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On Consensus Algorithms for Double-Integrator Dynamics

Wei Ren, Member, IEEE

Abstract—This note considers consensus algorithms for double-in-
tegrator dynamics. We propose and analyze consensus algorithms for
double-integrator dynamics in four cases: 1) with a bounded control
input, 2) without relative velocity measurements, 3) with a group reference
velocity available to each team member, and 4) with a bounded control
input when a group reference state is available to only a subset of the
team. We show that consensus is reached asymptotically for the first two
cases if the undirected interaction graph is connected. We further show
that consensus is reached asymptotically for the third case if the directed
interaction graph has a directed spanning tree and the gain for velocity
matching with the group reference velocity is above a certain bound. We
also show that consensus is reached asymptotically for the fourth case if
and only if the group reference state flows directly or indirectly to all of
the vehicles in the team.

Index Terms—Consensus, cooperative control, coordination, graph
theory, multivehicle systems.

I. INTRODUCTION

Consensus means that a team of agents reaches an agreement on a
common value by negotiating with their neighbors. Consensus algo-
rithms have a historical perspective represented in [2]–[4], to name a
few, and have recently been studied extensively in the context of coop-
erative control of multivehicle systems (see [5] and references therein).
Some results in consensus algorithms can be understood in the context
of connective stability [6].

Consensus algorithms are primarily studied for single-integrator
kinematics (see [5] and references therein). Recent works also deal
with nonholonomic unicycles [7] and rigid body attitude dynamics
[8]. This note focuses on consensus algorithms for double-integrator
dynamics, which are more challenging than those for single-integrator
kinematics. Consensus algorithms for double-integrator dynamics are
studied in [9]–[11]. Variants of the algorithms are applied to formation
control [12]–[17] and flocking [18], [19]. Related to this note are [9],
[10], [12], [17]. In particular, [9] proposes and analyzes consensus
algorithms for double-integrator dynamics and shows that unlike the
single-integrator case, both the interaction graph and the coupling
strength of relative velocities between neighboring vehicles affect
the convergence result in the general case of directed interaction.
However, the issues of actuator saturation and lack of relative velocity
measurements are not addressed. In [12], formation keeping strate-
gies accounting for actuator saturation and lack of relative velocity
measurements are addressed for multirobot formation maneuvers.
However, the results are restricted to a bidirectional ring interaction
graph and rely on the assumption that every robot has the knowledge
of its desired location. A consensus algorithm for double-integrator
dynamics is also considered in [10], where a damping term for velocity
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is introduced. However, the analysis is based on undirected interaction.
Reference [17] extends [9] to incorporate a group reference velocity.
However, the algorithm does not explicitly take into account actuator
saturation.

The main purpose of the current note is to extend some existing re-
sults in consensus algorithms for double-integrator dynamics in four as-
pects. First, we propose and analyze a consensus algorithm for double-
integrator dynamics with a bounded control input under an undirected
interaction graph. Second, we propose and analyze a consensus algo-
rithm for double-integrator dynamics without relative velocity mea-
surements under an undirected interaction graph. The first two aspects
extend [9] to account for, respectively, actuator saturation and lack of
relative velocity measurements while extending [12] to any undirected
connected interaction graph. Third, we analyze a consensus algorithm
for double-integrator dynamics with a group reference velocity avail-
able to each team member under a directed interaction graph. This as-
pect extends [10] to the case of directed interaction. Finally, we propose
and analyze a consensus algorithm for double-integrator dynamics with
a bounded control input that allows a group reference state to be avail-
able to only a subset of the team under a directed interaction graph.
This aspect extends [17] to account for actuator saturation. A prelimi-
nary version of the work has appeared in [1].

II. BACKGROUND AND PRELIMINARIES

A. Graph Theory Notions

A weighted graph consists of a node set V = f1; . . . ; pg, an edge set
E � V � V , and a weighted adjacency matrix Ap = [aij ] 2

p� p.
An edge (i; j) in a weighted directed graph denotes that vehicle j can
obtain information from vehicle i, but not necessarily vice versa. In
contrast, the pairs of nodes in a weighted undirected graph are un-
ordered, where an edge (i; j) denotes that vehicles i and j can obtain
information from one another. The weighted adjacency matrix Ap of a
weighted directed graph is defined such that aij is a positive weight if
(j; i) 2 E , while aij = 0 if (j; i) 62 E . The weighted adjacency matrix
Ap of a weighted undirected graph is defined analogously except that
aij = aji; 8i 6= j, since (j; i) 2 E implies (i; j) 2 E .

