].

B. Existing Consensus Algorithm for Double-Integrator Dynamics

Consider vehicles with double-integrator dynamics given by

	�� � ��� 	�� � 	�� � � �� � � � � � (1)
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where �� � � and �� � � are, respectively, the position and ve-
locity of the �th vehicle, and �� � � is the control input. A consensus
algorithm for (1) is studied in [9], [18] as

�� � �
�

���

������ � ���� ���� � � �� � � � � � (2)

where ��� is the ��� 	�th entry of weighted adjacency matrix � asso-
ciated with weighted directed graph �, and � is a positive damping
gain. Consensus is reached for (1) using (2) if for all ����� and �����,
���
� � ���
� and ���
� � � as 
 � �.

III. CONSENSUS WITH CARTESIAN COORDINATE COUPLING

In this section, we consider a consensus algorithm for double-inte-
grator dynamics (1) with Cartesian coordinate coupling as

�� � �
�

���

������� � ���� ���� � � �� � � � � � (3)

where ��� and � are defined as in (2), and � � ��� denotes a Carte-
sian coordinate coupling matrix. We assume that all vehicles know �
and � a priori and the vehicles’ positions and velocities are represented
in a common reference frame. Note that (2) corresponds to the case
where � � ��, where �� denotes the  �  identity matrix. That
is, using (2), the components of �� (i.e., the Cartesian coordinates of
vehicle �) can be decoupled while using (3) the components of �� are
coupled.

A. Convergence Result

In this subsection, we analyze the convergence properties of (3). We
focus on the case where � is a rotation matrix while a similar analysis
can be extended to the case where � is a general matrix. Before moving
on, we need the following lemmas and definition:

Lemma 3.1: Let � � ���, � � ���, � � ���, and � �
���. Then �� � � ��� � � � � �� � � � , where � denotes the

Kronecker product. Let � � ��� have eigenvalues �� with associated
eigenvectors �� � �, � � �� � � � � �, and let � � ��� have eigen-
values �� with associated eigenvectors �� � � , 	 � �� � � � � �. Then
the �� eigenvalues of � � � are ���� with associated eigenvectors
�� � �� , � � �� � � � � �, 	 � �� � � � � �.

Lemma 3.2: [3] Let 	 be the nonsymmetric Laplacian matrix asso-
ciated with weighted directed graph �. Then 	 has at least one zero
eigenvalue and all its nonzero eigenvalues have positive real parts. Fur-
thermore,	 has a simple zero eigenvalue and all other eigenvalues have
positive real parts if and only if � has a directed spanning tree. In ad-
dition, there exist ��, where �� is the �� � column vector of all ones,
satisfying 	�� � � and � � � satisfying � 
 �, ��	 � �, and
�
�
�� � �. 1

Definition 3.1: Let ��, � � �� � � � � �, be the �th eigenvalue of �	
with associated right eigenvector �� and left eigenvector ��. Also let
��	���� � � for �� � � and ��	���� � ���
� ���
� for all �� �� �,
where ��	��� denotes the phase of a number. Without loss of generality,
suppose that �� is labeled such that ��	����  ��	����  � � � 
��	����. 2

Lemma 3.3: (see e.g., [19]) Given a rotation matrix � � ���, let
� � ���� ��� ��

� and  denote, respectively, the Euler axis (i.e., the
unit vector in the direction of rotation) and Euler angle (i.e., the rota-
tion angle). The eigenvalues of � are 1, !�	 , and !��	 , where " denotes
the imaginary unit, with the associated right eigenvectors given by, re-
spectively, #� � �, #� � ����� � ���� ���

�� �
������� ���
�� �
��

"�� ���� �
������ �
�������� ���
�� �
�� "�� ���� �
������ �
���,

and #� � #�, where � denotes the complex conjugate of a number.

1That is, � and � are, respectively, the right and left eigenvectors of � as-
sociated with the zero eigenvalue.

2It follows from Lemma 3.2 that � � �, � � � , and � � �.

The associated left eigenvectors are, respectively, $� � #�, $� � #�,
and $� � #�.

Lemma 3.4: Let � � ��� with eigenvalues %� and associ-
ated right and left eigenvectors �� and &�, respectively. Also let

� �
���� ��
� ����

, where ���� denotes the � � � zero

matrix and � is a positive scalar. Then the eigenvalues of � are
given by '���� � ��� � �� � �%���
 with associated right
and left eigenvectors �


 �
and �
 ����

�
, respectively, and

'�� � ���� �� � �%���
, with associated right and left eigenvec-
tors �


 �
and �
 ����

�
, respectively.