A directed path is a sequence of edges in a directed graph of the form
(i1; i2); (i2; i3); . . ., where ij 2 V . An undirected path in an undi-
rected graph is defined analogously. A directed graph has a directed
spanning tree if there exists at least one node having a directed path to
all of the other nodes. An undirected graph is connected if there is an
undirected path between every pair of distinct nodes.

Let the (nonsymmetric) Laplacian matrix Lp = [`ij ] 2
p� p asso-

ciated with Ap be defined as

`ii =

p

j=1;j 6=i

aij ; `ij = �aij ; i 6= j: (1)

For an undirected graph, Lp is symmetric positive semidefinite. How-
ever, Lp for a directed graph does not have this property. In both the
undirected and directed cases, 0 is an eigenvalue of Lp with the associ-
ated eigenvector 1p, where 1p is a p � 1 column vector of all ones. In
the case of undirected graphs, 0 is a simple eigenvalue of Lp and all of
the other eigenvalues are positive if and only if the undirected graph is
connected [20]. In the case of directed graphs, 0 is a simple eigenvalue
of Lp and all of the other eigenvalues have positive real parts if and
only if the directed graph has a directed spanning tree [21].

B. Existing Consensus Algorithms for Double-Integrator Dynamics

Consider vehicles with double-integrator dynamics given by

_ri = vi; _vi = ui; i 2 In (2)

where ri 2
m and vi 2

m are, respectively, the position and ve-
locity of the ith vehicle, ui 2 m is the control input, and In
f1; . . . ; ng. A consensus algorithm for (2) is proposed in [9] as

ui = �

n

j=1

aij [(ri � rj) + (vi � vj)]; i 2 In (3)

where aij is the (i; j)th entry of the weighted adjacency matrix An 2
n�n characterizing the interaction graph for ri and vi, and  is a

positive gain. In the presence of a group reference velocity vd 2 m,
a consensus algorithm for (2) is proposed in [11] as

ui = _vd��(vi�v
d)�

n

j=1

aij [(ri�rj)+(vi�vj)]; i 2 In (4)

where aij is defined as in (3), and � and  are positive gains.
Consensus is reached for (3) if for all ri(0) and vi(0); ri(t)! rj(t)

and vi(t) ! vj(t) asymptotically as t ! 1. Consensus is reached
for (4) if for all ri(0) and vi(0); ri(t) ! rj(t) and vi(t) ! vd(t)
asymptotically as t ! 1.

III. CONSENSUS WITH A BOUNDED CONTROL INPUT

Note that (3) does not explicitly take into account actuator saturation.
We propose a consensus algorithm for (2) with a bounded control input
as

ui = �

n

j=1

faij tanh[Kr(ri�rj)]+bij tanh[Kv(vi�vj)]g; i 2 In

(5)
where Kr 2 m�m and Kv 2 m�m are positive-definite diag-
onal matrices, aij and bij are, respectively, the (i; j)th entry of the
weighted adjacency matrices An 2 n�n and Bn 2 n�n

characterizing, respectively, the undirected interaction graphs
for ri and vi, and tanh( � ) is defined component-wise. That is,
tanh([x1; . . . ; xm]T ) = [tanh(x1); . . . ; tanh(xm)]T , where xi 2 .
Note that An and Bn are allowed to be chosen differently. Also note
that with (5) kuik1 � n

j=1
(aij + bij), which is independent of the

initial positions and velocities of the vehicles.
Before moving on, we need the following lemma.
Lemma 3.1: Suppose & 2 m; ' 2 m; K 2 m�m, and C =

[cij ] 2
n�n. If C is symmetric, then

1

2

n

i=1

n

j=1

cij(&i � &j)
T tanh[K('i � 'j)]

=

n

i=1

n

j=1

cij&
T
i tanh[K('i � 'j)]:

Proof:

1

2

n

i=1

n

j=1

cij(&i � &j)
T tanh[K('i � 'j)]

=
1

2

n

i=1

n

j=1

cij&
T
i tanh[K('i � 'j)]

�
1

2

n

i=1

n

j=1

cij&
T
j tanh[K('i � 'j)] (6)

=
1

2

n

i=1

n

j=1

cij&
T
i tanh[K('i � 'j)]

+
1

2

n

j=1

n

i=1

cji&
T
j tanh[K('j � 'i)] (7)

=

n

i=1

n

j=1

cij&
T
i tanh[K('i � 'j)]
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where we have used the fact that cij = cji and tanh[K('j � 'i)] =
� tanh[K('i � 'j)] and have switched the order of the summation
signs in the second term in (6) to obtain (7), and have switched the
dummy variables i and j in the second term in (7) to obtain the last
equality.