Proof: Suppose that ' is an eigenvalue of � with an asso-
ciated right eigenvector 

�
, where �� � � �. It follows that

���� ��
� ����

�

�
� '

�

�
, which implies � � '� and

�� � �� � '�. It thus follows that �� � �'� � �'�� . Noting
that ��� � %���, we let � � �� and '� � �' � %�. That is, each
eigenvalue of �, %�, corresponds to two eigenvalues of �, denoted by
'������� � ��� � �� � �%���
. Because � � '� , it follows that
the right eigenvectors associated with '���� and '�� are, respectively,

�

 �

and �

 �

. A similar analysis can be used to find the left
eigenvectors of � associated with '���� and '��.

Theorem 3.2: Suppose that weighted directed graph� has a directed
spanning tree. Let the control algorithm for (1) be given by (3), where
�� � �(�� )�� *�

� and �� � ����� ���� ���
� . Let��,��, ��, and ��	����

be defined in Definition 3.1, � be defined in Lemma 3.2, and � �
���� ��� ��

� , #� , and $� be defined in Lemma 3.3.
1) Suppose that � � ��. Then all vehicles will eventu-

ally rendezvous if and only if � + ��, where ��
�
�

���� ���� �������	������� ������	�����. The rendezvous
position is given by

�
� (��� �

�����

�
��� )��� �

�����

�
�

�
� *��� �

�����

�
(4)

where (, ), *, ��, �� , and �� are, respectively, column stack vec-
tors of (�, )�, *�, ���, ���, and ���.

2) Suppose that � � �, where � is the 3 � 3 rotation matrix de-
fined in Lemma 3.3, and � + ��. Given ����, � � 
� � � � � �,
let ,�

� � ���
� �� (respectively, ,�
� � ��� ���
�) be the solu-

tion to ���� �����,�� � �� ����,�� � � if ��	���� � ���
� �

(respectively, ��	���� � ��� ���
�). If � � -  ��, where  ��
�
�

���	
��� �����������,
�
� � ��	�����, then all vehicles will even-

tually rendezvous at the position given by (4).
3) Under the assumption of 2), if � � �  �� and there

exists a unique ��	���� � ��� ���
� such that
,�
� � ��	���� �  ��, then all vehicles will eventually

move on circular orbits with center given by (4) and period
������ ����,�

���. The radius of the orbit for vehicle � is given
by 
�������

�
� �����

� � ����� 
� � ��� � ��� ���

�� �
�,
where ����� is the �th component of �� and
�� � ���
.� � ����� ��$

�
� #�

�� ����� �� �
� ��

, where
.� � "�
���� ����,�

�����. The relative radii of the orbits are
equal to the relative magnitudes of �����. The relative phases
of the vehicles on their orbits are equal to the relative phases of
�����. The circular orbits are on a plane perpendicular to Euler
axis �.

4) Under the assumption of 2), if there exists a unique ��	���� �
��� ���
� such that ,�

� � ��	���� �  �� and  �� - � � -
���	
��� ����������������,

�
� � ��	�����, then the vehicles will

eventually move along logarithmic spiral curves with center given
by (4), growing rate���.��, where����� denotes the real part of a
number and .� � ����

�
�� � �/���
 with /� � ��!

��	�, and
period 
������.���, where ����� represents the imaginary part
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of a number. The radius of the logarithmic spiral curve for vehicle
� is ��������

�
� �����

� � ����� �
�
����� �� ��� � ��� �	


��	
��,
where �� � �
���� � ���� ���

�
� ��

�� ����� �	 �
� �	

. The
relative radii of the logarithmic spiral curves are equal to the
relative magnitudes of �����. The relative phases of the vehicles
on their curves are equal to the relative phases of �����. The
curves are on a plane perpendicular to Euler axis �.
Proof: 1) For the first statement, if � � ��, then (1) using (3) can

be written in matrix form as

�

�
�

�
�
 �

�� ���


�

��� �

�
(5)

where � � ���	 � � � � � ��
 �
�

, � � ���	 � � � � � ��
 �
�

, and � is the non-
symmetric Laplacian matrix associated with �. It follows from the
proof of Theorem 5.1 in [18] that the vehicles will eventually ren-
dezvous if and only if � defined in (5) has a simple zero eigenvalue
and all other eigenvalues have negative real parts. Note from Lemma
3.4 that each eigenvalue �� of �� corresponds to two eigenvalues of
� given by ����	 � ��� � �� � ����
� with associated right
and left eigenvectors �

� �
and �� ����

�
, respectively, and

��� � ��� � �� � ����
�, with associated right and left eigen-
vectors �

� �
and �� ����

�
, respectively, where � � �� � � � � �.