Theorem 3.1: With (5), ri(t) ! rj(t) and vi(t) ! vj(t) asymp-
totically as t ! 1 if the undirected graphs of both An and Bn are
connected.

Proof: Note that with (5), (2) can be written as

_rij = vi � vj

_vi = �

n

j=1

faij tanh(Krrij) + bij tanh[Kv(vi � vj)]g (8)

where rij
4

= ri � rj . Consider a Lyapunov function candidate for (8)
as

V =
1

2

n

i=1

n

j=1

aij1
T
mK

�1

r log(cosh(Krrij)) +
1

2

n

i=1

vTi vi; (9)

where cosh( � ) and log( � ) are defined component-wise. Note that V
is positive definite and radially unbounded with respect to rij ; 8i 6= j,
and vi if the undirected graph associated with An is connected. Differ-
entiating V , gives

_V =
1

2

n

i=1

n

j=1

aij(vi � vj)
T tanh(Krrij)

�

n

i=1

vTi

n

j=1

faij tanh(Krrij) + bij tanh[Kv(vi � vj)]g

= �

n

i=1

vTi

n

j=1

bij tanh[Kv(vi � vj)]

= �
1

2

n

i=1

n

j=1

bij(vi � vj)
T tanh[Kv(vi � vj)] � 0

where we have used the fact that (d log(cosh(x)))=(dt) = _x tanh(x)
with x 2 and have used (8) to obtain the first equality, have used
Lemma 3.1 to obtain the second equality by noting that rij = ri �
rj , have used Lemma 3.1 again to obtain the third equality, and have
used the fact that x and tanh(Kx) have the same sign component-wise
when x is a vector andK is a positive-definite diagonal matrix to obtain
the last inequality.

Let S = f(rij ; vi) j _V = 0g. Note that _V � 0 implies that vi �
vj ; 8i 6= j, when the undirected graph associated with Bn is con-
nected, which, in turn, implies that _vi � _vj ; 8i 6= j. Therefore, it
follows that _v 2 span (1n 
 �), where _v = [ _vT1 ; . . . ; _v

T
n ]

T and � is
some m � 1 real vector, when the undirected graph associated with
Bn is connected. Because vi � vj , it follows from (8) that

_vi � �

n

j=1

aij tanh(Krrij); i 2 In: (10)

Note from (10) that
(1n 
 �)T _v � n

i=1
�T [� n

j=1
aij tanh(Krrij)] �

��T n

i=1

n

j=1
aij tanh(Krrij). Noting that aij = aji

and tanh(Krrij) = � tanh(Krrji), it follows that
n

i=1

n

j=1
aij tanh(Krrij) � 0, which implies that

(1n 
 �)T _v � 0. Thus it follows that _v is orthogonal to 1n 
 �.
Therefore, we conclude that _v � 0, which in turn implies that

� n

j=1
aij tanh(Krrij) � 0 from (10). As a result, it follows that

� n

i=1
rTi [

n

j=1
aij tanh(Krrij)] � 0, which in turn implies that

�(1=2) n

i=1

n

j=1
aijr

T
ij tanh(Krrij) � 0 from Lemma 3.1 by

noting that rij = ri � rj . Since tanh(Krrij) is an odd function, it
follows that aijrTij tanh(Krrij) � 0. Combing the above arguments,
gives aijr

T
ij tanh(Krrij) � 0; 8i; j. When the undirected graph

associated with An is connected, it follows that rij � 0, i.e.,
ri � rj ; 8i 6= j. By LaSalle’s Invariance principle, it follows that
ri(t) ! rj(t) and vi(t) ! vj(t);8i 6= j, asymptotically as
t!1.

Note that (5) guarantees that ri(t) ! rj(t) and vi(t) ! vj(t)
asymptotically as t ! 1. When it is desirable that ri(t) ! rj(t)
and vi(t) ! 0 asymptotically as t ! 1, we propose a consensus
algorithm for (2) with a bounded control input as

ui = �

n

j=1

aij tanh[Kr(ri � rj)]� tanh(Kvivi); i 2 In (11)

where Kr 2
m�m and Kvi 2

m�m; i 2 In, are positive-definite
diagonal matrices.

Corollary 3.2: With (11), ri(t) ! rj(t) and vi(t) ! 0 asymptot-
ically as t ! 1 if the undirected graph associated with An is con-
nected.

Proof: The proof is similar to that of Theorem 3.1 and is omitted
here.

Note that the result for saturated control in [12] requires each robot to
know its desired position and is restricted to a bidirectional ring graph
for convergence analysis. The algorithms (5) and (11) guarantee con-
sensus convergence under any undirected connected interaction graph.

IV. CONSENSUS WITHOUT RELATIVE VELOCITY MEASUREMENT

Note that (3) requires measurements of relative velocities between
neighboring vehicles. Motivated by [12] and [22], we propose a con-
sensus algorithm without relative velocity measurements based on a
passivity approach as

_̂xi = �x̂i +

n

j=1

aij(ri � rj) yi = P�x̂i + P

n

j=1

aij(ri � rj)

ui = �

n

j=1

aij(ri � rj)� yi; i 2 In (12)

where� 2 m�m is Hurwitz, aij is defined as in (5),P 2 m�m is a
symmetric positive-definite matrix and is the solution to the Lyapunov
equation �TP +P� = �Q with Q 2 m�m being a symmetric pos-
itive-definite matrix. Note that x̂i(0) 2 m can be chosen arbitrarily.

Theorem 4.1: With (12), ri(t)! rj(t) and vi(t)! vj(t) asymp-
totically as t! 1 if the undirected graph associated with An is con-
nected.

Proof: Let r = [rT1 ; . . . ; r
T
n ]

T ; v = [vT1 ; . . . ; v
T
n ]

T ;
y = [yT1 ; . . . ; y

T
n ]

T ; x̂ = [x̂T1 ; . . . ; x̂
T
n ]

T , and u = [uT1 ; . . . ; u
T
n ]

T .
The control law (12) can be written as

_̂x = (In 
 �)x̂+ (Ln 
 Im)r (13a)

y = (In 
 P ) _̂x (13b)

u = �(Ln 
 Im)r � y; (13c)

where 
 denotes the Kronecker product, In is the n � n identity ma-
trix, and Ln is the Laplacian matrix defined in (1) with p = n. Note
that Ln is symmetric positive semidefinite since the graph associated
with An is undirected.
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Note that with (12), (2) can be written as

_rij = vij ; _vij = �

n

j=1

aijrij

� P _̂xi +

n

k=1

ajkrjk + P _̂xj

�̂xi = � _̂xi +

n

j=1

aijvij (14)

where rij
4

= ri� rj and vij
4

= vi� vj . Consider a Lyapunov function
candidate for (14) as

V =
1

2
rT (Ln 
 Im)2r

+
1

2
vT (Ln 
 Im)v

+
1

2
_̂x
T
(In 
 P ) _̂x:

Note that from the property of Ln; V is positive definite and radially
unbounded with respect to rij ; vij ; 8i 6= j, and _̂xi when the undirected
graph associated with An is connected. Differentiating V , gives

_V = vT (Ln 
 Im)2r + vT (Ln 
 Im)u

+
1

2
�̂x
T
(In 
 P ) _̂x +

1

2
_̂x
T
(In 
 P )�̂x

= vT [(Ln 
 Im)2r + (Ln 
 Im)u] +
1

2
_̂x
T
(In 
 �T )(In 
 P ) _̂x

+
1

2
vT (LTn 
 Im)(In 
 P ) _̂x

+
1

2
_̂x
T
(In 
 P )(In 
 �) _̂x+

1

2
_̂x
T
(In 
 P )(Ln 
 Im)v

= vT [(Ln 
 Im)2r + (Ln 
 Im)u]�
1

2
_̂x
T
(In 
Q) _̂x

+ vT (Ln 
 Im)(In 
 P ) _̂x

= �
1

2
_̂x
T
(In 
Q) _̂x � 0

where we have used (13a)–(13b),Ln = LTn , and properties of the Kro-
necker product. In particular, given real matricesE;F;G, andH; (E

F )T = ET 
 F T and (E 
 F )(G
H) = EF 
GH .