Because weighted directed graph � has a directed spanning tree, it
follows from Lemma 3.2 that �� has a simple zero eigenvalue and all
other eigenvalues have negative real parts. According to Definition 3.1,
we let �	 � � and ������ � �, � � �� � � � � �. Note from Lemma 3.2
that �	 � �
 and 	 � �. It thus follows that �	 � � with associated
right and left eigenvectors given by �

�
and ��

�
, respectively, and

�� � ��. Note that �� � � if � � �. Also noting that all �� � ���
have nonnegative real parts, it follows that all ���, � � �� � � � � �, have
negative real parts if � � �. It is left to show conditions under which
����	, � � �� � � � � �, have negative real parts. Suppose that ��� is the
critical value for � such that ����	, � � �� � � � � �, is on the imaginary
axis. Let ����	 � ���, where �� � , � � �� � � � � �. After some manip-
ulation, it follows that ��� � ���� �	
����������
� ������������
and �� � ����� �	
���������
�, � � �� � � � � �. It is straightforward to
verify that if � � ��� (respectively, � � ��� ), then ����	, � � �� � � � � �,
has a negative (respectively, positive) real part. Therefore, all ����	, � �
�� � � � � �, have negative real parts if and only if � � ����
����
��� .
Combining the above arguments shows that � has a simple zero eigen-
value and all other eigenvalues have negative real parts if and only if
� � ��.

Matrix � can be written in Jordan canonical form as ����	,
where the columns of �, denoted by �� , � � �� � � � � ��, can be
chosen to be the right eigenvectors or generalized right eigen-
vectors of � associated with eigenvalue �� , � � �� � � � � ��, the
rows of ��	, denoted by ��� , � � �� � � � � ��, can be chosen to
be the left eigenvectors or generalized left eigenvectors of � as-
sociated with eigenvalue �� such that ��� �� � � and ��� �� � �,
� �� �, and � is the Jordan block diagonal matrix with ��
being the diagonal entries. We can choose �	 � ���
 ���
 �

�
and

�	 � ��� � ��
���� �
�

. It can be verified that ��	 �	 � �. It
thus follows that �	����

����
����

� �	�������� � ���
����
����

�

�� �

�
��� ��
���� �� � ���

����
����

, which implies that ��� � �
�
� ���� � ��
���� �����, !�� � � �

� !��� � ��
���� �����,
"�� � � �

� "��� � ��
���� �����, ���� � � �, ���� � � �, and
���� � � � as  � 	. Equivalently, it follows that all vehicles will
eventually rendezvous at the position given by (4).

2) For the second statement, using (3), (1) can be written in matrix
form as

�

�
�

��
��
 ��

����#� ����




�

�
$ (6)

It follows from Lemmas 3.1 and 3.3 and Definition 3.1 that the eigen-
values of ��� � #� are ��, ���

�� , and ���
��� with associated right

eigenvectors ����	, �����, and �����, respectively, and associated
left eigenvectors � � �	, � � ��, and � � ��, respectively. That
is, the eigenvalues of ��� �#� correspond to the eigenvalues of ��
rotated by angles 0, 	, and �	, respectively. Let %�, � � �� � � � � ��,
denote the �th eigenvalue of����#�. Without loss of generality, let
%���� � ��, %���	 � ���

�� , and %�� � ���
��� , � � �� � � � � �, be the

eigenvalues of ��� � #�. Note from Lemma 3.4 that each %� corre-
sponds to two eigenvalues of �, defined in (6), given by ����	�� �
���
��� � �%��
�,� � �� � � � � ��. Because �	 � �, it follows that
%	 � %� � %� � �, which in turn implies that �	 � �� � �� � �
and �� � �� � �� � ��. Similar to the proof of the first state-
ment, all ���, � � �� � � � � ��, have negative real parts if � � �. Given
� � � and &� � ������ ����� �, � � �� � � � � �, '�

� and '�
� are the critical

values for ����&�� � ��� �(� such that ��� � �� � �&��
� is on
the imaginary axis. In particular, if ����&�� � '�

� (respectively, '�
� ),

then ��� � �� � �&��
� � ������� �	
�����'�
��
�� (respectively,

������� �	
�����'�
� �
��), � � �� � � � � �. If ����&�� � �'�

�� '
�
� � (re-

spectively, ����&�� � ��� '�
����'�

� � �(�), then ���� �� � �&��
�
have negative (respectively, positive) real parts. Because � � ��, the
first statement implies that all ��� � �� � ����
�, � � �� � � � � �,
have negative real parts, which in turn implies that ������� � �'�

�� '
�
� �,

� � �� � � � � �. If �	� � 	��, then ����%�����, ����%���	�, and ����%���
are all within �'�

�� '
�
� �, which implies that �����, �����, and ����	,

� � �� � � � � �, all have negative real parts. Therefore, if �	� � 	��, then
� has exactly three zero eigenvalues and all other eigenvalues have
negative real parts.

Similar to the proof of the first statement, we write � in Jordan
canonical form as )�)�	, where the columns of ) , denoted by
*� , � � �� � � � � ��, can be chosen to be the right eigenvectors or
generalized right eigenvectors of � associated with eigenvalue �� , the
rows of )�	, denoted by ��� , � � �� � � � � ��, can be chosen to be the
left eigenvectors or generalized left eigenvectors of � associated with
eigenvalue �� such that ��� *� � � and ��� *� � �, � �� �, and � is
the Jordan block diagonal matrix with �� being the diagonal entries.
Recall that the right and left eigenvectors of����#� associated with
eigenvalue %� � � are, respectively, �
� �� and ����, where � � �,
2, 3. It in turn follows from Lemma 3.4 that the right and left eigen-
vectors of � associated with ����	 � � are, respectively, � ��

�
and

���	
��	

, where � � �, 2, 3. We can choose *���	 � � ��
�

and

����	 �
���	 �	 � �

���	 ��	 � �
, where � � �, 2, 3. It can be verified that

�����	*���	 � � and �����	*���	 � �, where �� � � �, 2, 3 and � ��
�. Noting that ����	 � �, � � �, 2, 3, it follows that �	����

����
����

�

�	����)���)�	 ����
����

� � �
�
	 *���	�

�
���	�

����
����

, which im-
plies that ��� � � �

����� � ��
���� �����, !�� � � �
� !��� �

��
���� �����, "�� � � �
� "��� � ��
���� �����, ���� � � �,

���� � � �, and ���� � � � as  � 	. Equivalently, it follows that
all vehicles will eventually rendezvous at the position given by (4).

3) For the third statement, if 	 � 	�� (respectively, 	 � �	��)
and there exists a unique ������� � �(� �(
�� such that
'�
� � ������� � 	��, then %���	 � ���

�� � ������� (re-
spectively, %�� � ���

��� � ������� ), which implies that
����� � ��� � �� � �%���	�
� � ������� �	
�'�

��
�� (respec-
tively, ����	 � ��� �

�
�� � �%���
� � ������� �	
�'�

��
��).
Noting that the complex eigenvalues of � are in pairs, it follows
that � has an eigenvalue equal to ����� � �������� �	
�'�

��
��
(respectively, ����	 � �������� �	
�'�

��
��), denoted by �� for
simplicity. In this case, � has exactly three zero eigenvalues, two
nonzero eigenvalues on the imaginary axis, and all other eigenvalues
have negative real parts. In the following, we focus on 	 � 	�� since the
analysis for 	 � �	�� is similar except that all vehicles will move in
reverse directions. Note from Lemma 3.4 that the right and left eigen-
vectors associated with ����� are, respectively, � ��

� �� �� �
and
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�� ����� �� �
� ��

. We can choose ����� � � ��
� �� �� �

and

����� � ���������� � ���
�
� ���

�
� 	��

�� ����� �� �
� ��

. It can
be verified that ����������� � �. Similarly, it follows that �� and
�� corresponds to �� are given by �� � ����� and �� � �����. It
follows that 	�
�

��
�
� 
�
 	���

����
� � �

�	
����
�
�
���
�

	���
����

� ����

for large �, where ����
�
� �
���� � ���� ����
������

�
�����


����� � ���� �������
�
� �

	���
����

. Let ����� be the th compo-
nent of ����,  � �� � � � � ��. It follows that �����
������ �

�	
�
���� � ���� ����
�����	�����
�
���� ������ � ����� 

�
�, where

� � �� � � � � �, � � �, 2, 3, and 	���� denotes the �th component
of 	�. After some manipulation, it follows that �����
������ �

��	����������
�
���������

� � ����� 
� � ���������� �������������

����������
�
���������

� � ����� 
�
� � ����	������, � � �� � � � � �, � � �,

2, 3. Therefore, it follows that ����� � �
����� � ������� ����� �

��������, ����� � �
� ���� � ������� ����� � ����
���, and

����� � �
� ���� � ������� ����� � ������ for large �. After some

manipulation, it can be verified that ����������� ����
���� �������� �

��������
�
���������

� � ����� 
� � ��� � �

�
� ���

������, which is a
constant. Therefore, it follows that all vehicles will eventu-
ally move on circular orbits with center give by (4) and period
������ ���������. The radius of the orbit for vehicle � is given by
��������

�
���������

� � ����� 
� � ��� � �

�
� ���

������. The relative
radii of the orbits are equal to the relative magnitudes of �����. In
addition, the relative phases of the vehicles are equal to the relative
phases of �����. Note from Lemma 3.3 that Euler axis � is orthogonal
to both 	
�	�� and ���	�� are applied componentwise. It can thus be
verified that � is orthogonal to ���������� ����
���� ������

� , which
implies that the circular orbits are on a plane perpendicular to �.

4) For the fourth statement, if there exists a unique
������� � ��� ����� such that ��� � ������� � ��� and
��� � � � �������� �������������	���

�
� � �������� (respectively,

��������� �������������	���
�
� � �������� � � � ����),

then ����
 � ��

� � ����
������ ���� (respectively,

��� � ��

�� � ����
������ ����), where ������� � � � ���

(respectively, ������� � � � ��� ), which implies that
����� � ��� � �� � �����
��� (respectively,
����
 � ��� �

�
�� � �������) has a positive real part.

A similar argument as above shows that � has exactly three zero
eigenvalues and two eigenvalues with positive real parts and all other
eigenvalues have negative real parts. By following a similar procedure
to the proof of the third statement, we can show that all vehicles
will eventually move along logarithmic spiral curves with center
given by (4), growing rate 	
�������, and period ��������������.
The radius of the logarithmic spiral curve for vehicle � is given by
��������

�
���������

� � ����� 
� �
���� �
 ��� � �

�
� ���������. The

relative radii of the logarithmic spiral curves are equal to the relative
magnitudes of �����. In addition, the relative phases of the vehicles
on their curves are equal to the relative phases of �����. A similar
argument to that for the third statement shows that the curves are on a
plane perpendicular to Euler axis �.

Example 3.3: To illustrate, consider four vehicles with network
topology � shown by Fig. 1. Let � associated with � be given by

��� � ���� ����
���� ��� � �

���� ���� ��� �

�� � � �

�

It can be computed that ��� � ������ ���. Let be the rotation matrix
corresponding to Euler axis � � ����������� �� and Euler angle � �
���. It can also be computed that �� � ������. We let � � �� � ���.
Fig. 2 shows the eigenvalues of �� and ��� 	  �. We can see that
the eigenvalues of ��� 	  � correspond to the eigenvalues of ��
rotated by angles 0, �, and ��. Fig. 3 shows the eigenvalues of �.

Fig. 1. Network topology for four vehicles. An arrow from � to � denotes that
vehicle � can receive information from vehicle � .

Fig. 2. Eigenvalues of �� and ��� � �� with � � � . Circles denote the
eigenvalues of �� while x-marks denote the eigenvalues of ��� � ��. The
eigenvalues of������ correspond to the eigenvalues of�� rotated by angles
0, �, and��, respectively. In particular, the eigenvalues obtained by rotating �
by angles 0, �, and�� are shown by, respectively, the solid line, the dashed line,
and the dashdot line.

We can see that each eigenvalue of���	 �, ��, corresponds to two
eigenvalues of�,����
��� , where����
��� � ���
��� � ������,
 � �� � � � � ��. Because � � ��� and � � ��, two nonzero eigenvalues
of � are located on the imaginary axis as shown in Fig. 2.