Let S = f(rij; vij ; _̂xi) j _V = 0g. Note that _V � 0 implies that _̂x �
0, which in turn implies that �̂x � 0; (Ln
Im)v � 0 by differentiating
(13a), and y � 0 from (13b). Because (Ln
 Im)v � 0, it follows that
vi � vj , i.e., vij � 0;8i 6= j, when the undirected graph associated
with An is connected. It also follows that (Ln 
 Im) _v � 0, which
implies that _v 2 span(1n 
 �), where � is some m � 1 real vector,
when the undirected graph associated with An is connected. Because
y � 0, from (2) and (13c), it follows that

_v � �(Ln 
 Im)r: (15)

Note that (1n 
 �)T _v � �(1n 
 �)T (Ln 
 Im)r � �(1TnLn 

�T Im) � 0 because 1TnLn = 0 when the graph associated with An

is undirected. Thus _v is orthogonal to 1n 
 �. We then conclude that
_v � 0, which in turn implies that (Ln 
 Im)r � 0 from (15). If the
undirected graph associated with An is connected, (Ln 
 Im)r � 0
implies that ri � rj , i.e., rij � 0;8i 6= j. By LaSalle’s Invariance
principle, it follows that ri(t) ! rj(t) and vi(t)! vj(t);8i 6= j, as
t!1.

When it is desirable that ri(t) ! rj(t) and vi(t) ! 0 asymptoti-
cally as t ! 1, we propose an algorithm as

_̂xi = �x̂i + ri; yi = P�x̂i + Pri

ui = �

n

j=1

aij(ri � rj)� yi; i 2 In (16)

where �; P , and aij are defined as in (12).
Corollary 4.2: With (16), ri(t) ! rj(t) and vi(t) ! 0 asymptot-

ically as t ! 1 if the undirected graph associated with An is con-
nected.

Proof: Consider a Lyapunov function candidate as V =

(1=2)rT (Ln 
 Im)r + (1=2)vTv + (1=2) _̂x
T
(In 
 P ) _̂x, which is

positive definite and radially unbounded with respect to rij ; 8i 6= j; vi,
and _̂xi. Following the proof of Theorem 4.1, the derivative of V is
given as

_V = vT [(Ln 
 Im)r + u]�
1

2
_̂x
T
(In � Q) _̂x+ vT (In 
 P ) _̂x

= �
1

2
_̂x
T
(In � Q) _̂x � 0:

A similar proof to that of Theorem 4.1 shows that ri(t) ! rj(t) and
vi(t)! 0;8i 6= j, as t!1.

Again, the algorithms (12) and (16) extend the result for passivity-
based interrobot damping in [12] to consensus convergence under any
undirected connected interaction graph.

V. CONSENSUS WITH A GROUP REFERENCE VELOCITY

In this section, we consider a consensus algorithm with a group ref-
erence velocity as

ui = _vd � �(vi � vd)�

n

j=1

aij(ri � rj); i 2 In (17)

where � is a positive gain, aij is (i; j)th entry of the weighted adja-
cency matrix An 2

n�n characterizing the possibly directed inter-
action graph for ri, and vd 2 m denotes the possibly time-varying
group reference velocity. In contrast to (4), (17) removes the coupling
between relative velocities. Reference [10] studies a special case of
(17) where vd � 0. However, the analysis is restricted to undirected
graphs. The following theorem considers the general case of directed
interaction among vehicles, which generalizes [10].

Theorem 5.1: Let �i denotes the ith eigenvalue of �Ln with Ln
given by (1), where p = n, and Re( � ) and Im( � ) represent, respec-
tively, the real and imaginary parts of a number. With (17), ri(t) !
rj(t) and vi(t) ! vd(t) asymptotically as t ! 1 if the directed
graph associated with An has a directed spanning tree and

� > �� (18)

where ��
4

= 0 if all of then�1 nonzero eigenvalues of�Ln are negative
and

��
4

= max
8Re(� )<0 and Im(� )>0

j�ij
2

�Re(�i)

otherwise.
Proof: Let r = [rT1 ; . . . ; r

T
n ]
T ; ~r = r � 1n 


t

0
vd(� )d�; v =

[vT1 ; . . . ; v
T
n ]
T , and ~v = v � 1n 
 vd. With (17), (2) can be written

in matrix form as [
_~r
_~v
] = (� 
 Im)[

~r

~v
], where �

4

= [
0n�n In
�Ln ��In

]

with Ln given by (1), where p = n.
Noting that Ln1n = 0, it follows that [1Tn ;0

T
n ]
T , where 0n denotes

the n � 1 column vector of all zeros, is an eigenvector for � associated

with an eigenvalue 0, which implies that span([
1n

0n
]) is contained in
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Fig. 1. Graphical view of notations used in the proof.

the kernel of �. If � has a simple zero eigenvalue and all of the other

eigenvalues have negative real parts, then [
~r(t)

~v(t)
] ! span([

1n

0n
] 
 �)

asymptotically as t ! 1, where � is an m � 1 vector, which is
equivalent to ~ri(t)! ~rj(t) and ~vi ! 0 asymptotically as t!1.

Next, we show that if the directed graph associated with An has a
directed spanning tree and the inequality (18) is satisfied, then � has a
simple zero eigenvalue and all of the other eigenvalues have negative
real parts. Let � be an eigenvalue of � and s = [pT ; qT ]T be its asso-
ciated eigenvector, where p and q are n � 1 column vectors. Note that

�s = �s()
0n�n In
�Ln ��In

p

q

= �
p

q
() q

= �p and � Lnp� �q

= �q () �Lnp = (�2 + ��)p

which implies that �2+�� is an eigenvalue of�Ln with an associated

eigenvector p. Letting �
4
= �2 + ��, gives �2 + �� � � = 0, which

implies that given each �, there are two roots for �, denoted by �� =
((��� �2 + 4�)=2). As a result, each eigenvalue of�Ln, denoted
by �i; i = 1; . . . ; n, corresponds to two eigenvalues of �, denoted by
�2i�1 and �2i.

If the directed graph associated withAn has a directed spanning tree,
then Ln has a simple zero eigenvalue and all of the other eigenvalues
have positive real parts, which implies that �Ln has a simple zero
eigenvalue and all of the other eigenvalues have negative real parts.
Without loss of generality, let �1 = 0 and Re(�i) < 0; i = 2; . . . ; n.
Then it follows that �1 = 0 and �2 = ��. Note that if �i < 0,
then Re((�� � �2 + 4�i)=(2)) < 0 for any � > 0. It is left
to show that the inequality (18) guarantees that all of the eigenvalues
of � corresponding to �i that satisfies Re(�i) < 0 and Im(�i) 6=
0 have negative real parts. Motivated by [9], [15], we use Fig. 1 to
show the notations used in the proof. We only need to consider �i
that satisfies Re(�i) < 0 and Im(�i) > 0 since any �i that satis-
fies Re(�i) < 0 and Im(�i) < 0 is a complex conjugate of some
�i that satisfies Re(�i) < 0 and Im(�i) > 0. Consider the triangle
formed by vectors �2; 4�i, and �2 + 4�i. According to the law of
cosines, j�2 + 4�ij

2 = (�2)2 + (4j�ij)
2 � 8�2j�ij cos(�i), where

cos(�i) = (�Re(�i))=(j�ij). Note that if � > j�ij (2=(�Re�i),
then j�2 + 4�ij

2 < �4, which implies that j �2 + 4�ij < �. There-
fore, it follows that jRe( �2 + 4�i)j < �, which in turn implies that
Re(�2i�1;2i) = Re((��� �2 + 4�i)=(2)) < 0.

Combing the above arguments, it follows that if the directed graph
associated withAn has a directed spanning tree and the inequality (18)
is valid, then ~ri(t)! ~rj(t) and ~vi(t)! 0 asymptotically as t! 1,
which in turn implies that ri(t)! rj(t) and vi(t)! vd(t) asymptot-
ically as t!1.

VI. CONSENSUS WITH A BOUNDED CONTROL INPUT AND WITH

PARTIAL ACCESS TO A GROUP REFERENCE STATE

Note that (4) and (17) require that the group reference velocity be
available to each vehicle in the team. Next, we propose a consensusal-

Fig. 2. Interaction graphs for Cases I–IV.

gorithm with a bounded control input that allows the group reference
position rd, velocity vd, and acceleration _vd to be available to only a
subset of the team as

ui =
1

�i

n

j=1

aij _vj + ai(n+1) _v
d

�
1

�i
Kri tanh

n

j=1

aij(ri � rj) + ai(n+1)(ri � rd)

�
1

�i
Kvi tanh

n

j=1

aij(vi � vj) + ai(n+1)(vi � vd) ;

i 2 In (19)

where aij ; i; j 2 In, is the (i; j)th entry of the weighted adjacency
matrixAn 2

n�n defined as in (17), ai(n+1) > 0; i 2 In, if vehicle

i has access to rd; vd, and _vd; �i
4
= n+1

j=1 aij ; _v
d is bounded, andKri

and Kvi are m � m positive-definite diagonal matrices. Note that
each control input depends on not only its local neighbors’ positions
and velocities but also their accelerations. In practical implementation,
the accelerations can be calculated by numerical differentiation of the
velocities. The algorithm (19) extends the result in [17] to explicitly
account for actuator saturation.