B. Discussion and Extension

In this subsection, we discuss the results in Section III-A and show
an extension to single-integrator kinematics. In existing consensus al-
gorithms for double-integrator dynamics (e.g., [9], [18]), the Cartesian
coordinates of a vehicle are decoupled. We have shown in Theorem 3.2
that different collective motions can result from the Cartesian coordi-
nate coupling. In addition, the first statement of Theorem 3.2 general-
izes Theorem 5.1 in [18], which gives only a sufficient condition for �,
by giving a necessary and sufficient condition.

The results in Section III-A extend [13] threefold, namely, exten-
sion from 2-D to 3-D, extension from single-integrator kinematics to
double-integrator dynamics without the knowledge of relative veloc-
ities, and extension from a unidirectional ring topology to a general
network topology. While [13] proposes an extension from single-inte-
grator kinematics to double-integrator dynamics to deal with a forma-
tion control problem, the extension relies not only on relative positions
but also on relative velocities between neighbors. In contrast, algorithm
(3) does not rely on relative velocities between neighbors. For vehi-
cles with nonholonomic constraints, algorithm (3) can still be applied
if the vehicle dynamics can be feedback linearized as double-integrator
dynamics.

For single-integrator kinematics given by

��� � !�� � � �� � � � � � (7)
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Fig. 3. Eigenvalues of �. Squares denote the eigenvalues computed by
� � ��� �

�
� � �� ��� while diamonds denote the eigenvalues

computed by � � ����
�
� � �� ���, � � �� 	 	 	 � ��. In particular, the

eigenvalues of � correspond to � � � , � � � � , and � � � �
are shown by, respectively, the solid line, the dashed line, and the dashdot line.
Because 	 � 	 , two nonzero eigenvalues of � are on the imaginary axis.

where �� � ���� ��� ���
� is the position and �� � � is the control input

associated with the �th vehicle, a consensus algorithm with Cartesian
coordinate coupling takes in the form

�� � �

�

���

���	��� � ���� � � �� � � � � 
 (8)

where 	 is the 3 � 3 rotation matrix. We can adopt a similar approach
to that used in Theorem 3.2 to analyze (8). Due to space limitation, we
present the following theorem with its proof omitted.

Theorem 3.4: Suppose that weighted directed graph � has a directed
spanning tree. Let the control algorithm for (7) be given by (8). Let ��,
��, �, and �	
���� be defined in Definition 3.1,� be defined in Lemma
3.2, and � � ���� ��� ���

� , �� , and �� be defined in Lemma 3.3.
1) If ��� � ��� , where ���

�
� ������ � �	
����, the vehicles will

eventually rendezvous at position ������� ���� ��, where �, �,
and � are, respectively, column stack vectors of ��, ��, and ��.

2) If ��� � ��� and �	
���� is the unique maximum phase of
��, all vehicles will eventually move on circular orbits with
center ������� ���� �� and period �������. The radius
of the orbit for vehicle � is given by ��������

�
� �

�
��� �

��
� ��

�
� ������� ��� � ��� ���������, where ����� is the �th

component of ��. The relative radii of the orbits are equal to the
relative magnitudes of �����. The relative phases of the vehicles
on their orbits are equal to the relative phases of �����. The
circular orbits are on a plane perpendicular to Euler axis �.

3) If �	
���� is the unique maximum phase of �� and ��� � ��� �
������ � �	
������, all vehicles will eventually move along
logarithmic spiral curves with center ������� ���� ��, growing
rate ���� �����	
����� ����, and period ������� �����	
�����
������. The radius of the logarithmic spiral curve for ve-
hicle � is given by ��������

�
� �

�
��� � ��

� ��
�
� �������

���� � 	
������ ���	���
 ��� � ��� ���
������. The relative radii of

the logarithmic spiral curves are equal to the relative magnitudes
of �����. The relative phases of the vehicles on their curves
are equal to the relative phases of �����. The logarithmic spiral
curves are on a plane perpendicular to Euler axis �.

Corollary 3.5: Suppose that weighted directed graph� is a unidirec-
tional ring (i.e., a cyclic pursuit topology). Also suppose that ��� � � if
��� �� � � and ��� �  otherwise. Let the control algorithm for (7) be

Fig. 4. Trajectories of the four vehicles using (3) with 	 � 	 � 

�. Circles
denote the starting positions of the vehicles while the squares denote the snap-
shots of the vehicles at � � �
.

given by (8), where �� � ���� ���
� and 	 is the 2 � 2 rotation matrix

given by 	��� �
������ ������

� ������ ������
.