Theorem 6.1: LetAn+1 = [aij ] 2
(n+1)� (n+1) be the adjacency

matrix, where aij ; i 2 In; j 2 In+1, is defined in (19) and a(n+1)j =
0; j 2 In+1. With (19), there exists a unique bounded solution for ui
and ri(t)! rd(t) and vi(t)! vd(t) asymptotically as t!1 if and
only if the directed graph associated withAn+1 has a directed spanning
tree.

Proof: We first show that (19) has a unique solution for ui if and
only if the directed graph associated with An+1 has a directed span-
ning tree and the solution is bounded. Noting that all entries of the last
row of An+1 are zero and the directed graph associated withAn+1 has
a directed spanning tree, it follows that no other row of An+1 can have
all zero entries. It thus follows that �i =

n+1
j=1 aij 6= 0; i = 1; . . . ; n.

Define W = [wij ] 2 n�n as wij = �aij ; i 6= j, and
wii = n+1

j=1;j 6=i aij . Also define b = [b1; . . . ; bn]
T 2 n� 1

with bi = �ai(n+1), and d = [dT1 ; . . . ; d
T
n ]

T 2 mn� 1 with
di = �Kri tanh[

n

j=1 aij(ri � rj) + ai(n+1)(ri � rd)] �

Kvi tanh[
n

j=1 aij(vi � vj) + ai(n+1)(vi � vd)]. With (19),
(2) can be written as (W 
 Im)u = (�b 
 Im) _vd + d, where
u = [uT1 ; . . . ; u

T
n ]

T , by noting that _vj = uj . Note that b; _vd, and
d are all bounded. If W has full rank, then it is straightforward
to show that there is a unique solution for u and the solution is

bounded. Let Ln+1 = [
W j b

01�nj0
] 2 (n+1)� (n+1), which is

the nonsymmetric Laplacian matrix associated with An+1. Note
that Rank(Ln+1) = Rank(W jb) and W1n + b = 0n (i.e., b
is a linear combination of the n columns of W ). It follows that
Rank(W ) = Rank(W j b) = Rank(Ln+1). Also note that
Rank(Ln+1) = n if and only if the directed graph associated with
An+1 has a directed spanning tree ([23], Lemma 2.10). Therefore,
Rank(W ) = n (i.e., full rank) if and only if the directed graph
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Fig. 3. Simulation results of Cases I–IV: (a) Case I, (b) Case II, (c) Case III, and (d) Case IV.

associated with An+1 has a directed spanning tree. This proves the
first argument of the theorem.

Note that with (19), (2) can be written as

�ei = �Kri tanh(ei)�Kvi tanh( _ei) (20)

where ei = n

j=1 aij(ri � rj) + ai(n+1)(ri � rd). Consider a
Lyapunov function candidate V = n

i=1f1
T
mKri log[cosh(ei)] +

(1=2) _eTi _eig, which is positive definite and radially unbounded with
respect to ei and _ei. Differentiating V , gives

_V =

n

i=1

_eTi Kri tanh(ei)

+ _eTi [�Kri tanh(ei)�Kvi tanh( _ei)]

= �

n

i=1

_eTi Kvi tanh( _ei) � 0:

Let S = f(ei; _ei) j _V = 0g. Note that _V � 0 implies that _ei � 0,
which in turn implies that �ei � 0. Because _ei � 0 and �ei � 0, it
follows that ei � 0 from (20). By LaSalle’s Invariance principle, it
follows that ei(t)! 0 and _ei(t)! 0 asymptotically as t!1. Note
that e = (W 
 Im)r + (b 
 Im)rd, where e = [eT1 ; . . . ; e

T
n ]

T and
r = [rT1 ; . . . ; r

T
n ]

T . Because W1+ b = 0n and Rank(W ) = n (i.e.,
W�1b = �1n) if and only if the directed graph associated with An+1

has a directed spanning tree, it follows that e(t) ! 0 asymptotically

as t ! 1 is equivalent to ri(t) ! rd(t) asymptotically as t ! 1
under the same assumption. Similarly, it follows that _e(t)! 0 asymp-
totically as t ! 1 is equivalent to vi(t) ! vd(t) asymptotically as
t!1 under the same assumption.