1) If ��� � ���
�, the vehicles will eventually rendezvous at position
������� ��, where � � ���� � � � � ���

� and � � ���� � � � � ���
� .

2) If ��� � ��
, all vehicles will eventually move on the same cir-
cular orbit with center ������� ��, period ���������
��, and
radius ��������

�
� �

�
���� ������������������. 3 In addition,

the vehicles will eventually be evenly distributed on the orbit.
3) If ���
� � ��� � ����
�, all vehicles will eventually move

along logarithmic spiral curves with center ������� ��, growing
rate � ������
� ������� � ���
��, period �� ������
� ������� �
��
�, and radius ���������

�
� �

�
���� � ������������������

�� �������� �����	��������
. In addition, the phases of all vehicles
will eventually be evenly distributed.
Proof: Note that if weighted directed graph � is a unidirectional

ring and ��� � � if ��� �� � � and ��� �  otherwise, then � is a
circulant matrix. Also note that a circulant matrix can be diagonalized
by a Fourier matrix. The proof then follows Theorem 3.4 directly by
use of the properties of the eigenvalues of a circulant matrix and the
properties of the Fourier matrix.

Corollary 3.5 was proved in [13] by use of parametric spectral anal-
ysis of some special types of circulant matrices. Here we have shown
that the convergence result in [13] is a special case of Theorem 3.4
and can be recovered by exploiting the properties of the circulant ma-
trices and the Kronecker product. When � is a unidirectional ring but
different positive weights are chosen for ��� , where ��� �� � � , all ve-
hicles will move on orbits with different radii and their phases will not
be evenly distributed.

IV. SIMULATION

In this section, we study collective motions of four vehicles using (3).
Suppose that the network topology is given by Fig. 1 and � is defined
in Example 3.3. Let ��, �, and � be given in Example 3.3. It can be
verified that there exists a unique �	
���� � ��� ����� such that ��

� �
�	
���� � �� (i.e., � � � in Theorem 3.2). It can also be computed
that the right eigenvector of�� associated with eigenvalue �� is �� �
��������������������������������� ������������

and � � ������ ����������������� .
Figs. 4, 5, and 6 show, respectively, the trajectories of the four vehi-

cles using (3) with � � �� � ��, � � ��, and � � �� � ��. It can

3In this case, all � ,  � �� 	 	 	 � �, have the same magnitude.
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Fig. 5. Trajectories of the four vehicles using (3) with � � � . Circles denote
the starting positions of the vehicles while the squares denote the snapshots of
the vehicles at � � ��.

Fig. 6. Trajectories of the four vehicles using (3) with � � � � ���. Circles
denote the starting positions of the vehicles while the squares denote the snap-
shots of the vehicles at � � ��.

be seen that all vehicles eventually rendezvous at the position given
by (4) when � � �

�

� � ���, move on circular orbits when � � �
�

�, and
move along logarithmic spiral curves when � � �

�

�����. Also observe
that when � � �

�

�, the relative radii of the circular orbits (respectively,
the relative phases of the vehicles) are equal to the relative magnitudes
(respectively, phases) of the components of ��. In addition, the trajec-
tories of all vehicles are perpendicular to Euler axis � in all cases. A
similar pattern for the relative radii and phases can also be observed for
the logarithmic spiral curves.

V. CONCLUSION

We have introduced Cartesian coordinate coupling to a consensus al-
gorithm for double-integrator dynamics by a rotation matrix in 3-D. We
have shown conditions under which rendezvous, circular patterns, and
logarithmic spiral patterns can be achieved using the algorithm with
Cartesian coordinate coupling under a general network topology and
quantitatively characterize the resulting collective motions. We have

also demonstrated collective motions of four vehicles using the intro-
duced algorithm in simulation. In future work, we will apply the algo-
rithm in experiments in motion coordination of robotic networks. The
robustness of the case of circular orbits can be improved by letting the
Euler angle vary slightly below or above its critical value rather than
remain constant at its critical value in case that the resulting trajectories
spiral out or spiral in. We will also study a synthesis problem, namely,
how to design the network topology such that some trajectories with
desired relative radii and relative phases can be achieved.
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