VII. SIMULATION

In this section, we demonstrate simulation results for Cases I–IV
using (5), (12), (17), and (19), respectively. The undirected graph as-
sociated with An in (5) and (12) is shown by Fig. 2(a). For simplicity,
we assume that Bn = An in (5). The directed graph associated with
An in (17) is shown in Fig. 2(b) while the directed graph associated
with An+1 in (19) is shown in Fig. 2(c), where an arrow from node
L to node i denotes that vehicle i has access to rd; vd, and _vd. In all
cases, we let m = 1 and choose the nonzero entries of the weighted
adjacency matrices to be 0.5 for simplicity. In Case I, we let Kr =
Kv = 1. In Case II, we let � = �0:5 and P = 1. In Case III, we let
_vd = (sin(t))=(1+e�t). In Case IV, we let Kri = Kvi = 1 and have
rd and vd satisfy _rd = vd and _vd = (cos(rd))=(1+e�t).Fig. 3 shows
the simulation results for Cases I–IV. Note that consensus is reached
in each case.

VIII. CONCLUSION AND FUTURE WORK

We have extended some existing results in consensus algorithms for
double-integrator dynamics to account for actuator saturation, remove
the requirement for relative velocity measurements, introduce a group
reference velocity to each vehicle, and incorporate a group reference
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state to a subset of the team and account for actuator saturation. We
have shown convergence conditions for consensus in each case. Future
work will consider the effects of time delay and switching interaction
graphs in those algorithms.
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Perfect Elimination of Regulation Transients in
Discrete-Time LPV Systems via Internally Stabilizable

Robust Controlled Invariant Subspaces

Elena Zattoni, Senior Member, IEEE

Abstract—This note introduces a geometric solution to the problem of
perfect elimination of regulation transients in discrete-time, linear systems
subject to swift and wide, a priori-known, parameter variations. The con-
structive proof of the conditions for problem solvability requires a prelim-
inary, strictly geometric interpretation of the multivariable autonomous
regulator problem, specifically aimed at discrete-time, linear systems. The
novel concept of internal stabilizability of a robust controlled invariant sub-
space plays a key role in the formulation of those conditions as well as in
the synthesis of the control scheme.

Index Terms—Geometric approach, linear parameter varying systems,
robust controlled invariant subspaces.

I. INTRODUCTION

Robust asymptotic regulation, achieved through the internal model
principle, as was first established in [1] and [2], is very effective in those
situations where the systems involved are subject to sufficiently small
parameter variations. Conversely, the problem of handling sudden, rel-
evant changes occurring in the regulated system dynamics has been
the object of a fair number of contributions in the more recent litera-
ture: linear parameter varying (or LPV) systems, jump linear systems,
switching systems are definitions extensively used to denote specific
classes of systems somehow affected by significant modifications in
their parameters and/or structure. A variety of techniques has been pro-
posed to cope with those kinds of systems. However, as to LPV sys-
tems, the geometric approach has proved to be a particularly congenial
methodology (see, e.g., [3]–[8]). Indeed, several aspects of control and
observation in LPV systems have been deeply analyzed, from a geo-
metric perspective, in the abovementioned articles. Nonetheless, the
investigation of the problem of perfect elimination of regulation tran-
sients in discrete-time linear systems with a priori-known switching
laws, which is the scope of this work, is still lacking.

Linear parameter varying systems are adopted in many areas of con-
trol systems technology to model regulated systems susceptible to im-
portant variations in their dynamics. In fact, LPV systems are widely
used in flight control (see, e.g., [9]–[11]), road vehicle control (see,
e.g., [12] and [13]), process control (see, e.g., [14]), power plant con-
trol (see, e.g., [15]), machine tool control (see, e.g., [16]), etc. In most
of the cases considered in the literature mentioned above, the parameter
variations are measurable in real time. Nevertheless, in some circum-
stances, the variations in the system dynamics and the time of their oc-
currence are known in advance. For instance, in aircraft flight control,
some manoeuvres are predetermined, which implies that switching be-
tween the linear time-invariant systems modeling the aircraft dynamics
at the different points of interest throughout the operational envelope
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